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Problem 23. (Cantor normal form) Show that for every ordinal α, there are a

unique k ∈ ω and unique tuples (m0, ...,mk) of natural numbers and (α0, ..., αk) of

ordinals with α = ωα0m0 + ωα1m1 + ...+ ωαkmk and α0 > ... > αk.

Problem 24. (Transversals) Prove that AC is equivalent to the following state-

ment: For every set X and every equivalence relation E on X there is a transversal

for E, i.e. a subset of X which intersects every equivalence class in exactly one

point.

Problem 25. (Cardinality) Prove:

(a) R ∼ [0, 1] ∼ (0, 1).

(b) R ∼ ω2.

(c) ω[0, 1] ∼ [0, 1].

Problem 26. (Cantor-Schröder-Bernstein theorem) Suppose B ⊆ A and f : A →
B is injective. We define A0 = A, An+1 = f [An], B0 = B, Bn+1 = f [Bn] for n ∈ ω
by recursion. Let

g(x) =

f(x) if x ∈ An \Bn for some n,

x otherwise.

Show that g : A→ B is bijective.

There are 6 points for each problem. Please hand in your solutions on Monday,

November 26 before the lecture.


