REFERENCE SOLUTION OF PROBLEM 37

Problem 37. Let κ be an infinite regular cardinal. Suppose there is a sequence $\left(A_{\alpha} \mid \alpha<\kappa\right)$ of pairwise almost disjoint subsets of κ (i.e. for $\left.\alpha \neq \beta<\kappa:\left|A_{\alpha} \cap A_{\beta}\right|<\kappa\right)$. Show that there is a set $A \subseteq \kappa,|A|=\kappa$ that is almost disjoint from all $A_{\alpha}, \alpha<\kappa$.

Proof.
Claim. For all $\alpha<\kappa,\left|\kappa \backslash \bigcup_{\beta<\alpha} A_{\beta}\right|=\kappa$.
Proof. Assume this is false for some $\alpha<\kappa$. Note that $\kappa=\left(\bigcup_{\beta<\alpha} A_{\beta}\right) \cup$ $\left(\kappa \backslash \bigcup_{\beta<\alpha} A_{\beta}\right)$. Since $\left|A_{\alpha+1}\right|=\kappa$, and by assumption $\left|\kappa \backslash \bigcup_{\beta<\alpha} A_{\beta}\right|<\kappa$, $\left|A_{\alpha+1} \cap\left(\bigcup_{\beta<\alpha} A_{\beta}\right)\right|=\kappa$.

But this is false: $A_{\alpha+1} \cap\left(\bigcup_{\beta<\alpha} A_{\beta}\right)=\bigcup_{\beta<\alpha}\left(A_{\alpha+1} \cap A_{\beta}\right)$. But this is a union of size less than κ of sets of size less than κ (since $A_{\alpha+1}$ is almost disjoint from $\left.A_{\beta}, \beta<\alpha\right)$. Because κ is regular, this union can not have size κ. Thus we have reached a contradiction

Now construct $A=\left\{a_{\alpha} \mid \alpha<\kappa\right\}$ recursively. Take some $\alpha<\kappa$ and suppose a_{β} is known for all $\beta<\alpha$. Notice that $\left(\kappa \backslash \bigcup_{\beta<\alpha} A_{\beta}\right) \backslash\left\{a_{\beta} \mid\right.$ $\beta<\alpha\} \neq \emptyset$ by the claim. Then take $a_{\alpha} \in\left(\kappa \backslash \bigcup_{\beta<\alpha} A_{\beta}\right) \backslash\left\{a_{\beta} \mid \beta<\alpha\right\}$ arbitrarily.

Clearly, by construction, the a_{α} are pairwise distinct, so A has cardinality κ. Let $\alpha<\kappa$ and consider $A_{\alpha} \cap A$. By construction, for all $\beta>\alpha, a_{\beta} \notin A_{\alpha}$. Hence $\left|A_{\alpha} \cap A\right| \leq \alpha+1<\kappa$, i.e. A is almost disjoint to any A_{α}.

