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Die Mengenlehre ist das Fundament
der gesamten Mathematik

(FELIX HAUSDORFF,

Grundziige der Mengenlehre, 1914)

1 Introduction

GEORG CANTOR characterized sets as follows:

Unter einer Menge verstehen wir jede Zusammenfassung M von bestimmten,
wohlunterschiedenen Objekten m unsrer Anschauung oder unseres Denkens
(welche die “Elemente” von M genannt werden) zu einem Ganzen.

FELIX HAUSDORFF in Grundzige formulated shorter:

Eine Menge ist eine Zusammenfassung von Dingen zu einem Ganzen, d.h. zu
einem neuen Ding.

Sets are ubiquitous in mathematics. According to HAUSDORFF

Differential- und Integralrechnung, Analysis und Geometrie arbeiten in Wirk-
lichkeit, wenn auch vielleicht in verschleiernder Ausdrucksweise, bestédndig mit
unendlichen Mengen.

In current mathematics, many notions are explicitly defined using sets. The following
example indicates that notions which are not set-theoretical prima facie can be construed set-
theoretically:

f is a real funktion = f is a set of ordered pairs (z, f(x)) of real numbers, such
that ... ;

(z,y) is an ordered pair = (z,y) is a set ...{z, y}... ;

z is a real number = x is a left half of a DEDEKIND cut in Q = z is a subset of
@, such that ... ;

r is a rational number = r is an ordered pair of integers, such that ... ;

z is an integer = z is an ordered pair of natural numbers (= non-negative
integers);
N={0,1,2,...};

0 is the empty set;
1 is the set {0};
2 is the set {0, 1}; etc. etc.

We shall see that all mathematical notions can be reduced to the notion of set.

Besides this foundational role, set theory is also the mathematical study of the infinite.
There are infinite sets like IN, @, R which can be subjected to the constructions and analyses of
set theory; there are various degrees of infinity which lead to a rich theory of infinitary combin-
atorics.

In this course, we shall first apply set theory to obtain the standard foundation of mathem-
atics and then turn towards “pure” set theory.
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2 The Language of Set Theory

If m is an element of M one writes m € M. If all mathematical objects are reducible to sets,
both sides of these relation have to be sets. This means that set theory studies the €-relation
m € M for arbitrary sets m and M. As it turns out, this is sufficient for the purposes of set
theory and mathematics. In set theory variables range over the class of all sets, the €-relation is
the only undefined structural component, every other notion will be defined from the €-relation.
Basically, set theoretical statement will thus be of the form

LV Jy...... TEY...U=...,

belonging to the first-order predicate language with the only given predicate €.

To deal with the complexities of set theory and mathematics one develops a comprehensive
and intuitive language of abbreviations and definitions which, eventually, allows to write familiar
statements like

eim=—1

and to view them as statements within set theory.

The language of set theory may be seen as a low-level, internal language. The language of
mathematics possesses high-level “macro” expressions which abbreviate low-level statements in
an efficient and intuitive way.

3 RUSSELL’s Paradox

CANTOR’s naive description of the notion of set suggests that for any mathematical statement
©(z) in one free variable x there is a set y such that

reEy o(x),

i.e., y is the collection of all sets x which satisfy ¢ .

This axiom is a basic principle in GOTTLOB FREGE'’s Grundgesetze der Arithmetik, 1893,
Grundgesetz V, Grundgesetz der Wertverlaufe.

BERTRAND RUSSELL noted in 1902 that setting ¢(z) to be = ¢ x this becomes

reEyrd,
and in particular for x =y :

yeEycyty.
Contradiction.
This contradiction is usually called RUSSELL’s paradox, antinomy, contradiction. It was also
discoved slightly earlier by ERNST ZERMELO. The paradox shows that the formation of sets as
collections of sets by arbitrary formulas is not consistent.

4 The ZERMELO-FRAENKEL Axioms

The difficulties around RUSSELL’s paradox and also around the axiom of choice lead ZERMELO
to the formulation of axioms for set theory in the spirit of the axiomatics of DAVID HILBERT of
whom ZERMELO was an assistant at the time.

ZERMELO’s main idea was to restrict FREGE’s Axiom V to formulas which correspond to
mathematically important formations of collections, but to avoid arbitrary formulas which can
lead to paradoxes like the one exhibited by RUSSELL.

The original axiom system of ZERMELO was extended and detailed by ABRAHAM FRAENKEL
(1922), DMITRY MIRIMANOFF (1917/20), and THORALF SKOLEM.

We shall discuss the axioms one by one and simultaneously introduce the logical language
and useful conventions.
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4.1 Set Existence
The set existence axiom
JaVy ~yex,

like all axioms, is expressed in a language with quantifiers 3 (“there exists”) and V (“for all”),
which is familiar from the e-d-statements in analysis. The language of set theory uses variables
Z, ¥y, ... which may satisfy the binary relations € or =: z € y (“z is an element of y”) or x =y .
These elementary formulas may be connected by the propositional connectives A (“and”), V
(“or”), — (“implies”), +> (“is equivalent”), and — (“not”). The use of this language will be demon-
strated by the subsequent axioms.

The axiom expresses the existence of a set which has no elements, i.e., the existence of the
empty set.

4.2 Extensionality
The axiom of extensionality

Vava' (Vy(y ez yea’) >z =2a’)

expresses that a set is exactly determined by the collection of its elements. This allows to prove
that there is exactly one empty set.

Lemma 1. VaVa'(Vy ~y €xAVy ~y€a’ wz=21a').

Proof. Consider x, z’ such that Yy -y € zAVy -y € 2’. Consider y. Then -y € x and —y € z’.
This implies Vy(y € x> y € 2’). The axiom of extensionality implies x =z’. O

Note that this proof is a usual mathematical argument, and it is also a formal proof in the
sense of mathematical logic. The sentences of the proof can be derived from earlier ones by
purely formal deduction rules. The rules of natural deduction correspond to common sense fig-
ures of argumentation which treat hypothetical objects as if they would concretely exist.

4.3 Pairing
The pairing axiom
VaVyIzVu(u €z u=axVu=y)
postulates that for all sets =, y there is set z which may be denoted as
z={x,y}.
This formula, including the new notation, is equivalent to the formula
Vu(u€zru=xzVu=y).

In the sequel we shall extend the small language of set theory by hundreds of symbols and con-
ventions, in order to get to the ordinary language of mathematics with notations like

N,R,m,w,( Lo )/ F@)dx=F(b) — F(a),ete.

Such notations are chosen for intuitive, pragmatic, or historical reasons.
Using the notation for unordered pairs, the pairing axiom may be written as

VaVy3dz z={x,y}.
By the axiom of extensionality, the term-like notation has the expected behaviour. E.g.:
Lemma 2. VaVyV2Vz' (z={z,y} A2/ ={x,y} 2z=2').

Proof. Exercise. O
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Note that we implicitly use several notational conventions: variables have to be chosen in a
reasonable way, for example the symbols z and z’ in the lemma have to be taken different and
different from x and y. We also assume some operator priorities to reduce the number of
brackets: we let A bind stronger than V, and V stronger than — and <.

We used the “term” {z, y} to occur within set theoretical formulas. This abbreviation is than
to be expanded in a natural way, so that officially all mathematical formulas are formulas in
the “pure” e-language. We want to see the notation {x, y} as an example of a class term. We
define uniform notations and convention for such abbreviation terms.

4.4 Class Terms

The extended language of set theory contains class terms and notations for them. There are
axioms for class terms that fix how extended formulas can be reduced to formulas in the unex-
tended €-language of set theory.

Definition 3. A class term is of the form {x|@} where x is a variable and ¢ € L€. The usage
of these class terms is defined recursively by the following azioms: If {x|p} and {y|v} are class
terms then

— ue{z|p} e @%, where @% is obtained from ¢ by (resonably) substituting the variable
by the variable u ;

- u={z]p} Vo (veus po);

- {zlp}=ueYo(pz veu);

— {ale}={ulv} o Vo (et o vl

— A{zlpleuevweunv={x|p};

= A{zlete{ylv} e (g Av={z]p}).

A term is either a variable or a class term.

Definition 4.
a) 0:={z|x+=x} is the empty set;
b) V:={xz|x=ux} is the universe (of all sets);
¢) {z,y}:={ulu=xVu=y} is the unordered pair of x and y.

Lemma 5.
a) DeV.
b) Vo,y {z,y}eV.

Proof. a) By the axioms for the reduction of abstraction terms, () € V is equivalent to the fol-
lowing formulas

Fv(v=vAv=0)
Jvv=10

JvVw (wevew£w)
JVww ¢ v

which is equivalent to the axiom of set existence. So () € V' is another way to write the axiom of
set existence.
b) Va,y {x,y} €V abbreviates the formula

Ve, yIz(z=2Nz={z,y}).
This can be expanded equivalently to the pairing axiom

Vo, yFzVu(u €z u=xzVu=y). O
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So a) and b) are concise equivalent formulations of the axiom Ex and Pair.
We also introduce bounded quantifiers to simplify notation.

Definition 6. Let A be a term. Then Vx € Ap>Va(x € A— @) and Jx € Ap+— Tz (x € AN p).

Definition 7. Let z,y,z,... be variables and X,Y , Z,... be class terms. Define
a) XCY & VeeXzeY, X is a subclass of Y
b) XUY :={z|lreXVzeY} is the union of X and Y;
c) XNY :={z|lr€ X ANz €Y} is the intersection of X and Y;
d) X\Y:={z|lxre X ANx¢Y} is the difference of X and Y;
e) U X:={z|JyeXze€y} is the union of X;
f) N X:={z|Vye Xz €y} is the intersection of X ;
g) P(X):={xz|x C X} is the power class of X;
h) {X}:={x|x=X} is the singleton set of X;
) {X,Y}:={z|lr=XVz=Y} is the (unordered) pair of X and Y;
) {Xoy ooy X1 b ={zjlz=XoV..Ve=X,_1}.

[
J

One can prove the well-known boolean properties for these operations. We only give a few
examples.

Proposition 8. X CYAY CX > X=Y.
Proposition 9. | {z,y}=zUy.

Proof. We show the equality by two inclusions:
(Q). Let wuel {z,y}. vwe{z,y} Auev). Letve{z,y}Aucv. (v=xVuv=y)Aucw.
Case 1. v=x2. Thenue€z. ucxVuecy. HenceucxUy.
Case 2. v=y. Thenuecy. ucxVuecy. HenceuecxUy.
Conversely let uexzUy. uexVucy.
Case 1. uc€x. Thenxe{z,y} Auez. v(ve{z,y}Auev)and uecl {z,y}.
Case 2. ucy. Thenxe{z,y} Auezr. v(ve{z,y}Auev)anduecl {z,y} O

Exercise 1. Show: a) |JV=V. b)) V=0.¢c)J0=0.d)N0=V.

4.5 Ordered Pairs

Combining objects into ordered pairs (z, y) is taken as an undefined fundamental operation of
mathematics. We cannot use the unordered pair {z, y} for this purpose, since it does not
respect the order of entries:

{z,yt={y,z}.

We have to introduce some asymmetry between x and y to make them distinguishable. Fol-
lowing KURATOWSKI and WIENER we define:

Definition 10. (z,y):={{z},{z,y}} is the ordered pair of x and y.

The definition involves substituting class terms within class terms. We shall see in the fol-
lowing how these class terms are eliminated to yield pure €-formulas.

Lemma 11. VaVy3zz=(z,y).

Proof. Consider sets  and y. By the pairing axiom choose u and v such that v = {x} and v =
{z,y}. Again by pairing choose z such that z={u,v}. We argue that z=(x, y). Note that
(#,9) = {{zh {2, y}} = {wlw = {z} Vo ={z, y}}.
Then z = (z,y) is equivalent to
Vw(wezew={z}vVw={z,y}),
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Vww=uVw=v+e (w={z}Vw={z,y}),
and this is true by the choice of u and v. ([l

The KURATOWSKI-pair satisfies the fundamental property of ordered pairs:
Lemma 12. (z,y)= (2, y) —wz=2'Ay=1y'.

