1. Problem sheet for Set Theory, Winter 2012

Prof. Dr. Peter Koepke, Dr. Philipp Schlicht Mathematisches Institut, Universität Bonn, 08.10.2012

Let x, y, z be variables and A a class term.

Problem 1. Prove

- a) $\forall x \forall y \exists z \ z = (x, y).$
- b) If $x, y \in A$, then $\{x\}, \{x, y\} \in \mathcal{P}(A)$ and $(x, y) \in \mathcal{P}(\mathcal{P}(A))$.
- c) If $(x, y) \in A$, then $x, y \in \bigcup \bigcup A$.

Problem 2. Let $\neg \{x \mid \varphi(x)\} := \{x \mid \neg \varphi(x)\}$ for $\varphi \in L^{\epsilon}$, $0_V := \{x \mid x \neq x\}$, and $1_V := \{x \mid x = x\}$. Suppose u, v, w are class terms of the form $\{x \mid \varphi(x)\}$, where $\varphi \in L^{\epsilon}$ contains no free variables except for x. Show that

- a) $u \cup v = v \cup u$.
- b) $u \cup (v \cup w) = (u \cup v) \cup w$.
- c) $u \cap (v \cup w) = (u \cap v) \cup (u \cap w).$
- d) $u \cap (u \cup v) = u$.
- e) $u \cup (\neg u) = 1_V$.
- f) $u \cap (\neg u) = 0_V$.

Since the equations a) - d) with $\cup,\,\cap$ exchanged can be checked analogously, these terms for a Boolean algebra.

There are 6 points for each problem. Please hand in your solutions on Monday, October 15 before the lecture.