REFERENCE SOLUTION OF PROBLEM 44

Lemma. If S is stationary and C is a club, then $S \cap C$ is stationary.

Proof. Let D be another club. Since $C \cap D$ is again club, notice:

$$
(S \cap C) \cap D=S \cap(C \cap D) \neq \emptyset .
$$

Hence $S \cap C$ intersects every club.

Problem 44. Suppose $S \subseteq \omega_{1}$ is stationary. Show:
(a) There are arbitrarily large $\alpha \in S$ with $\sup (S \cap \alpha)=\alpha$.
(b) For every limit ordinal $\alpha<\omega_{1}$, let C_{α} denote the set of limit ordinals $\gamma<\omega_{1}$ such that for all $\beta<\gamma$ there is a closed set C with (*):
(i) $C \cap \beta=\emptyset$,
(ii) $\operatorname{otp}(C)=\alpha+1$,
(iii) $\max (C)=\gamma$, and
(iv) $C \backslash\{\gamma\} \subseteq S$.

Show that each C_{α} contains a club w.r.t. ω_{1} and conclude that for any $\alpha<\omega_{1}$ there is a closed $C \subseteq S$ with $\operatorname{otp}(C)=\alpha+1$.

Proof. Let $S \subseteq \omega_{1}$ be stationary.
(a) Assume this is false. Then there is an upper bound, i.e. some $\gamma \in \omega_{1}$ such that for all $\alpha \geq \gamma, \sup (S \cap \alpha)<\alpha$.

Then the function $f: S \backslash \alpha \rightarrow \omega_{1}, f(\alpha)=\sup (S \cap \alpha)$ is regressive. Hence, by Fodor's Lemma, there is a stationary, in particular unbounded, set $T \subseteq S \backslash \alpha$ such that f is constant on
T. Let $f[T]=\{\beta\}$. Since T is unbounded, there are $\varepsilon, \delta \in T$ with $\varepsilon>\delta>\beta$. Now notice that $\delta \in S \cap \varepsilon$, hence

$$
\beta=f(\varepsilon)=\sup (S \cap \varepsilon) \geq \delta>\beta \text { 亿. }
$$

(b) We perform an induction on the limit ordinals α below ω_{1}.

The base case is $\alpha=\omega$. Check that $C_{\omega}=\left\{\gamma \in \omega_{1} \cap \operatorname{Lim} \mid\right.$ γ is a limit point of $S\}$. (Note that this is not the derivation of S, as it may contain $\gamma \notin S)$: Let γ be a limit point of S and $\beta<\gamma$ and show that β satisfies ($*$):

Take $\left(\gamma_{n}\right)_{n<\omega}$ to be some strictly increasing sequence above β in S that converges to γ. Then consider the clearly closed set $C:=\left\{\gamma_{n} \mid n<\omega\right\} \cup\{\gamma\}$. Check the four properties in (*):
(i) $C \cap \beta=\emptyset$, because γ_{n} runs above β,
(ii) $\operatorname{otp}(C)=\omega+1$, since $\left(\gamma_{n}\right)_{n<\omega}$ has ordertype ω and we add one,
(iii) $\max (C)=\gamma$, obviously, and
(iv) $C \backslash\{\gamma\} \subseteq S$ since the γ_{n} run inside S.

Furthermore, C_{ω} is unbounded by (a) and closed, as limit points of limit points of S are again limit points of S.

The successor step is $\alpha \rightarrow \alpha+\omega$. By induction, let $D \subseteq C_{\alpha}$ be a club. Define a stationary set (by the lemma) $S_{0}:=S \cap D$. Define $E:=\left\{\gamma \in \operatorname{Lim} \cap \omega_{1} \mid \gamma\right.$ is a limit point of $\left.S_{0}\right\}$. As before, E is club. Now show that $E \subseteq C_{\alpha+\omega}$.

Let $\delta \in E$ and $\beta<\delta$. Show that δ satisfies (*). δ is a limit point of S_{0}, so there is a $\gamma \in S_{0}$ with $\beta<\gamma<\delta$. Then $\gamma \in S \cap D \subseteq S \cap C_{\alpha} \subseteq C_{\alpha}$. By $(*)$ there is a closed F with $F \cap \beta=\emptyset, \max (F)=\gamma, \operatorname{otp}(F)=\alpha+1$ and $F \backslash\{\gamma\} \subseteq S$. Then, since $\gamma \in S, F \subseteq S$.