Proof. Assume (z,y)=(z',y'), i.e.,

(1) Ha} Az, g} ={{='} {2" y'}}
Case 1. x=1y. Then
{z}={z,y},
{{z) Az, v} ={z} {z}} ={{=}},
{{z}y={{a"}. {2, ¥} },
{z}={2'} and z =2/,
{z}={z',y'} and y' ==.
Hence x=xz" and y=x =y’ as required.
Case 2. x#+y. (1) implies
{o"h = {x} or {2} = {z, y}.
The right-hand side would imply z =’ =y, contradicting the case assumption. Hence
{z'}={z} and ' ==.
Then (1) implies
{ZL',y}:{ZL'/,y/}:{SC,y/} andy:y/' O
Exercise 2.

a) Show that (z, y) := {{z, 0}, {y, {0}}} also satisfies the fundamental property of ordered pairs (F.
HAUSDORFF).

b) Can {z,{y,0}} be used as an ordered pair?

Exercise 3. Give a set-theoretical formalization of an ordered-triple operation.

4.6 Relations and Functions

Ordered pairs allow to introduce relations and functions in the usual way. One has to distin-
guish between sets which are relations and functions, and class terms which are relations and
functions.

Definition 13. A term R is a relation if all elements of R are ordered pairs, i.e., RCV x V.
Also write Rxy or xRy instead of (z,y) € R. If A is a term and R C A x A then R is a rela-
tion on A.

Note that this definition is really an infinite schema of definitions, with instances for all
terms R and A . The subsequent extensions of our language are also infinite definition schemas.
We extend the term language by parametrized collections of terms.

Definition 14. Let t(Z) be a term in the variables & and let ¢ be an €-formula. Then
{t(@)|p} stands for {z|3Z(p N z=1t(Z)}.
Definition 15. Let R, S, A be terms.
a) The domain of R is dom(R):={z|Jyx Ry}.
) The range of R is ran(R):={y|Jzxz Ry}.
) The field of R is field(R) :=dom(R)Uran(R).
) The restriction of R to A is Rl A:={(x,y)[x RyArz e A}.
e) The image of A under R is R[A]:=R"A:={y|3x € Az Ry}.
) The preimage of A under R is R™1[A]:={x|3y€ Az Ry}.
) The composition of S and R (“S after R”) is So R:={(x,2)|3y (t RyAySz)}.
) The inverse of R is R~ ={(y,z)|xRy}.
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Relations can play different roles in mathematics.

Definition 16. Let R be a relation.
a) R is reflexive iff Vo efield(R) zRx .
R is irreflexive iff Vo €field(R) ~z Rz .
R is symmetric iff Va,y(x Ry—yRx).
R is antisymmetric iff Vo, y (e RyAyRz—xz=y).

R is connex iff Va,y€field(R) (xRyV yRxzVr=y).

)
)
)
e) R is transitive iff Vo, y,z (t RyAyRz—xz Rz).
)
) R is an equivalence relation iff R is reflexive, symmetric and transitive.
)

modulo R .

It is possible that an equivalence class [z]g is not a set: [z]g ¢ V. Then the formation of the col-
lection of all equivalence classes modulo R may lead to contradictions. Another important
family of relations is given by order relations.
Definition 17. Let R be a relation.

a) R is a partial order iff R is reflexive, transitive and antisymmetric.

b) R is a linear order iff R is a connex partial order.

c) Let A be a term. Then R is a partial order on A iff R is a partial order and field(R) =
A.

d) R is a strict partial order iff R is transitive and irreflexive.
e) R is a strict linear order iff R is a connez strict partial order.

Partial orders are often denoted by symbols like <, and strict partial orders by <. A common
notation in the context of (strict) partial orders R is to write

IpRqy and VpRqyp for IAp(pRq A ¢) and Vp(p Rq— ¢) resp.
One of the most important notions in mathematics is that of a function.

Definition 18. Let F be a term. Then F' is a function if it is a relation which satisfies
Vo,y,y (xFynzFy —y=y').
If F is a function then
F(z):={u|Vy (z Fy—u € y)}
is the value of F at x.
If Fis a function and x Fy then y = F(z). If there is no y such that x Fy then F(z) =V;

the “value” V at x may be read as “undefined”. A function can also be considered as the
(indexed) sequence of its values, and we also write

(F(x))zea or (Fi)zeca instead of F: A—V.
We define further notions associated with functions.

Definition 19. Let F', A, B be terms.

a) F is a function from A to B, or F: A — B, iff F is a function, dom(F) = A, and
range(F)C B.

b) Fis a partial function from A to B, or F: A — B, iff F is a function, dom(F) C A, and
range(F)C B.

¢) Fis a surjective function from A to B iff F: A— B and range(F)=B.
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d) Fis an injective function from A to B iff F: A— B and
Ve, o' € A (x#a' = F(x)# F(z'))
e) F is a bijective function from A to B, or F: A < B, iff F: A — B is surjective and
injective.

f) AB:={f|f: A— B} is the class of all functions from A to B.

One can check that these functional notions are consistent and agree with common usage:
Exercise 4. Define a relation ~ on V' by
r~ys—aAf iz y.

One say that z and y are equinumerous or equipollent. Show that ~ is an equivalence relation on V. What is
the equivalence class of § 7 What is the equivalence class of {0} 7

Exercise 5. Consider functions F': A— B and F’: A— B. Show that
F=F'iff Va€ A F(a)=F'(a).

4.7 Unions

The union axiom reads
VedyVz(z € y < Jw(w €z A z € w)).

Lemma 20. The union aziom is equivalent to Vx| J x € V.

Proof. Observe the following equivalences:
Vel Jz eV
=VeIy(y=yAy=U =)
VeIyVz(zeyozell o)
VrIyVz(z ey Jwerz e w)
which is equivalent to the union axiom:. O

Note that the union of z is usually viewed as the union of all elements of x:

Uz=UJ w

U t(a)={z|3ac Azct(a)}.
a€A

Graphically | J z can be illustrated like this:
Combining the axioms of pairing and unions we obtain:

where we define

Lemma 21. Vzq,...,x,_1 {560, ...,SCnfl} eV.

Note that this is a schema of lemmas, one for each ordinary natural number n . We prove
the schema by complete induction on n .

Proof. For n=0, 1,2 the lemma states that 0 € V, Vz {z} € V, and Vz,y {z,y} €V resp., and
these are true by previous axioms and lemmas. For the induction step assume that the lemma
holds for n, n > 1. Consider sets xq, ..., z, . Then

{0, .coytn}={x0,...; 2n_1} U{xn}.

The right-hand side exists in V' by the inductive hypothesis and the union axiom. ([l

4.8 Separation

It is common to form a subset of a given set consisting of all elements which satisfy some condi-
tion. This is codified by the separation schema. For every €-formula ¢(z, x4, ..., z,) postulate:

Vai.. Ve, VaIyVz (z €y z € N p(z, 21, ..., Ty))-
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Using class terms the schema can be reformulated as: for every term A postulate
VrANnzeV.

The crucial point is the restriction to the given set . The unrestricted, FREGEan version A € V
for every term A leads to the RUSSELL antinomy. We turn the antinomy into a consequence of
the separation schema:

Theorem 22. V¢V.

Proof. Assume that V € V. Then Jdzxz =V. Take z such that x =V. Let R be the RUSSELLian
class:

R:={z|lz¢z}.
By separation, y:= RNz V. Note that RNz=RNV =R. Then
yeycyeR-y¢y,

contradiction. N
This simple but crucial theorem leads to the distinction:
Definition 23. Let A be a term. Then A is a proper class iff A¢ V.

Set theory deals with sets and proper classes. Sets are the favoured objects of set theory, the
axiom mainly state favorable properties of sets and set existence. Sometimes one says that a
term A exists if A € V. The intention of set theory is to construe important mathematical
classes like the collection of natural and real numbers as sets so that they can be treated set-the-
oretically. ZERMELO observed that this is possible by requiring some set existences together
with the restricted separation principle.

Exercise 6. Show that the class {{z}|z € V'} of singletons is a proper class.

4.9 Power Sets
The power set axriom in class term notation is
VeP(x)eV.

The power set axiom yields the existence of function spaces.

Definition 24. Let A, B be terms. Then
A x B:={(a,b)lac ANbE B}
is the cartesian product of A and B.

Exercise 7.

By the specific implementation of KURATOWSKI ordered pairs:
Lemma 25. Ax BCP(P(AUB)).

Proof. Let (a,b) € A x B. Then

a,b € AUB
{a},{a,b} C AUB
{a},{a,b} € P(AUB)
(a,b) = {{a},{a,0}} S P(AUB)
(a,b) ={{a},{a,b}} € P(P(AUB))
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Theorem 26.
a) Ve,yxxy€eV.
b) Va,y *yeV.

Proof. Let x,y be sets. a) Using the axioms of pairing, union, and power sets, P(P(zUy)) € V.
By the previous lemma and the axiom schema of separation,

zxy=(@xy)NPPxUy))eV.
b) *y CP(x X y) since a function f:x— y is a subset of x x y. By the separation schema,
Ty="yNPxxy)eV. O
Note that to “find” the sets in this theorem one has to apply the power set operation repeatedly.
We shall see that the universe of all sets can be obtained by iterating the power set operation.

The power set axiom leads to higher cardinalities. The theory of cardinalities will be
developed later, but we can already prove CANTOR’s theorem:

Theorem 27. Let x € V.
a) There is an injective map f:x— P(x).

b) There does not exist an injective map g: P(x) = x .

Proof. a) Define the map f:x— P(z) by u— {u}. This is a set since
f={(u,{u)uez}CexxPx)eV.
f is injective: let u, v’ € z, u#u’'. By extensionality,
flu)={u} #{u} = f(u).
b) Assume there were an injective map g: P(x) — x . Define the CANTORean set
c={uluexAhug¢ g *(u)} € P(z)

similar to the class R in RUSSELL’s paradox.
Let ug=g(c). Then g~*(ug) =c and
up € cerug g g (ug) =c.

Contradiction. O

4.10 Replacement

If every element of a set is definably replaced by another set, the result is a set again. The
schema of replacement postulates for every term F :

F is a function —»Vx Flz] € V.

Lemma 28. The replacement schema implies the separation schema.

Proof. Let A be a term and z€ V.
Case 1. ANxz=(. Then ANz €V by the axiom of set existence.
Case 2. ANz #(. Take up€ ANx. Define a map F:z—x by

F(u):{ u,ifue ANz
ug , else
Then by replacement

ANz =Fz]eV

as required. O
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4.11 Infinity

All the axioms so far can be realized in a domain of finite sets, see exercise 12. The true power
of set theory is set free by postulating the existence of one infinite set and continuing to assume
the axioms. The aziom of infinity expresses that the set of “natural numbers” exists. To this
end, some ‘“number-theoretic” notions are defined.

Definition 29.
a) 0:=0 is the number zero.

b) For any term t, t+1:=tU{t} is the successor of t.

These notions are reasonable in the later formalization of the natural numbers. The axiom of
infinity postulates the existence of a set which contains 0 and is closed under successors

Jx(0exAVnexzn+1lex).

Intuitively this says that there is a set which contains all natural numbers. Let us define set-the-
oretic analogues of the standard natural numbers:

Definition 30. Define

a) 1:=0+1;
b) 2:=1+1;
c) 3:=2+1; ...

