2. Problem sheet for Set Theory, Winter 2012

Prof. Dr. Peter Koepke, Dr. Philipp Schlicht
Mathematisches Institut, Universität Bonn, 15.10.2012

Problem 3. (Ordered pairs)
a) Show that $\langle x, y\rangle:=\{\{x, \emptyset\},\{y,\{\{\emptyset\}\}\}\}$ satisfies the fundamental property of ordered pairs.
b) Does $\langle x, y\rangle:=\{x,\{y, \emptyset\}\}$ satisfy the fundamental property of ordered pairs?

Problem 4. (Class functions) Suppose $F: A \rightarrow B, F^{\prime}: A \rightarrow B$ are functions and X, Y are class terms. Show that
a) $F^{-1}[X] \cap F^{-1}[Y]=F^{-1}[X \cap Y]$.
b) $F=F^{\prime}$ if and only if $\forall x \in A F(x)=F^{\prime}(x)$.
c) F is injective if and only if there is a class term G with $F \circ G=i d_{\text {range }(F)}$.

Problem 5. (Equinumerous sets) Define a relation \sim on V by

$$
x \sim y \leftrightarrow \exists f f: x \leftrightarrow y .
$$

One says that x and y are equinumerous or equipollent.
a) Show that \sim is an equivalence relation on V.
b) What are the equivalence classes of \emptyset and $\{\emptyset\}$?

Problem 6. Prove
a) $\forall x(x \neq \emptyset \rightarrow \bigcap x \in V)$.
b) $\forall x \operatorname{dom}(x) \in V$.
c) $\{\{x\} \mid x \in V\} \notin V$.

There are 6 points for each problem. Please hand in your solutions on Monday, October 22 before the lecture.

