
REFERENCE SOLUTION OF PROBLEM 44

Lemma. If S is stationary and C is a club, then S ∩ C is stationary.

Proof. Let D be another club. Since C ∩D is again club, notice:

(S ∩ C) ∩D = S ∩ (C ∩D) 6= ∅.

Hence S ∩ C intersects every club. �

Problem 44. Suppose S ⊆ ω1 is stationary. Show:

(a) There are arbitrarily large α ∈ S with sup(S ∩ α) = α.

(b) For every limit ordinal α < ω1, let Cα denote the set of limit

ordinals γ < ω1 such that for all β < γ there is a closed set C

with (∗):

(i) C ∩ β = ∅,

(ii) otp(C) = α + 1,

(iii) max(C) = γ, and

(iv) C \ {γ} ⊆ S.

Show that each Cα contains a club w.r.t. ω1 and conclude that

for any α < ω1 there is a closed C ⊆ S with otp(C) = α + 1.

Proof. Let S ⊆ ω1 be stationary.

(a) Assume this is false. Then there is an upper bound, i.e. some

γ ∈ ω1 such that for all α ≥ γ, sup(S ∩ α) < α.

Then the function f : S \ α → ω1, f(α) = sup(S ∩ α) is

regressive. Hence, by Fodor’s Lemma, there is a stationary, in

particular unbounded, set T ⊆ S \α such that f is constant on
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T . Let f [T ] = {β}. Since T is unbounded, there are ε, δ ∈ T

with ε > δ > β. Now notice that δ ∈ S ∩ ε, hence

β = f(ε) = sup(S ∩ ε) ≥ δ > β .

(b) We perform an induction on the limit ordinals α below ω1.

The base case is α = ω. Check that Cω = {γ ∈ ω1 ∩ Lim |

γ is a limit point of S}. (Note that this is not the derivation of

S, as it may contain γ /∈ S): Let γ be a limit point of S and

β < γ and show that β satisfies (∗):

Take (γn)n<ω to be some strictly increasing sequence above β

in S that converges to γ. Then consider the clearly closed set

C := {γn | n < ω} ∪ {γ}. Check the four properties in (∗):

(i) C ∩ β = ∅, because γn runs above β,

(ii) otp(C) = ω+ 1, since (γn)n<ω has ordertype ω and we add

one,

(iii) max(C) = γ, obviously, and

(iv) C \ {γ} ⊆ S since the γn run inside S.

Furthermore, Cω is unbounded by (a) and closed, as limit

points of limit points of S are again limit points of S.

The successor step is α → α + ω. By induction, let D ⊆ Cα

be a club. Define a stationary set (by the lemma) S0 := S ∩D.

Define E := {γ ∈ Lim ∩ ω1 | γ is a limit point of S0}. As

before, E is club. Now show that E ⊆ Cα+ω.

Let δ ∈ E and β < δ. Show that δ satisfies (∗). δ is a

limit point of S0, so there is a γ ∈ S0 with β < γ < δ. Then

γ ∈ S ∩ D ⊆ S ∩ Cα ⊆ Cα. By (∗) there is a closed F with

F ∩ β = ∅, max(F ) = γ, otp(F ) = α + 1 and F \ {γ} ⊆ S.

Then, since γ ∈ S, F ⊆ S.
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Now choose a strictly increasing sequence (δn)n<ω in S above

γ that converges to δ. Consider C = F ∪ {δn | n ∈ ω} ∪ {δ}.

Note that this union is disjoint. Check the properties in (∗):

(i) C ∩ β = ∅, because δn runs above γ > β,

(ii) otp(C) = α + ω + 1, since otp(F ) = α and we add ω + 1,

(iii) max(C) = δ, obviously, and

(iv) C \ {δ} ⊆ S since the δn run inside S and F ⊆ S.

For the limit case suppose α is a limit of limit ordinals and

suppose for all limits ν < α there is a club in Cν . Define the

following:

- Choose a strictly increasing sequence (αn)n<ω of limit or-

dinals, except α0 = 0, that converges to α.

- Choose (βn)n<ω such that αn + βn = αn+1 for all n < ω, in

particular β0 = α1. Note that the βn are all limits smaller

α.

- For all n < ω let Fn be a club contained in Cβn (by induc-

tion).

- Define S0 := S ∩
⋂
n<ω Fn and notice that it is stationary,

since ω < cof(ω1) and hence by a previous exercise
⋂
n<ω Fn

is club.

- Define E := {γ ∈ Lim ∩ ω1 | γ is a limit point of S0} and

notice that it is club by the same arguments as before.

Now show that E ⊆ Cα. Let γ ∈ E, β < γ. Show that β

satisfies (∗):

Choose a sequence (γn)n<ω above β in S0 that converges to

γ and satisfies ∀n < ω : γn + 1 < γn+1. Notice that for all

n < ω, γn+1 ∈ Fn and hence by (∗) there is a closed Dn with
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Dn ∩ (γn + 1) = ∅, max(Dn) = γn+1, Dn \ {γn+1} ⊆ S and

otp(Dn) = βn + 1.

Define C =
⋃
n<ωDn ∪ {γ}. For all n < ω, max(Dn) =

γn+1 and min(Dn+1) > γn+1. Hence C is a disjoint union and

therefore by the choice of the βn:

otp(C) = (
∑

n<ω otp(Dn)) + 1 = (
∑

n<ω βn + 1) + 1 = (α1 +∑
0<n<ω(1 + βn)) + 1 = (α1 +

∑
0<n<ω βn) + 1 = α + 1.

C is clearly closed. Then check (∗):

(i) C ∩ β = ∅, because γn runs above β and all the Dn are

above γn,

(ii) otp(C) = α + 1 (see above),

(iii) max(C) = γ, obviously, and

(iv) C \ {γ} ⊆ S since all the Dn lie in S.

This concludes the first part of the proof.

Now show that for all α < ω1 there is a closed C ⊆ S with

otp(C) = α + 1. Perform an induction over α. If α = 0, any

singleton out of S will do.

α → α + 1. Let C ⊂ S be closed with ordertype α + 1.

|C| ≤ |α + 1| ≤ ω and ω1 is regular, hence C is not unbounded

in ω1. So choose some γ ∈ S \ (supC + 1). Notice that C ∪{γ}

is still closed and has ordertype α + 1 + 1.

α ∈ Lim: Cα contains a club, so Cα ∩ S is not empty. Then

we can take γ < ω1, γ ∈ Cα ∩S. Take some β < γ and a closed

set C such that C \ {γ} ⊆ S and otp(C) = α+ 1. Since γ ∈ S,

C ⊆ S.
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