From the context it will be clear, whether “3”, say, is meant to be the standard number “three”
or the set theoretical object

3 = 20{2}
= (1+1)U{l+1}
= ({0ru{{0h) v {{0tu{{0}}}
= {0,{0}, {0t u{{0}}}.

The set-theoretic axioms will ensure that this interpretation of “three” has the important
number-theoretic properties of “three”.

4.12 Foundation

The aziom schema of foundation provides structural information about the set theoretic uni-
verse V. It can be reformulated by postulating, for any term A:

A#£P—Tze AANnz=0.

Viewing € as some kind of order relation this means that every non-empty class has an €-min-
imal element x € A such that the €-predecessors of z are not in A. Foundation excludes circles
in the e-relation:

Lemma 31. Let n be a natural number >1. Then there are no xg,...,T,_1 such that

ToEX1E...€ETL_1E€EX).

Proof. Assume not and let zg€x1€...€x,_1E€x9. Let
A:{Zto,...,l'n,l}.

A0 since n>1. By foundation take x € A such that ANz =0.
Case 1. x=1z¢. Then x,,_1 € ANz =0, contradiction.
Case 2. x=uxz;,1>0. Then z;,_1€ANx=0, contradiction. O

Exercise 8. Show that z#£x+1.
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Exercise 9. Show that the successor function x+ x + 1 is injective.

Exercise 10. Show that the term {z,{z,y}} may be taken as an ordered pair of = and y.

Theorem 32. The foundation scheme is equivalent to the following, PEANO-type, induction
scheme: for every term B postulate

Ve(xCB—ze€B)—-B=V.
This says that if a “property” B is inherited by x if all elements of x have the property B, then
every set has the property B.

Proof. (—) Assume B were a term which did not satisfy the induction principle:
Ve(xCB—xz€B) and B#£V.

Set A=V \ B#0. By foundation take x € A such that ANz =0. Then
uer—u¢ A-ueB,

i.e.,, x C B. By assumption, B is inherited by x: z € B. But then 2 ¢ A, contradiction.
(+) Assume A were a term which did not satisfy the foundation scheme:

A+QandVee AANz#0.

Set B=V \ A. Consider x C B. Then ANz = (. By assumption, * ¢ A and z € B . Thus
Vx (x € B— z € B). The induction principle implies that B=V. Then A=), contradiction. [

This proof shows, that the induction principle is basically an equivalent formulation of the
foundation principle. The &-relation is taken as some binary relation without reference to spe-
cific properties of this relation. This leads to:

Exercise 11. A relation R on a domain D is called wellfounded, iff for all terms A
0+£ANACD—Ize AAN{y|yRz}=0.

Formulate and prove a principle for R-induction on D which coressponds to the assumption that R is well-
founded on D.

4.13 Set Theoretic Axiom Schemas

Note that the axiom system introduced is an infinite informal set of axioms. It seems unavoid-
able that we have to go back to some previously given set notions to be able to define the collec-
tion of set theoretical axioms - another example of the frequent circularity in foundational the-
ories.

Definition 33. The system ZF of the ZERMELO-FRAENKEL axioms of set theory consists of the
following axioms:
a) The set existence axiom (Ex):
JaxVy-yex
- there is a set without elements, the empty set.
b) The axiom of extensionality (Ext):
VaVy(Vz(z €z z€y)—x=1y)
- a set 1s determined by its elements, sets having the same elements are identical.
¢) The pairing axiom (Pair):
VaVy3IzVw (u € z<ru=aVu=y).
- z s the unordered pair of x and y.
d) The union axiom (Union):

VedyVz(z € y <> Jw(w €z Az € w))
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-y is the union of all elements of x.
e) The separation schema (Sep) postulates for every €-formula ¢(z,x1,...,2n):
Vi, Ve, YedyVz (z € yrz€x A p(z, 21, .0y Tp))
- this is an infinite scheme of axioms, the set z consists of all elements of x which satisfy
©.
f) The powerset axiom (Pow):
Ve3yVz(z € y+Vw(w € z— w € x))
-y consists of all subsets of x.
g) The replacement schema (Rep) postulates for every €-formula o(x,y,x1,...,Tn):
V.. Ve,(VavVyvy' ((e(z, ¥y, 21, -, 2n) A p(z, ¥/ 21, .. xn)) 2 y=9y') —
VudwWy (y v Iz(zcunp(z, y,z1,...,20))))
- v is the image of u under the map defined by .
h) The axiom of infinity (Inf):
Jx(Fy (yexAVz—zey) AVy(lyex—z(z€x AVw(w Ezw ey Vw=y))))
- by the closure properties of x, x has to be infinite.

i) The foundation schema (Found) postulates for every €-formula ¢(x,x1,...,xy):
Voy.. Ve,(Fee(x, 1, ..., xn) = J2(@(x, 21, 00y 20) AVE (2 €2 — —(2), 21, ..., 22))))

- if @ is satisfiable then there are €-minimal elements satisfying p.

4.14 ZF in Class Notation
Using class terms, the ZF can be formulated concisely:
Theorem 34. The ZF azxioms are equivalent to the following system; we take all free variables
of the axioms to be universally quantified:
a) Ez: DeV.
) Ext: c CyAyCax—ax=y.
) Pair: {z,y}eV.
) Union: | z€V.
) Sep: ANz eV.
) Pow: P(x) V.
) Rep: F is a function — Flx] € V.

@ - o &8 o 9o~

h) Inf: 3z (0€xAVnexzn+1ex).
i) Found: A#+0—3zecAANnz=0.

This axiom system can be used as a foundation for all of mathematics. Axiomatic set theory
considers various axiom systems of set theory.

Definition 35. The azxiom system ZF~ consists of the ZF-axioms except the power set axiom.
The system EML (“elementary set theory”) consists of the axioms Ex, Ext, Pair, and Union.

Exercise 12. Consider the axiom system HF consisting of the axioms of EML together with the induction
principle: for every term B postulate

Ve, y(eCBAyeB—a2U{y}€B)—»B=V.
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Show that every axiom of ZF except Inf is provable in HF, and that HF proves the negation of Inf (HF axio-
matizes the heriditarily finite sets, i.e., those sets such that the set itself and all its iterated elements are
finite).

5 Ordinal Numbers

We had defined some “natural numbers” in set theory. Recall that
0=20

= 0+1=0U{0}={0}

1+1=1u{1} ={0,1}

= 24+1=20{2} ={0,1,2}

1
2
3

We would then like to have N = {0, 1, 2, 3, ...}. To obtain a set theoretic formalization of num-
bers we note some properties of the informal presentation:

1. "Numbers” are ordered by the €-relation:
m<n iff men.
E.g.,, 1€3 but not 3e€1.

2. On each “number”, the €-relation is a strict linear order: 3 = {0, 1, 2} is strictly linearly
ordered by €.

3. "Numbers” are “complete” with respect to smaller “numbers”
i<j<m-—iem.
This can be written with the €-relation as
1EJEM = TEM.

Definition 36.

a) A is transitive, Trans(A), iff Vye AVe eyz € A.

b) x is an ordinal (number), Ord(z), if Trans(z)AVy € x Trans(y).

¢) Let Ord: ={x|Ord(x)} be the class of all ordinal numbers.
We shall use small greek letter «, 3, ... as variables for ordinals. So Ja stands for da € Ord ¢,
and {a|¢} for {a|Ord(a) A p}.

Exercise 13. Show that arbitrary unions and intersections of transitive sets are again transitive.

We shall see that the ordinals extend the standard natural numbers. Ordinals are particu-
larly adequate for enumerating infinite sets.
Theorem 37.

a) 0€O0rd.

b) Voo a+1€0rd.
Proof. a) Trans(f)) since formulas of the form Vy € (... are tautologously true. Similarly Vy €
() Trans(y).
b) Assume « € Ord.
(1) Trans(a+1).
Proof. Let uevea+1l=aU{a}.
Case 1. vE€a. Then u€a Ca+1, since « is transitive.
Case 2. v=a. ThenucaCa+1. ged(1)
(2) Yy € a+ 1 Trans(y).
Proof. Let yca+1=aU{a}.

Case 1. y € . Then Trans(y) since « is an ordinal.
Case 2. y=a. Then Trans(y) since « is an ordinal. O
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Exercise 14.
a) Let A COrd be a term, A#(. Then (| A€ Ord.
b) Let  C Ord be a set. Then |J z € Ord.

Theorem 38. Trans(Ord).
Proof. This follows immediately from the transitivity definition of Ord. U
Exercise 15. Show that Ord is a proper class. (Hint: if Ord € V' then Ord € Ord.)

Theorem 39. The class Ord is strictly linearly ordered by €, i.e.,

a) Va,B,v(@€BALEY—aEY).

b) Vaa ¢ a.

¢) Va, B (a€BVa=pVEEq).

Proof. a) Let a, 8,7€O0rd and o€ S A S € ~. Then 7 is transitive, and so « € .

b) follows immediately from the non-circularity of the €-relation.

¢) Assume that there are “incomparable” ordinals. By the foundation schema choose o € Ord &-
minimal such that 35-(apg€ BV ap= 58V B € ap). Again, choose Sy € Ord €-minimal such that -
(a0 € LoV ap= oV Po € ap). We obtain a contradiction by showing that ag= So:

Let a € ag. By the e-minimality of «g, a is comparable with By: a € foVa= GV g€ . If
a = fy then By € ag and ayg, By would be comparable, contradiction. If Sy € « then By € ag by the
transitivity of ag and again «g, 8y would be comparable, contradiction. Hence a € [ .

For the converse let 8 € By . By the €-minimality of By, [ is comparable with ag: 8 € ag V
B=apVage . If f=aqagthen ap€ By and oy, Sy would be comparable, contradiction. If ag€ g
then oy € By by the transitivity of By and again ag, By would be comparable, contradiction.
Hence g€ ay.

But then ag= 5y contrary to the choice of Sy. O

Definition 40. Let <:=eN(Ord x Ord) = {(«, B)|a € B} be the natural strict linear ordering of
Ord by the €-relation.

Theorem 41. Let € Ord. Then a+ 1 is the immediate successor of « in the €-relation:
a) a<a-+1;
b) if B<a+1, then f=a or B<a.
Definition 42. Let a be an ordinal. « is a successor ordinal, Succ(a), iff Iba=6+1. a isa
limit ordinal, Lim(«), iff «#£0 and a is not a successor ordinal. Also let
Succ: ={a|Succ(a)} and Lim:= {a|Lim(«)}.

The existence of limit ordinals will be discussed together with the formalization of the natural
numbers.

5.1 Induction

Ordinals satisfy an induction theorem which generalizes complete induction on the integers:

Theorem 43. Let p(z, vy, ..., Vn—1) be an €-formula and xg, ..., xn—1 € V. Assume that the
property p(x, xg, ..., Tp—1) is inductive, i.e.,

Va(VBea (8,20, ... tn-1) = (@, 0y ..., Tn—1)).
Then ¢ holds for all ordinals:

Yap(a, o, ..y Tp—1)-
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Proof. It suffices to show that
B={z]x €O0rd— p(z,z0,....,2n-1)} =V.
Theorem |32 implies
Ve(rCB—ax€B)—»B=V
and it suffices to show
Vo (x CB—x € B).
Consider z C B. If x ¢ Ord then z € B. So assume z € Ord. For 8 € x we have 8 € B, 8 € Ord,
and so ¢(f,xg,...,Zn—1). By the inductivity of ¢ we get p(z,x0,...,2n-1) and again € B. 0O
Induction can be formulated in various forms:

Exercise 16. Prove the following transfinite induction principle: Let ¢(z) = ¢(x, vo, ..., vn—1) be an €-for-
mula and zg, ..., 2,1 € V. Assume

a) ¢(0) (the initial case),

b) Va (p(a) = ¢(a+ 1)) (the successor step),

¢) YA€Lim (Va <A ¢(a) —¢(N)) (the limit step).
Then Vo p(a).