Now choose a strictly increasing sequence $\left(\delta_{n}\right)_{n<\omega}$ in S above γ that converges to δ. Consider $C=F \cup\left\{\delta_{n} \mid n \in \omega\right\} \cup\{\delta\}$. Note that this union is disjoint. Check the properties in (*):
(i) $C \cap \beta=\emptyset$, because δ_{n} runs above $\gamma>\beta$,
(ii) $\operatorname{otp}(C)=\alpha+\omega+1$, since $\operatorname{otp}(F)=\alpha$ and we add $\omega+1$,
(iii) $\max (C)=\delta$, obviously, and
(iv) $C \backslash\{\delta\} \subseteq S$ since the δ_{n} run inside S and $F \subseteq S$.

For the limit case suppose α is a limit of limit ordinals and suppose for all limits $\nu<\alpha$ there is a club in C_{ν}. Define the following:

- Choose a strictly increasing sequence $\left(\alpha_{n}\right)_{n<\omega}$ of limit ordinals, except $\alpha_{0}=0$, that converges to α.
- Choose $\left(\beta_{n}\right)_{n<\omega}$ such that $\alpha_{n}+\beta_{n}=\alpha_{n+1}$ for all $n<\omega$, in particular $\beta_{0}=\alpha_{1}$. Note that the β_{n} are all limits smaller α.
- For all $n<\omega$ let F_{n} be a club contained in $C_{\beta_{n}}$ (by induction).
- Define $S_{0}:=S \cap \bigcap_{n<\omega} F_{n}$ and notice that it is stationary, since $\omega<\operatorname{cof}\left(\omega_{1}\right)$ and hence by a previous exercise $\bigcap_{n<\omega} F_{n}$ is club.
- Define $E:=\left\{\gamma \in \operatorname{Lim} \cap \omega_{1} \mid \gamma\right.$ is a limit point of $\left.S_{0}\right\}$ and notice that it is club by the same arguments as before.

Now show that $E \subseteq C_{\alpha}$. Let $\gamma \in E, \beta<\gamma$. Show that β satisfies (*):

Choose a sequence $\left(\gamma_{n}\right)_{n<\omega}$ above β in S_{0} that converges to γ and satisfies $\forall n<\omega: \gamma_{n}+1<\gamma_{n+1}$. Notice that for all $n<\omega, \gamma_{n+1} \in F_{n}$ and hence by $(*)$ there is a closed D_{n} with
$D_{n} \cap\left(\gamma_{n}+1\right)=\emptyset, \max \left(D_{n}\right)=\gamma_{n+1}, D_{n} \backslash\left\{\gamma_{n+1}\right\} \subseteq S$ and $\operatorname{otp}\left(D_{n}\right)=\beta_{n}+1$.

Define $C=\bigcup_{n<\omega} D_{n} \cup\{\gamma\}$. For all $n<\omega, \max \left(D_{n}\right)=$ γ_{n+1} and $\min \left(D_{n+1}\right)>\gamma_{n+1}$. Hence C is a disjoint union and therefore by the choice of the β_{n} :
$\operatorname{otp}(C)=\left(\sum_{n<\omega} \operatorname{otp}\left(D_{n}\right)\right)+1=\left(\sum_{n<\omega} \beta_{n}+1\right)+1=\left(\alpha_{1}+\right.$ $\left.\sum_{0<n<\omega}\left(1+\beta_{n}\right)\right)+1=\left(\alpha_{1}+\sum_{0<n<\omega} \beta_{n}\right)+1=\alpha+1$.
C is clearly closed. Then check (*):
(i) $C \cap \beta=\emptyset$, because γ_{n} runs above β and all the D_{n} are above γ_{n},
(ii) $\operatorname{otp}(C)=\alpha+1$ (see above),
(iii) $\max (C)=\gamma$, obviously, and
(iv) $C \backslash\{\gamma\} \subseteq S$ since all the D_{n} lie in S.

This concludes the first part of the proof.
Now show that for all $\alpha<\omega_{1}$ there is a closed $C \subseteq S$ with $\operatorname{otp}(C)=\alpha+1$. Perform an induction over α. If $\alpha=0$, any singleton out of S will do.
$\alpha \rightarrow \alpha+1$. Let $C \subset S$ be closed with ordertype $\alpha+1$. $|C| \leq|\alpha+1| \leq \omega$ and ω_{1} is regular, hence C is not unbounded in ω_{1}. So choose some $\gamma \in S \backslash(\sup C+1)$. Notice that $C \cup\{\gamma\}$ is still closed and has ordertype $\alpha+1+1$.
$\alpha \in \operatorname{Lim}: C_{\alpha}$ contains a club, so $C_{\alpha} \cap S$ is not empty. Then we can take $\gamma<\omega_{1}, \gamma \in C_{\alpha} \cap S$. Take some $\beta<\gamma$ and a closed set C such that $C \backslash\{\gamma\} \subseteq S$ and $\operatorname{otp}(C)=\alpha+1$. Since $\gamma \in S$, $C \subseteq S$.

