6. Problem sheet for Set Theory, Winter 2012

Prof. Dr. Peter Koepke, Dr. Philipp Schlicht Mathematisches Institut, Universität Bonn, 12.11.2012

Problem 19. (Fixed points)

- (a) Show that Ord(x) if and only if Trans(x) and x is linearly ordered by \in .
- (b) Let $F: Ord \to Ord$, $F(\alpha) = 2^{\alpha}$ (ordinal exponentiation). Show that $2^{\omega} = \omega$, i.e. ω is a fixed point of F.
- (c) Show that every strictly increasing continuous function $F: Ord \to Ord$ has arbitrarily large fixed points, i.e. if $\alpha < \beta \to F(\alpha) < F(\beta)$ for all $\alpha, \beta \in Ord$ and $F(\lambda) = \sup_{\alpha < \lambda} F(\alpha)$ for all limits $\lambda \in Ord$, then $\forall \gamma \exists \delta > \gamma$ $F(\delta) = \delta$.

Problem 20. (Well-orders) A linearly ordered set (x, <) is *well-ordered* if every non-empty $y \subseteq x$ has a <-minimal element. Show:

- (a) If (x, <) is a well-ordered set, then there is a unique ordinal α such that
 (α, ∈) and (x, <) are isomorphic. Use the recursion F(β) = min(x \ range(F ↾ β)) for x \ range(F ↾ β) ≠ Ø.
- (b) If $(x, <_x)$ and $(y, <_y)$ are both well-ordered, then the lexicographical product $(x \times y, <_{lex})$ is well-ordered. We define $(a, b) <_{lex} (a', b') :\leftrightarrow (a <_x a') \lor (a = a' \land b <_y b').$
- (c) $\alpha \cdot \beta$ is the order type of the lexicographical product of (β, \in) and (α, \in) for $\alpha, \beta \in Ord$.

Problem 21. (Hausdorff Maximality Principle) Show that in the theory ZF the axiom of choice is equivalent to the Hausdorff Maximality Principle which says: for every partial order $(P, \leq) \in V$ there is an inclusion maximal chain X in (P, \leq) , i.e. X is a chain and if $Y \supseteq X$ is a chain in (P, \leq) then Y = X.

Problem 22. (Embedding into \mathbb{Q}) Suppose γ is a countable ordinal. Show that there is an order-preserving injection $f: \gamma \to \mathbb{Q}$, i.e. $\forall \alpha < \beta < \gamma \ f(\alpha) < f(\beta)$.

There are 6 points for each problem. Please hand in your solutions on Monday, November 19 before the lecture.