5.2 Natural Numbers

We have 0, 1, ... € Ord. We shall now define and study the set of natural numbers/integers
within set theory. Recall the axiom of infinity:

dJx (0exAVuexu+1lex).

The set of natural numbers should be the C-smallest such x.

Definition 44. Let w =) {z|0 €z AVu € xu+ 1€ x} be the set of natural numbers. Some-
times we write N instead of w.
Theorem 45.

a) weV.

b) wCOrd.

¢) (w,0,41) satisfy the second order PEANO axiom, i.e.,

VeCw((0exzAVnezn+ler—r=w).
d) weOrd.

e) wis a limit ordinal.

Proof. a) By the axiom of infinity take a set z¢ such that

OexgAVuexgu+1ex.
Then
w:ﬂ {x|0€x/\Vu€xu+1€x}:xoﬂﬂ {z|]0exzAVuezu+lex}eV

by the separation schema.

b) By a), wnNOrd € V. Obviously 0 e wNOrd AVu € wNOrd u+1€wnOrd. So wNOrd is one
factor of the intersection in the definition of w and so w CwNOrd. Hence w C Ord.

c) Let t Cwand 0 €z AVu€xu+ 1€z Then x is one factor of the intersection in the defini-
tion of w and so w Cx. This implies z =w.

d) By b), every element of w is transitive and it suffices to show that w is transitive. Let

r={nncwAVmenmew} Cw.
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We show that the hypothesis of ¢) holds for x. 0 € z is trivial. Let u € x. Then u + 1 € w. Let
méeu+ 1. If m € wu then m € w by the assumption that v € x. If m = u then m € £ C w. Hence
ut+lerzandVuezu+1€x. Byb),x=w. SoVnewnex, ie.,

VnewVmenm e w.

e) Of course w # 0. Assume for a contradiction that w is a successor ordinal, say w =« + 1.
Then o € w. Since w is closed under the +1-operation, w=a + 1 € w. Contradiction. (|

Thus the axiom of infinity implies the existence of the set of natural numbers, which is also
the smallest limit ordinal. The axiom of infinity can now be reformulated equivalently as:
h) Inf: weV.

5.3 Recursion

Recursion, often called induction, over the natural numbers is a ubiquitous method for defining
mathematical object. We prove the following recursion theorem for ordinals.

Theorem 46. Let G: V — V. Then there is a canonical class term F, given by the subsequent
proof, such that

F:0rd—=Vand Ya F(a)=G(F | a).

We then say that F is defined recursively (over the ordinals) by the recursion rule G. F is
unique in the sense that if another term F' satisfies

F":0rd—=V and Va F'(a) =G(F' | a)
then F=F".

Proof. We say that H:dom(H) —V is G-recursive if
dom(H) C Ord,dom(H) is transitive, and Vaedom(H) H(a) =G(H | o).

(1) Let H, H' be G-recursive. Then H, H' are compatible, i.e., Yo € dom(H) Ndom(H’) H(«a) =
H'(a).
Proof. We want to show that

Va € Ord (e € dom(H)Ndom(H') = H(a) = H'()).
By the induction theorem it suffices to show that o € dom(H) N dom(H’) — H(«) = H'(«v) is
inductive, i.e.,
Va € Ord (Vy € a (y € dom(H) Ndom(H') - H(y) = H'(y)) = (e« € dom(H) Ndom(H') = H (o) =
H'(a))).
So let o€ Ord and Vy € o (y € dom(H) Ndom(H') - H(y) = H'(y)). Let o € dom(H) Ndom(H’).
Since dom(H) and dom(H’) are transitive, « C dom(H) and o C dom(H'). By assumption

Vyea H(y)=H'(y).

Hence H [aa=H' | a. Then

qed(1)
Let

F: :U {f|f is G-recursive}.

be the union of the class of all approximations to the desired function F'.

(2) F' is G-recursive.

Proof. By (1), F is a function. Its domain dom(F') is the union of transitive classes of ordinals
and hence dom(F') C Ord is transitive.
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Let o € dom(F). Take some G-recursive functionf such that a € dom(f). Since dom(f) is
transitive, we have

a Cdom(f) Cdom(F).

Moreover

qed(2)

(3) Va a€dom(F).

Proof. By induction on the ordinals. We have to show that a € dom(F) is inductive in the vari-
able a. So let & € Ord and Vy € o y € dom(F). Hence o C dom(F'). Let

f=Flal{(e,G(Fa))}.
f is a function with dom(f)=a+1€0rd. Let o’ <a+ 1. If o’ <« then
fl@)=F()=GF[a)=G(f o).
if a’=a then also
fla)=fe)=G(Fla)=G(fla)=G(f ).
Hence f is G-recursive and o € dom(f) C dom(F'). ged(3)

The extensional uniqueness of F' follows from (1) O
Theorem 47. Let ag €V, Gguee: Ord X V=V, and Glin: Ord x V. — V. Then there is a canonic-
ally defined class term F:Ord — V such that

a) F(0)=ap;

b) Va F(a+1)=Gsec(a, F(a));

¢) VAeLim F(A)=Gum(\, F [ A).

Again F is unique in the sense that if some F' also satisfies a)-c) then F'=F".

We say that F is recursively defined by the properties a)-c).

Proof. We incorporate ag, Ggucc , and Gl into a single recursion rule G:V =V,

agp , if f:(b,

G(f): Gsucc(avf(a)) 71f f:a+1*>V7
Gum(\, f) if f:A—V and Lim()),
0, else.

Then the term F: Ord — V defined recursively by the recursion rule G satisfies the theorem. [
In many cases, the limit rule will just require to form the union of the previous values so
that

FN) =] Fla).

a<A

Such recursions are called continuous (at limits).

5.4 Ordinal Arithmetic

We extend the recursion rules of standard integer arithmetic continuously to obtain transfinite
version of the arithmetic operations. The initial operation of ordinal arithmetic is the +1-opera-
tion defined before. Ordinal arithmetic satisfies some but not all laws of integer arithmetic.

Definition 48. Define ordinal addition +: Ord x Ord — Ord recursively by

d+0 =06
5+ (a+1) = (0+a)+1
d+X = U (0+a) , for limit ordinals A
a<A
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Definition 49. Define ordinal multiplication - : Ord x Ord — Ord recursively by

-0 =0
0-(a+1) = (0-a)+6
0-A = U (0-«) , for limit ordinals A
a<A
Definition 50. Define ordinal exponentiation - :Ord x Ord — Ord recursively by
30 =1
jotl = go.§
N = U 6%, for limit ordinals A
a<A

Exercise 17. Explore which of the standard ring axioms hold for the ordinals with addition and multiplica-
tion. Give proofs and counterexamples.

Exercise 18. Show that for any ordinal o , o + w is a limit ordinal. Use this to show that the class Lim of
all limit ordinals is a proper class.

6 Number Systems

We are now able to give set-theoretic formalizations of the standard number systems with their
arithmetic operations.

6.1 Natural Numbers

Definition 51. The structure
N:=(w, +(w X w), (w x w), <[(w X w),0,1)
is called the structure of natural numbers, or arithmetic. We sometimes denote this structure
by
N:=(w,+,-,<,0,1).

N is an adequate formalization of arithmetic within set theory since N satisfies all standard
arithmetical axioms.

Exercise 19. Prove:
a) +wxw:={m+nmewAncw}Cw.

b) - [wxwl:={m-nmewAncw} Cw.

)
¢) Addition and multiplication are commutative on w .
)

d

Addition and multiplication satisfy the usual monotonicity laws with respect to <.

Definition 52. We define the structure
7= (Z,+"%, -7, <7, 0%,17)
of integers as follows:
a) Define an equivalence relation =~ on N x N by
(a,b)=(a’,b) iff a+b'=a’+b.
b) Let a —b:=[(a,b)]~ be the equivalence class of (a,b) in ~. Note that every a —b is a set.
c) Let Z:={a—blac NAbe N} be the set of integers.
d) Define the integer addition +%: 7 x Z — 7 by
(a—b)+%(a'—b):=(a+a’)— (b+1).
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e) Define the integer multiplication -%: Z x 7Z — 7 by
(a—b)-%Z(a —b):=(a-a’+b-b')—(a-b'+a’-b).

f) Define the strict linear order <% on 7 by
(a—b)<Z(a'=b") iff a+b <a'+b.
g) Let 02:=0—0 and 1%:=1-0.

Exercise 20. Check that the above definitions are sound, i.e., that they do not depend on the choice of rep-
resentatives of equivalence classes.

Exercise 21. Check that Z satisfies (a sufficient number) of the standard axioms for rings.

The structure Z extends the structure IN in a natural and familiar way: define an injective
map e: N —7Z by
n—n—0.

The embedding e is a homomorphism:
a) e(0)=0—-0=0% and e¢(1)=1-0=1%;
b) e(m-+n)=(m+n) —0=(m+n)— (0+0) = (m —0) +Z (n — 0) = e(m) +Z e(n);
¢) e(m-n)=(m-n)—0=(m-n+0-0)— (m-0+n-0) = (m - 0)-Z(n—0) = e(m) Ze(n);
d) m<nem+0<n+04 (m—0)<Z(n—0)<e(m)<Ze(n).

By this injective homomorphism, one may consider N as a substructure of Z: N C 7.

6.2 Rational Numbers
Definition 53. We define the structure
Qf = (QF, +2,-R,<®,0%,1%)
of non-negative rational numbers as follows:
a) Define an equivalence relation = on N x (N'\ {0}) by
(a,b)=(a’,V) iff a-b'=a’-b.
b) Let 3:=[(a,b)]~ be the equivalence class of (a,b) in ~. Note that T is a set.
¢) Let Qf: :{%|a eNAbe (IN\{0})} be the set of non-negative rationals.
d) Define the rational addition +®: Qf x Qf — QF by

a. ¢, _ab+ad-b
b b b-b '

e) Define the rational multiplication -®: Qf x Qd — Q7 by

aqd _aa
bV T b

f) Define the strict linear order <R on Qf by

!/
0 1 %<Q%iﬁa~b’<a’-b.
g) Let 0% =7 and 1R =7.
Again one can check the soundness of the definitions and the well-known laws of standard non-
negative rational numbers. Also one may assume N to be embedded into @ as a substructure.
The transfer from non-negative to all rationals, including negative rationals can be performed in

analogy to the transfer from N to 7Z .
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Definition 54. We define the structure
Q= (Q, 42,2, <2 02, 12)
of rational numbers as follows:
a) Define an equivalence relation ~ on QF x QF by
(p,a)= (0, d") iff p+a'=p"+q.
b) Let p— q:=[(p, q)]~ be the equivalence class of (p,q) in ~.
¢) Let Q:={p—qlpc Qi ApcQd} be the set of rationals.

Exercise 22. Continue the definition of the structure @Q and prove the relevant properties.

6.3 Real Numbers

Definition 55. » C Q7 is a positive real number if
a) Vpervqe Qi (q<®p—qer), i.e., ris an initial segment of (QF,<®);
b) Vperdqgerp<®yq, i.e., r is right-open in (QF, <®);
¢) 0€r+QF, ie., ris nonempty and bounded in (QF,<®).

Definition 56. We define the structure
Rt .= (RJ", +]R, ,]R, <]R7 llR)
of positive real numbers as follows:
a) Let R™ be the set of positive reals.
b) Define the real addition +®: Rt x R* — Rt by
r+fr = {p+Rppernp'er't.
¢) Define the real multiplication -®: R+ x Rt — Rt by
r B ={pRppecrap cr'}.
d) Define the strict linear order <® on R* by
r<Boliffr Cr'Ar £
e) Let 1®:={pecQf|qg<®1}.
We justify some details of the definition.

