REFERENCE SOLUTION OF PROBLEM 37

Problem 37. Let κ be an infinite regular cardinal. Suppose there is a sequence $(A_{\alpha} \mid \alpha < \kappa)$ of pairwise almost disjoint subsets of κ (i.e. for $\alpha \neq \beta < \kappa$: $|A_{\alpha} \cap A_{\beta}| < \kappa$). Show that there is a set $A \subseteq \kappa$, $|A| = \kappa$ that is almost disjoint from all A_{α} , $\alpha < \kappa$.

Proof.

Claim. For all $\alpha < \kappa$, $\left| \kappa \setminus \bigcup_{\beta < \alpha} A_{\beta} \right| = \kappa$.

Proof. Assume this is false for some $\alpha < \kappa$. Note that $\kappa = (\bigcup_{\beta < \alpha} A_{\beta}) \cup (\kappa \setminus \bigcup_{\beta < \alpha} A_{\beta})$. Since $|A_{\alpha+1}| = \kappa$, and by assumption $|\kappa \setminus \bigcup_{\beta < \alpha} A_{\beta}| < \kappa$, $|A_{\alpha+1} \cap (\bigcup_{\beta < \alpha} A_{\beta})| = \kappa$.

But this is false: $A_{\alpha+1} \cap (\bigcup_{\beta < \alpha} A_{\beta}) = \bigcup_{\beta < \alpha} (A_{\alpha+1} \cap A_{\beta})$. But this is a union of size less than κ of sets of size less than κ (since $A_{\alpha+1}$ is almost disjoint from A_{β} , $\beta < \alpha$). Because κ is regular, this union can not have size κ . Thus we have reached a contradiction

Now construct $A = \{a_{\alpha} \mid \alpha < \kappa\}$ recursively. Take some $\alpha < \kappa$ and suppose a_{β} is known for all $\beta < \alpha$. Notice that $(\kappa \setminus \bigcup_{\beta < \alpha} A_{\beta}) \setminus \{a_{\beta} \mid \beta < \alpha\} \neq \emptyset$ by the claim. Then take $a_{\alpha} \in (\kappa \setminus \bigcup_{\beta < \alpha} A_{\beta}) \setminus \{a_{\beta} \mid \beta < \alpha\}$ arbitrarily.

Clearly, by construction, the a_{α} are pairwise distinct, so A has cardinality κ . Let $\alpha < \kappa$ and consider $A_{\alpha} \cap A$. By construction, for all $\beta > \alpha, a_{\beta} \notin A_{\alpha}$. Hence $|A_{\alpha} \cap A| \le \alpha + 1 < \kappa$, i.e. A is almost disjoint to any A_{α} .