Lemma 57.
a) RTeV.
b) If r,r' € RY then r+R¢', r By e R

¢) <R is a strict linear order on R™.

Proof. a) If r € R* then r C Qf and r € P(Q]). Thus Rt C P(Q7), and R* is a set by the
power set axiom and separation.
b) Let 7,7’ € R*. We show that

r B ={p Ry lpernp cr’y cRT.
Obviously r-Br’C Qf is a non-empty bounded initial segment of (Q7, <®).
Consider per-Br/ e Qf, ¢<®p. Let p:%@Z—,’ where 3 €7 and Z—,/Gr’. Let ¢==. Then

c__c-b !

a
i=da  p o Where

c- b b’ bV apa b a
=R <p R stel el _tey

d-a’ a’ b
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.b’
Hence hET and
c c-b Qa'

d d-a bV
Similarly one can show that »-F ¢’ is open on the right-hand side.
c) The transitivity of <® follows from the transitivity of the relation ; To show that <® is
connex, consider r, 7’ € R*, r # r’. Then r and r’ are different subsets of Q. Without loss of

generality we may assume that there is some p € 7’ \ 7. We show that then r <® ¢/, ie., r v/,

er Byl

Consider g €r. Since p¢ r we have p £® ¢ and ¢ <®p. Since 7/ is an initial segment of Qf, ¢ €
. O
Exercise 23. Show that (RT,-F, 1®) is a multiplicative group.

We can now construct the complete real line R from R™ just like we constructed Z from N .
Details are left to the reader. We can also proceed to define the structure C of complex numbers
from R.

Exercise 24. Formalize the structure C of complex numbers such that RC C.

6.4 Discussion

The constructions carried out in the previous subsections contained many arbitrary choices. One
could, e.g., define rational numbers as reduced fractions instead of equivalence classes of frac-
tions, ensure that the canonical embeddings of number systems are inclusions, etc. If such
choices have been made in reasonable ways we obtain the following theorem, which contains
everything one wants to know about the number systems. So the statements of the following
theorem can be seen as first- and second-order axioms for these systems.

Theorem 58. There are structures N, Z, Q, R, and C with the following properties:

a) the domains of these structures which are also denoted by N, Z, Q, R, and C, resp., sat-
isfy
w=NCZCQCRCC;

b) there are functions +: C x C — C and -: C x C— C on C which are usually written as
binary infix operations;

¢) (C,+,-,0,1) is a field; for a,b € C write a — b for the unique element z such that a=0b+
z; for a,be C with b+£0 write % for the unique element z such that a=0-z;

d) there is a constant i, the imaginary unit, such that i-i+1=0 and
C={z+iyl|z,yeR};

e) there is a strict linear order < on R such that (R, <, +[R? - | R% 0, 1) is an ordered
field.

f) (R, <) is complete, i.e., bounded subsets of R possess suprema:

VX CR(X#0ABERVre Xz <b — FbeR (Vo€ Xz < bA-3b < bVz € Xa < b))
g) Q is dense in (R, <):
Vr,seR(r<s—3da,b,ceQa<r<b<s<c);
h) (Q,+]1Q2, -1 Q20,1) is a field; moreover
Q={Flacz,bez\{0}};
i) (Z,+17Z2 - 72,0,1) is a ring with a unit; moreover
Z={a—bla,beN};

7) +IN? agrees with ordinal addition on w; - | N? agrees with ordinal multiplication on w ;
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k)

(N, +1,0) satisfies the second-order PEANO azioms, i.e., the successor function n—n+ 1
is injective, 0 is not in the image of the successor function, and

VXCN(0eXAVneXn+1eX — X=N).

This theorem is all we require from the number systems. The details of the previous construc-
tion will not be used again. So we have the standard complex plane, possibly with the identifica-
tion of N and w.

z=x+1iy

Remark 59. In set theory the set R of reals is often identified with the sets “w or “2, basically
because all these sets have the same cardinality. We shall come back to this in the context of
cardinality theory.

7 Sequences

The notion of a sequence is crucial in many contexts.

Definition 60.

a)

e)

A set w is an a-sequence iff w:a—V; then « is called the length of the a-sequence w and
is denoted by |a|. w is a sequence iff it is an a-sequence for some « . A sequence w is
called finite iff |w|<w.

A finite sequence w:n— V may be denoted by its enumeration wy, ..., w,—1 where we write
w; instead of w(i). One also writes wg...w,—1 instead of wy, ..., Wp—1 , in particular if w
is considered to be a word formed out of the symbols wy, ..., w,_1 -

An w-sequence w:w — V may be denoted by wo, w1, ... where wg, w1, ... suggests a definition
of w.

Let w: o — V and w': o’ — V be sequences. Then the concatenation w w’: o + o/ — V is
defined by

(ww)a=wla and Vi<a w w'(a+i)=w'(i).
Let w:a—V and x € V. Then the adjunction wx of w by = is defined as
wr=w"{(0,z)}.
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Sequences and the concatenation operation satisfy the algebraic laws of a monoid with cancella-
tion rules.
Proposition 61. Let w,w’,w” be sequences. Then

a) (ww) w' =w"(w "w").

b) Pw=wd=w.

¢) ww'=ww'—-sw=w"

There are many other operations on sequences. One can permute sequences, substitute elements
of a sequence, etc.

7.1 (w-)Sequences of Reals

w-sequences are particularly prominent in analysis. One may now define properties like
limw, =z iff Vee R"Im<wVi<w (iZ2m— (z —e<w; Aw; <z +¢))

i— 00
or

Ve:w— R (lim z;=a— lim f(x;) = f(a)).

71— 00 17— 00

If xg,x1,... is given then the partial sums

3

>
i=0
n
T, = Z :cZ +x,.

1=0 1=

are defined recursively as
n+1

M

0
Z ;=0 and
i=0

The map ¢:“2— R defined by

8

= lim Z xl

n— oo

:Cz z<w
=0

maps the function space “2 surjectively onto the real interval
0,1]={reR|0<r<1}.

Such maps are the reason that one often identifies “2 with R in set theory.

7.2 Symbols and Words

Languages are mathematical objects of growing importance. Mathematical logic takes terms and
formulas as mathematical material. Terms and formulas are finite sequences of symbols from
some alphabet. We represent the standard symbols =, €, etc. by some set-theoretical terms =,
€, etc. Note that details of such a formalization are highly arbitrary. One really only has to fix
certain sets to denote certain symbols.

Definition 62. Formalize the basic set-theoretical symbols by

a) ==0, =1, A=2, V=3, =4, ¢»=5, ~=6, (=7, )=8, I=9, V=10.

S

Variables v, = (1,n) for n <w.

Let Le={=,& A,V,=, <5, (,),3,V}U{(1,n)|[n<w} be the alphabet of set theory.

o

S8

Let Lt ={w|In<ww:n— Le} be the set of all words over L¢.

(9]

)
)
)
) A word over L¢ is a finite sequence with values in L¢ .
)
)

~

If ¢ is a standard set-theoretical formula, we let p € Lt denote the formalization of .
E.g., Ex = J0oVo1-01E00 is the formalization of the set existence axiom. If the intention
1s clear, one often omits the formalization dots and simply writes Ex = JvgVv1—v1 Evg .
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This formalization can be developed much further, so that the notions and theorems of first-
order logic are available in the theory ZF. By carrying out the definition of the axiom system
ZF within set theory, one obtains a term ZF which represents ZF within ZF. This (quasi) self-
referentiality is the basis for limiting results like the GODEL incompleteness theorems.

8 The von Neumann Hierarchy
We use ordinal recursion to obtain more information on the universe of all sets.

Definition 63. Define the von Neumann Hierarchy (V,)acord by recursion:
a) Vo=0;
b) Var1=P(Va) ;
c) ha= Ua<)\ Vo for limit ordinals X .

We show that the von Neumann hierarchy is indeed a (fast-growing) hierarchy

Lemma 64. Let S <a€Ord. Then
a) VeV,
b) VeCV,

c¢) Vy is transitive

Proof. We conduct the proof by a simultaneous induction on «.

a=0: () is transitive, thus a)-c) hold at 0.

For the successor case assume that a)-c) hold at a. Let 8 <« + 1. By the inductive assumption,
Vs C Vyand Vg € P(V,) = Vai1 . Thus a) holds at a + 1. Consider z € V,, . By the inductive
assumption, x C V,, and € V,11. Thus V,, C V441 . Then b) at o + 1 follows by the inductive
assumption. Now consider x € Vi, 41 =P (V,). Then  CV, CV,41 and V, 41 is transitive.

For the limit case assume that « is a limit ordinal and that a)-c) hold at all v <« . Let < a.
Then Vg€ V41 C Uw<oz V, =V, hence a) holds at « . b) is trivial for limit . V,, is transitive

as a union of transitive sets. O
The V,, are nicely related to the ordinal « .
Lemma 65. For every a, V,NOrd=«.

Proof. Induction on oo. V5N Ord=0NOrd=0=0.

For the successor case assume that V, NOrd =« . V,41 N Ord is transitive, and every element of
Va+1 N Ord is transitive. Hence V, 41 N Ord is an ordinal, say § = Vo413 N Ord . o =V, N Ord
implies that « € V11N O0Ord=4§ and a4+ 1 <. Assume for a contradiction that o+ 1< §. Then
a+1€V,i1 and a+1CV,NOrd=a, contradiction. Thus a+1=6=V,41N0rd.

For the limit case assume that « is a limit ordinal and that Vg N Ord = 8 holds for all 8 < « .
Then

VanOrd= (] Vg noOrd= | J (VsnOrd)= | ] =0
B<a B<a B<a

The foundation schema implies that the V,-hierarchy exhausts the universe V.

Theorem 66.
a) vngaEOrd VodBax CVps.

b) V=Ugpcora Va-
Proof. a) Let  CJ,cq,q - Define a function f:z— Ord by
F(w) =min {|ue v, }.
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By the axioms of replacement and union, S =J {f(u) + llu €z} €V and f € Ord. Let u e x.
Then f(u) < f(u)+1<f and v e Vi) S V3. Thus 2 C V3.
b) Let B=J,c0opq Va- By the schema of €-induction it suffices to show that

Va (x C B—x € B).

So letng:Uaeord Vo . By a) take 8 such that x C V3. Then xEVﬁHgUaeord Vo=B. O

The V,-hierarchy ranks the elements of V into levels.

Definition 67. Define the rank (function) rk: V' — Ord by

2 € Vi) +1 \ Vik(a) -

The rank function satisfies a recursive law.

Lemma 68. Vz rk(z)=J k(y)+1.

yeET r
Proof. Let us prove the statement

VeV, rk(z) = U rk(y)+1
yeET

by induction on o« . The case o =0 is trivial. The limit case is obvious since V) = |, <x Vo for
limit A.

For the successor case assume that the statement holds for av. Consider x € V41 . If z € V,
the statement holds by the inductive assumption. So assume that z € Vo411 \ Vo, . Then rk(z) =
a. Let y e x CV,. Then y € Vgiq \ Vs for some 8 =rk(y) < a . rk(y) + 1 € « . Thus
Uyen rk(y) +1 C a. Assume that v= Uyex tk(y) +1<a. Let y € 2. Then rk(y)+ 1 < v and
Y EVi+1 €V, . Thus x CV,, z € V,41 €V, , contradicting the assumption that x € V41 \
- O

Lemma 69. Let A be a term. Then A€V iff 3a ACV,.

The previous analysis of the V,-hierarchy suggest the following picture of the universe V.

Ord 1%
a+1
Va+1
\ o/
Vo

w

n

0
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9 The Axiom of Choice

Natural numbers n € N are used to enumerate finite sets a as
a={ag,a1,...,an -1}
Assuming the axiom of choice, one can use ordinals to enumerate any set a as

a={a; |i<a}.

Definition 70. The Axiom of Choice, AC is the statement
Ve ¢ xAVu,vez(uftv—unv=0)—IVuezIwunz={w}).

The azxiom expresses that for every set x consisting of nonempty pairwise disjoint elements there
exists a choice set z, i.e., for every element u € x the intersection u N z consists exactly of one
element. Thus z “chooses” one element out of every element of x .

It seems intuitively clear that such choices are possible. On the other hand we shall see that
the axiom of choice has unintuitive, paradoxical consequences.
Theorem 71. The following statements are equivalent:

a) AC;

b) Yx3g (g is a function with domain xA\Vu € x (u # 0 — g(u) € uw)); such a function g is
called a choice function for x ;

¢) Vedadffiaex.
Proof. a) — b) Assume AC. Let z be a set. We may assume that every element of z is
nonempty. The class

' ={{u} xuluezx}
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is the image of z under the set valued map u+— {u} X u, and thus a set by replacement. The ele-
ments {u} X u of 2’ are nonempty and pairwise disjoint. By AC, take a choice set z for a'.
Define a choice function g:x— V by letting g(u) be the unique element of u such that

({u} xuw)Nz={(u, g(u))}.

b) — ¢) Assume b). Let z be a set and let g: P(z) \ {#} — V be a choice function for P(z) \ {0}.
Define a function F: Ord — z U {x} by ordinal recursion such that

_ [ 9@\ Fla)), if @\ Fla] # 0;
F(O‘)_{ i, if 2\ Flo]=0.

At “time” «, the function F' chooses an element F(«) € x which has not been chosen before. If
all elements of = have been chosen, this is signaled by F' by the value x which is not an element
of z.
(1) Let o< B and F(B)#z. Then F(a), F(3) € x and F(«a) # F(B).
Proof. F(f8) # x implies that = \ F[3] # 0 and hence F(8)=g(z \ F[B]) €z \ F[3]. Since a € §,
z\ Fla]#0 and F(a)=g(z \ Fla]) €z \ Fla]. F(a)# F(B) follows from F(3) €z \ F[B]. ged(1)
(2) There is « € Ord such that F(a)==z.
Proof. Assume not. Then by (1), F: Ord — 2 is injective. Hence F~! is a function and Ord =
F~x]. By replacement, Ord is a set, but this is a contradiction. ged(2)

By (2) let a be minimal such that F(a) =2 . Let f = F | a: « — x . By the definition of F,
z\ Fla]=0, ie., Fla]=z and f is surjective. By (1), f is also injective, i.e., f:a<>x.

¢) — a) Assume c). Let the set x consist of nonempty pairwise disjoint elements. Apply c) to
J . Take an ordinal @ and a function f:a—|J «. Define a choice set z for « by setting

2={f()Buez(f(§) cunv{<Ef(()Eu)}.

So z chooses for every u € z that f(&) € v with £ minimal. O

We shall later use the enumeration property c) to define the cardinality of a set. ZORN’s
Lemma is an important existence principle which is also equivalent to AC.

Definition 72. Let (P,<) be a partial order.

a) X CPisa chain in (P,<) if (X, <) is a linear order where (X, <) is a short notation
for the structure (X,<NX?).

b) An element p € P is an upper bound for X C P iff Vxe Xax <p.
¢) (P, <) is inductive iff every chain in (P,<) possesses an upper bound.

d) An element p € P is a maximal element of (P,<) iff Vg€ P(¢>=p—q=p).

Theorem 73. The azxiom of choice is equivalent to the following principle, called Zorn’s
Lemma: every inductive partial order (P,<) €V possesses a mazimal element.

Proof. Assume AC and let (P, <) € V be an inductive partial order. Let g: P(P)\ {0} =V be
a choice function for P(P) \ {0}. Define a function F: Ord — P U {P} by ordinal recursion; if
there is an upper bound for F[a] which is not an element of F|a] let

F(a)=g({pe P\ Fla]|pis an upper bound for F[a]});
otherwise set

F(a)=P.

At “time” «, the function F' chooses a strict upper bound of F[a] if possible. If this is not pos-
sible, this is signaled by F' by the value P.

The definition of F' implies immediately:
(1) Let a< g and F(B)# P. Then F(a) < F(B).
(2) There is « € Ord such that F(a)=P.
Proof. Assume not. Then by (1), F: Ord — P € V is injective, and we get the same contradic-
tion as in the proof of Theorem 71. ged(2)
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By (2) let @ be minimal such that F(a) = P . By (1), F[a] is a chain in (P, <). Since the
partial order is inductive, take an upper bound p of F[a]. We claim that p is a maximal element
of (P, <). Assume not and let ¢ € P, ¢ > p. Then ¢ is a strict upper bound of F[a] and ¢ ¢
Fla]. But then the definition of F yields F'(«) # P, contradiction.

For the converse assume Zorn’s Lemma and consider a set x consisting of nonempty pairwise
disjoint elements. Define the set of “partial choice sets” which have empty or singleton intersec-
tion with every element of x:

P:{zQU z|Vuez(unz=0viwunz={w})}.

P is partially ordered by C . If X is a chain in (X, C) then |J X is an upper bound for X.
Hence (X, C) is inductive.

By Zorn’s Lemma let z be a maximal element of (X, C). We claim that z is a “total” choice
set for x:
(3) Vuezdwunz={w}.
Proof . If not, take u € z such that uNz=10. Take w € v and let z’=zU{w}. Then 2z’ € P, con-
trary to the the C-maximality of z. O

Theorem 74. Fvery vector space U € V has a basis B, which is linearly independent and spans
U.

Proof. Let U be a vector space with scalar field K. Let
P={bCU|b is linearly independent in U }.

We shall apply Zorn’s lemma to the partial order (P, C).

(1) (P, Q) is inductive.

Proof. Let X C P be a chain. Let c=J X CU. We show that c is linearly independent. Con-
sider a linear combination

ko"Uo+ - knfl"l)nfl == 0,

where vy, ..., v,—1 € ¢ and ky, ..., k,—1 € K . Take b, ..., b,—1 € X such that vg € by, ..., v,_1 €
bn_1. Since X is a chain there is some b; ,7 <n such that bg,...,b,_1 Cb;. Then vy, ..., v,_1 € b;.
Since b; € P is linearly independent, kg=...=k,_1=0. ged(1)

By Zorn’s lemma, (P, C) has a maximal element, say B. B is linearly independent since B €
P.
(2) B spans U.
Proof. Let v € U. If v € B then v is in the span of B. So consider the case that v ¢ B . Then
BU{v} is a proper superset of B. By the C-maximality of B, BU{v} is linearly dependent. So
there is a non-trivial linear combination

kovo+ ...+ kn_1v,_1+kv=0,
where vy, ...,v,_1 € B and at least one of the coefficients k, ..., k,_1,k € K is non-zero. If k=0,
ko"l)0+...+kn,1"l)n,1:0

would be a non-trivial representation of 0, contradicting that B is linearly independent. Hence

k#0 and
_ kO knfl

V=——UVg— ee. — ———Up_1.

k k
So v is in the span of B. O

Actually one can show the converse of this Theorem: if every vector space has a basis, then
AC holds.

As another application of Zorn’s lemma we consider filters which are collections of “large”
subsets of some domain.

Definition 75. Let Z be a set. We say that F is a filter on Z if
a) FCP(Z);
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b) 0 ¢ F;
¢) XeFand X CY CZ implies that Y € F;
d) X,Y € F implies that XNY € F.
If moreover
XCZ—-XeFV(Z\X)eF

we call F an ultrafilter on Z.

Important examples of filters are neighbourhood filters N, of points x in some topological
space (Z,T):
N,={U C Z|U is a neighbourhood of z}.

A combinatorial example is the Frechet filter on w:
F={XCw|IncwVmew(m>n—-meX)}.
The expression “A(n) holds for almost all n € w” is equivalent to

{newl|A(n)}eF.

Theorem 76. Let F be a filter on the set Z . Then there is an extension G O F such that G is
an ultrafilter on Z.

Proof. Let
P={HCP(Z)|H is afilter on U and H D F'}.

We shall apply Zorn’s lemma to the partial order (P, C).
(1) (P, Q) is inductive.
Proof. Let C C P be a chain. Let H'=J X CP(Z). We show that H' is a filter on Z. Trivially
¢ H'. Consider X € H' and X CY C Z. Then X € H for some H € C. Since H is a filter, X €
HandsoYeHCH.

For the closure under intersections consider X,Y € H’. Then X € H for some Hy € C, and
Y € H; for some H; € C. Since C is a chain, we have, wlog, that Hy C H;. Then X,Y € H;, and
XNYeH, CH' qed(1)

By Zorn’s lemma, let G € P be a maximal element. Then G is a filter which extends F.
(2) G is an ultrafilter on Z.
Proof. Consider XoC Z. Assume for a contradiction that Xo¢ G and Z \ Xo¢ G.
Case 1. X N X+ 0 for every X € G. Define

G'={YCZ|3XeG Y DXNXo}

G’ is a filter on Z; we only check Definition 75, d): let Y1, Y2 € G’ with Y1 D X; N Xy and Y2 D
XQ N XO where Xl, X2 € (G. Then Y1 n YQ :_) (Xl n XQ) n XO where Xl n X2 S G, and so Y1 n Y2 S
G’
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Obviously G’ 2 G D F and G'# G since Xy € G’ and X ¢ G. This contradicts the maximality
of Gin (P, Q).
Case 2. X1N Xo=10 for some X; €G. Then X; C Z\ X;. For X € G we have

XNZ\X)2XNX1#£0
since X N X; € G. So we can carry out the argument of Case I with Z \ Xj in place of X, and

also get the desired contradiction. 0

Definition 77. The axiom system ZFC consists of the ZF-azxioms together with the axiom of
choice AC.

The system ZFC is usually taken as the foundation of mathematics. The ZF axioms have a
good intuitive motivation. The axiom of choice is more controversial; AC has desirable con-
sequences like Zorn’s Lemma and its applications, but on the other hand AC has some paradox-
ical and problematic consequences. The status of AC within set theory can be compared to the
parallel axiom in geometry. Similar to the situation in (non-)euclidean geometry one can show
that if there is a model of the ZF axioms then there is a model of ZFC.

Exercise 25. Show that in the theory ZF the axiom of choice is equivalent to the Hausdorff Mazrimality
Principle which says: for every partial order (P, <) € V there is an inclusion maximal chain X in (P, <), i.e.,
if Y D X is a chain in (P, <) then Y = X. [Hausdorff, Grundziige der Mengenlehre, p. 141: Wir haben damit
flir eine teilweise geordnete Menge A die Existenz grofiter geordneter Teilmengen B bewiesen; natirlich kann
es deren verschiedene geben.|

10 Wellfounded Relations

The axiom schema of foundation yields an induction theorem for the €-relation, and in the pre-
vious section we have seen a recursive law for the rank-function. We generalize these techniques
to wellfounded relations.

Definition 78. Let R be a relation on a domain D.

a) R is wellfounded, iff for all terms A
0+ANACD—Tre AAN{y|yRx}=0.
b) R is strongly wellfounded iff it is wellfounded and
VeeD {yeD|yRax}eV.

¢) R is a wellorder iff R is a wellfounded strict linear order.

d) R is a strong wellorder iff R is a strongly wellfounded wellorder.

By the scheme of foundation, the €-relation is strongly wellfounded. The ordinals are strongly
wellordered by <. There are wellfounded relations which are not strongly wellfounded: e.g., let
R C Ord x Ord,

xRy ff (x£0ANy£0Ax<y)V(y=0Az+£0),

be a rearrangement of (Ord, <) with 0 put on top of all the other ordinals.
For strongly wellfounded relations, every element is contained in a set-sized initial segment of
the relation.

Lemma 79. Let R be a strongly wellfounded relation on D. Then
Ve C D3z (2CDAxCzAVuEZVvRU v E 2).

Moreover for all x C D, the R-transitive closure

TCR(x):ﬂ {z|zCDAxCzAVu€eNvRuvE 2}
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of © is a set. In case R is the €-relation, we write TC(z) instead of TCe(x).

Proof. We prove by R-induction that
Ve e D TCgr({z})eV.
So let z € D and VyRxz TCr({y}) € V. Then

= {opu | TCr(yh eV

yRx

by replacement. z is a subset of D and includes {x}. z is R-closed, i.e., closed with respect to
R-predecessors: each TCr({y}) is R-closed, and if yRz then y € {y} C TCr({y}) € z . So
TCr({z}) is the intersection of a non-empty class, hence a set.

Finally observe that we may set

TCr(x)= ) TCr({y}).

yex

Exercise 26. Show that for an ordinal o, TC(a) = and TC({a})=a+1.

For strongly wellfounded relations, the following recursion theorem holds:

Theorem 80. Let R be a strongly wellfounded relation on D . Let G:V — V. Then there is a
canonical class term F, given by the subsequent proof, such that

F:D—Vand VxeD F(z)=G(F [{y|yRz}).

We then say that F is defined by R-recursion with the recursion rule G. F is unique in the sense
that if another term F’ satisfies

F':D—Vand VaeD F'(z)=G(F'[{y|yRz})
then F = F'.

Proof. We proceed as in the ordinal recursion theorem. Let
F:={f32CD(zez {y|lyRa}Cz, frz—V and Vr ez f(x) =G(f [ {y|yRz}))}

be the class of all approzimations to the desired function F'.

(1) Let f,g€ F. Then f,g are compatible, i.e., Vo € dom(f)Ndom(g) f(z)=g(z).

Proof. By induction on R. Let z € dom(f) Ndom(g) and assume that VyRz f(y) = g(y). Then
fHylyRa} =g {ylyRa}

fx)=G(f {ylyRz})=G(g [ {y|lyRz})=g(x).

qed(1)
By the compatibility of the approximation functions the union

F=JF
is a function defined on dom(F) C D . dom(F) is R-closed since the domain of every approxima-
tion is R-closed.
(2) Vo € dom(F) ({y|yRx} C dom(F) A F(x) =G(F [{y|yRx})).
Proof. Let x € dom(F). Take some approximationf € F such that z € dom(f). Then
{y|yRx} Cdom(f)C dom(F) and

F(z)=f(x)=G(f {ylyRa})=G(F [{y|yRx}).
qed(2)
(3) D=dom(F).
Proof. We show by R-induction that Vo € D x € dom(F'). Let « € D and assume that VyRz y €
dom(F). TCr({y|yRz}) Cdom(F') since dom(F') is R-closed. Then

f=FTTCr({ylyRa}))U{(z,G(F [{y|yRz}))}
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is an approximation with = € dom( f), and so = € dom(F). O

Exercise 27. Define set theoretic operations
z+y=zU{z+z|z€y}
and

Toy= U (z-z+x)

z€y

and study their arithmetic/algebraic properties. Show that they extend ordinal arithmetic.

Theorem 81. Let R be a strongly wellfounded relation on D and suppose that R is extensional,
ie, Vo, y € D (Vu (uRx<>uRy) —x = y). Then there is a transitive class D and an iso-
morphism m: (D, R) > (D, €). D and 7 are uniquely determined by R and D, they are called the
MosTOWSKI-collapse of R and D.

Proof. Define m: D —V by R-recursion with

m(z) ={r(y)|lyR=z}.

Let D =rng(r).
(1) D is transitive.
Proof. Let w(z) € D and u € n(z) = {r(y)|yRx}. Let u = m(y), yRz . Then u € rng(n) = D .
ged(1)
(2) 7 is injective.
Proof. We prove by €-induction that every z € D has exactly one preimage under 7. So let z €
D and let this property be true for all elements of z. Assume that z,y € D and 7(x) = 7(y) =
z. Let uRx . Then w(u) € n(x) =7(y) = {n(v)|]vRy}. Take vRy such that 7(u)=m(v). By the
inductive assumption, u =v, and u Ry . Thus Yu (uRx—uRy). By symmetry, Vu (u Rx+>uRy).
Since R is extensional, x =y . So z has exactly one preimage under 7. ged(2)
(3) w is an isomorphism, i.e., 7 is bijective and Va,y € D (zx Ry<>m(x) € n(y)).
Proof. Let =, y € D. If xRy then n(z) € {n(u)luRy} = n(y). Conversely, if n(z) €
{n(u)|luRy} = 7(y) then let w(x) = m(u) for some uRy . Since 7 is injective, © = u and z Ry .
qed(3)

Uniqueness of the collapse D and 7 is given by the next theorem. (

Theorem 82. Let X and Y be transitive and let o: X <> Y be an €-€-isomorphism between X
and Y, e, Ve, ye X (rcyco(x)€o(y)). Theno=id[X and X =Y.

Proof. We show that o(z) = x by &-induction over X. Let z € X and assume that Vy €
zo(y)=y.

Let y € z. By induction assumption, y =0(y) € o(x). Thus 2 Co(x).

Conversely, let v € o(z). Since Y =rng(o) is transitive take v € X such that v = o(u). Since
o is an isomorphism, u € z. By induction assumption, v =o0(u) =u € z. Thus o(x) C z. O

If R is a well-order on D then R is obviously extensional. We study the Mostowski collapse
of strongly well-ordered relations.

Theorem 83. Let R be a strongly well-ordered relation on D. Let m: (D, R) + (D, €) be the
MosTowsKI-collapse of R and D. If D is a proper class then D = Ord. If D is a set then D is
an ordinal which is called the ordertype of (D, R). We then write D =otp(D, R).

Proof. D is transitive since it is a Mostowski collapse.

(1) Every element of D is transitive.

Proof. Let x € y € z € D. Since D is transitive, z, y, z € D and there are a, b, ¢ € D such that
x=m(a), y=mn(b), and z = w(c). Since 7 is an order-isomorphism, a RbRc. Since R is a trans-
itive relation, a Re. This implies z € z. ged(1)

(2) Every element of D is an ordinal.

Proof. Let z € D. z is transitive, and it remains to show that every element of z is transitive.
Let y€z. Then y € D and so y is transitive by (1). ged(2)
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Consider the case that D is a proper class. Then D is a proper class of ordinals. D must be
unbounded in the ordinals, since it would be a set otherwise. By transitivity, every ordinal
which is smaller than some element of D is an element of D. Hence D = Ord.

If D is a set, then D is a transitive set, and by (1), D € Ord. O

By Lemma 82, any order-isomorphism o: (o, <) <> (8, <) between ordinals must be the iden-
tity. So the ordertype of a set-sized well-order (D, R) is the unigque ordinal, to which it is order-
isomorphic.

Lemma 84. Let © Ca € Ord. Then (z,<) is a well-order. Let m: (x, <) <> (opt(z, <), <) be the
Mostowski collapse of (x,<). Then Vé€x &> m(§) and otp(z,<) <.

Proof. By induction on £ €z. Let s en(&) ={n({)|[(€x A<} Let §=n(¢) with (eaxn(<
¢. By induction § =7({) < (< ¢. Thus 7(§) C € and 7(£) < €.

Similarly consider ¢ € otp(x, <) ={n({)|( €x}. Let §=7({) with (€z. Then d=7({) < (<
a. Thus otp(z, <) C . O

11 Cardinalities

Apart from its foundational role, set theory is mainly concerned with the study of arbitrary
infinite sets and in particular with the question of their size. Cantor’s approach to infinite sizes
follows naive intuitions familiar from finite sets of objects.

Definition 85.

a) = and y are equipollent, or equipotent, or have the same cardinality, written  ~ y, if
dffixey.

b) x has cardinality at most that of y, written x <y, if Aff:x— y is injective.

¢) We write x <y forx <y and x»y.

These relations are easily shown to satisfy

Lemma 86. Assume ZF. Then
a) ~ is an equivalence relation on V.
b) z~y—TxLYNY <
¢) x
d) tyhy<z—=r=<2.
)

e) cCy—zrxy.

The converse of b) is also true and proved in an exercise.
Theorem 87. (Cantor - Bernstein) < yAy<z—x~y.

Assuming the axiom of choice, every set is equipollent with an ordinal (Theorem 71 ¢). One
can take the minimal such ordinal as the canonical representative of the equivalence class with
respect to ~.

Definition 88.

Sl
I

a) card(z) = min {a| Iff: a & x} is the cardinality of the set x. One also writes
card(x).

b) An ordinal k is a cardinal iff it kK =card(x) for some set x.

¢) Let Card={k >w |k is a cardinal} be the class of infinite cardinals.

Let us assume AC until further notice. Then Cantor’s two approaches to cardinality agree.
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Theorem 89.
a) <y« card(x) <card(y).

b) x~ y+> card(z) =card(y).

Proof. a) Let z < y and let f: 2z — y be injective. Further let f,:card(z) <> = and f,: card(y) <
y. Then f;l o fo fycard(z) — card(y) is injective. Let z = f;l o fo flcard(x)] C card(y). Then
card(z) = card(z) < otp(z) < card(y).

Conversely, let card(z) < card(y) with fy: card(z) <» x and f,: card(y) <> y as above. Then
fyo folix— y is injective and z <y .

b) is trivial. O

As an immediate corollary we get the Cantor—Schréder—Bernstein theorem with AC.
Theorem 90. (ZFC) Let axb and b<a. Then a~b.

We shall now explore “small” cardinals. Below w, the notions of natural number, ordinal
number and cardinal number agree.

Theorem 91. For all natural numbers n < w holds
a) card(n)=mn;

b) n e Card.

Proof. a) By complete induction on n.
For n=0, 0: 04> 0 and hence card(0) =0.
Assume that card(n) =n. We claim that card(n + 1) =n + 1. Obviously card(n+ 1) <n+1.
Assume for a contradiction that m=card(n+1) <n+1. Take f:m<>n+1. Let f(ip)=n.
Case 1:ig=m —1. Then f[(m—1):(m —1)<n and card(n) <m —1 <n, contradiction.
Case 2: ig<m — 1. Then define g: (m — 1) <> n by

NG OREEL
“”{fmz1%ﬁ%m.

Hence card(n) < m — 1 <n, contradiction.
b) follows immediately from a). O

Theorem 92.
a) card(w)=w;

b) weCard.

Proof. Assume for a contradiction that n =card(w) <w. Let f:n<+>w. Define g: (n — 1) =w by

o [ F) i fl) < fn—1),
9(i) {f(i)—L if f(i)> f(n—1).

(1) g is injective.
Proof. Let i < j<n—1.
Case 1. f(i), f(j) < f(n—1). Then g(7)
Case 2. f(i) < f(n—1)< f(4). Then g(i)=f
(
)

~

<

Case 3. f(j)< f(n—1)< f(i). Then g
Case 4. f(n—1)< f(i), f(j). Then g(i
(2) g is surjective.

Proof. Let ke w.

Case 1. k < f(n — 1). By the bijectivity of f take ¢ <mn — 1 such that f(i) = k. Then ¢(i) =
f@)=k.

Case 2. k> f(n —1). By the bijectivity of f take i <n — 1 such that f(i)=k+ 1. Then g(i) =
fl@)—1=k. qed(2)

~—
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But this is a contradiction to the supposed minimality of n=card(w). ([l

Lemma 93.
a) cardlw+1)=w.
b) card(w+w)=w.

¢) card(ww)=w.

Proof. a) Define f,:w<«>w—+1 by
w,ifn=0
=1

n—1, else
b) Define f:w+<> w+w by

f(n)= m, if n=2-m
w+m,if n=2m+1

¢) Define f.:w+ w-w by
fn)=wk+1,if n=2%(21+1)-1

12 Finite, countable, uncountable sets

Definition 94.
a) x is finite if card(z)<w.
x is infinite if x is not finite.
x is countable if card(z) <w.
x is countably infinite if card(z)=w.

x is uncountable if x is not countable.

12.1 Finite sets

We have the following closure properties for finite sets:

Theorem 95. Let a,b finite, let x € V.
a) FEvery subset of a finite set is finite.
b) aU{z}, aUb, anb, axb, a\b, and P(a) are finite. We have card(P(a)) =24,
c¢) If a; is finite for i€b then

iep Qi 18 finite.

Proof. Easy. U
Finite sets can be distinguished by dependencies between injective and surjective maps.
Theorem 96. Let a be finite. Then
a) Vf (f:aﬂ)a implies f:a&a)
b) Vf (f:aﬂ)a implies f:a&a)
Using the axiom of choice one can also show the converse.

Theorem 97. Let a be infinite. Then

a) Elff:wia.
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surj.

b) Elf(f:aﬂ)a and ﬂf:a*m)
c) Elf(f:a&a and ﬂf:aﬂ)a)

This yields:

Theorem 98. For a €V the following statements are equivalent:
a) a is finite;

b) Vf(f:ai)a implies f:a&a);
surj. . . inj.
c) Vf(f:ainz implies f:a%a).

If one does not assume the axiom of choice, one can use b) or ¢) to define the notion of finite-
ness.

12.2 Countable sets

We have the following closure properties for countable sets:

Theorem 99. Let a,b countable, let x €V.
a) FEvery subset of a countable set is countable
b) aU{z}, aUb, anbd, a xb, a\b are countable

¢) If a, is countable for n <w then | ay 18 countable

n<w

Proof. Countability will be shown by exhibiting injections into countable sets. Then a) is
trivial.
b) Let f,:a—w and fp: b— w be injective. Then define injective maps:

falu)+1,if uea
0, else

foraU{z} = w, fo(u) {

frraUb—w, fi(u) = { 3 }CZ((Z)): :ziszea

feraxb—w, folu,v) = 2f“(“)~(2~fb(v) +1)

¢) By the axiom of choice choose a sequence (h,|n <w) of injections hy: a, — w. Define

f3: U an—w, f3(u) =2"(2-hy(u) + 1), where n is minimal such that u € a,, .
n<w
O

12.3 Uncountable sets
Theorem 100. (Cantor) z < P(z)

Proof. card(z) < card(P(x)) is clear. Assume that card(xz) = card(P(x)) and let f: x> P(z) be
bijective. Define

a={uczlug¢ f(u)} Cx.
Let a= f(ug). Then
up € f(ug) > ug€a>ug€ f(ug).

Contradiction. Hence card(z) < card(P(x)). O
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Theorem 101. N:=card(P(w)) is an uncountable cardinal.

Note that by previous exercises or lemmas we have
card(P(w)) = card(R) = card (*w) = card(“w)

Cantor spent a lot of efforts on determining the size of X and postulated that N is the smallest
uncountable cardinal.

13 The Alefs

Theorem 102. Va3k € Card k > «. Hence Card is a proper class of ordinals.

Proof. Let a > w. Then x = card(P(«)) > card(e). And x > « since otherwise card(P(«)) <
and card(card(P(a))) < card(c).

e

Definition 103. For any ordinal § let 61 be the smallest cardinal >4 .

Definition 104. Define the alef sequence

(Nq|]a € Ord)
recursively by
NO = W
Noz-i—l = NI
Ny = U N, for limit ordinals A
a<

Obviously
Card = {X,|a € Ord}

is the class of all cardinals.

Definition 105. An infinite cardinal of the form R,y1 is a successor cardinal. An infinite car-
dinal of the form Ny with A a limit ordinal is a limit cardinal.

14 Cardinal Arithmetic

For disjoint finite sets a and b natural addition and multiplication satisfies
card(aUb) = card(a) + card(b) and card(a x b) =card(a) - card(b).

This motivates the following extension of natural arithmetic to all cardinals.

Definition 106. Let x, \ finite or infinite cardinals. Then let

a) K+ A=card(aUb), where a,b are disjoint sets with k =card(a) and A= card(b); kK + X is
the (cardinal) sum of Kk and A .

b) k-A=card(k X A); k- A is the (cardinal) product of k and \.

¢) k*=card(*k); k* is the (cardinal) power of k and \.
Note that we are using the same notations as for ordinal arithmetic. It will usually be clear
from the context whether ordinal or cardinal operations are intended.

The “arithmetic” properties of certain set operations yield usual arithmetic laws for cardinal
arithmetic.
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Lemma 107.
a) Cardinal addition is associative and commutative with neutral element 0.
b) Cardinal multiplication is associative and commutative with neutral element 1.
¢) K-A+p)=6-A+kK-pu.
)

d) K0=1,0=0 for k40, k' =k, 1"=1, kM H=r . g# A= (M)H
Proof. ¢) Let a,b be disjoint sets with A=card(a) and p=card(b). Then

k- (A p) = card(k x (aUb))

card((k x a) U (k X b))
card((k x a)) +card((k x b))
= K- A+K-u,

using that £ X (aUb) = (k x a) U (k x b) and that x x a and & x b are disjoint.
d)
k%= card(°x) = card({0}) = card(1) =1.

In case k0 we have that “0={f|f:k— 0} =0 and thus
0" = card("0) = card (@) =0.

For k!=k consider the map <> 'k given by a+ {(0,a)}.
For 1% =1 observe that *1={{(«,0)|a < k}} is a singleton set.
Let a,b be disjoint sets with A= card(a) and p=card(b). Then

KMHE = card(*VYk)
= card((“x) x (°k))
card (k) - card(’x)

= HA'K,'U',

using that *“°k ~ (%) x (&) via the map f+ (f [a, f[b).
Finally,

kNP = card(**Hk)

using that **#x~ #(*x) via the map
e (fel€ <)
where fe: A=k with fe(¢) = f(¢, &), O

We determine the values of cardinal addition and multiplication for infinite cardinals.
Definition 108. Define the Gddel ordering <2 of Ord x Ord by
(a, B) <%(a/, B") iff max(a,B)<max(a’, ),

or max («, f) =max (o', /) Na <o/,
or max (o, 8) =max (', fYANa=a' A< S’
Lemma 109. <? is a wellordering of Ord x Ord . Let G: (Ord x Ord, <?) > (Ord, <) be the

Mostowski collapse of (Ord x Ord, <?). G is the Godel pairing function. Define inverse func-
tions G1: Ord — Ord and Ga: Ord — Ord such that

Va G(Gi(a),Ge(a)) =a.

Lemma 110. G: X, x X, <N, .
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Proof. By induction on «.
Case 1. «=0. By the definition of <2, Ry x X is an initial segment of <2. Let

G[NO X No]zéeOrd.

We show that § = Xg. Since Ry X Ng is infinite, d > Ng. Assume that § > Ng. Take m,n € w such
that G(m,n)=w. Then (m,n) has infinitely many predecessors in <2. But on the other hand

{(k,D)|(k,1) <2 (m,n)} C (max (m,n) + 1) x (max (m,n) + 1)

is finite. Hence G[Rg x Ro] =Ry .
Case 2. a>0 and the Lemma holds for 8 <« . Let

G[Rq X Vo] =n€0rd.

We show that n =X, . Since card(R, X R,) = R, we have n >R, . Assume that n >R, . Take (&,
¢) €R, x X, such that G(£, () =RN,. Then G witnesses that

{(¢, OIE ¢ < (&, O ~Ra.
On the other hand set Xg=card(max (¢, )+ 1) <R, . Then, using the inductive hypothesis,
card({(&", ¢)I(&",¢) <*(£,Q)}) < card((max (€, ¢) +1) x (max (¢, () + 1))
card(Ng x Rg)
= NB <N,

contradiction. Hence G[R, x R,] =N, . O

Theorem 111.

a) If ke Card then k-Kk=kK.

b) If k€ Card and A€ Cd, A#0 then k- A=max (k, ) .

¢) If k€ Card and A€ Cd then k+ A=max (k, \) .
Proof. a) k-x=card(k X k) =k, by the properties of the Godel pairing function.
b) The map i+ (i,0) injects k into x x A, and the map j+— (0, j) injects A into k x A. Hence &,
A<k-A. Thus

max (£, ) < k- A< max (k,\) - max (£, A) 0N max(k, \).
¢) Obviously k~ {0} x Kk and A~ {1} x A. The inclusion
({0} x k) U ({1} x A\) Cmax (k,\) x max (k, \)
implies
max(n,)\)gnJr)\gmax(m,)\)~max(n,)\)gmax(m,)\). O

For infinite cardinal exponentiation the situation is very different. Only a few values can be
determined explicitely.

Lemma 112. For k € Card and 1 <n<w we have K" =k .

1

Proof. By complete induction. k' =k was proved before. And

KT = (k") kl=k k=K. O
The “next” exponential value 2%° is however very undetermined. It is possible, in a sense to be

made precise later, that 2%° is any successor cardinal, like e.g. Ni3.
Cantor’s continuum hypothesis is equivalent to the cardinal arithmetic statement

R0 — N, .

Lemma 113. For k € Card and 2 <\ <2 we have \*=2".
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Proof.
2K<)\K<(2H)H:2K‘K:2H- D

15 Cofinality

To get some more information on cardinal exponentiation, we need to measure how “fast” a car-
dinal can be approximated using smaller cardinals.
Definition 114.
a) A set x C\ is cofinal in the limit ordinal \ if Va<AIE€ra<§.
b) The cofinality of a limit ordinal X is
cof(A\) =min {otp(z)|x T\ is cofinal in \}.

¢) A limit ordinal X is regular if cof(\) =\ ; otherwise X\ is singular.

These notions are due to Felix Hausdorff, who called these notions “konfinal” and “Konfinalitéat”.
Please observe the “konfinal” in German.

Lemma 115.
a) cof(A) =min {card(z)|x C X is cofinal in A}

b) cof(Ng)=Rq, i.e., Vg is regular

¢) cof(N) <card(A) < A

d) cof(\) € Card

e) cof(X) is regular, i.e., cof(cof(\)) = cof())
) If v is a limit ordinal then cof(X.) = cof(~)
g) cof(R,) =Ny, i.e., N, s a singular cardinal

Proof. a) > holds since otp(z) > card(x). Conversely let x have minimal cardinality such that z
is cofinal in A and let f:card(z)<> . Define a weakly increasing map g: card(z) — \ by

g()=J 1)
J<i
g is welldefined by the minimality of x. y= g[card(z)] is cofinal in A. y is order-isomorphic to
{i <card(x)|Vj <ig(j) < g(i)} Ccard(x).
Hence
otp(y) =otp({i < card(z)|Vj <ig(j) < g(i)}) < card(x).
Thus
cof(M\) < otp(y) = card(x) = min {card(x)|z C A is cofinal in A}.

b) — d) follow from a).

e) Let  C X be cofinal in in A with otp(x) = cof(\) and order-isomorphism f: cof(\) <> = . Let
y C cof(A) be cofinal with otp(y) = cof(cof(A)) and order-isomorphism g: cof(cof(A)) <> y . Then
z= f o glcof(cof(\))] is cofinal in A with otp(z) = cof(cof()\)). Hence

cof(A) < otp(z) = cof(cof(N)).

The converse inequality follows from c).
f) (L) Let x be cofinal in v with otp(x) =cof(+y). Then {8;|i €z} is cofinal in R, with

otp({XN;|i € x }) = otp(x) = cof(7).
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Hence cof(X.,) < cof(7).
() Now let y be cofinal in R, with otp(y) = cof(X,). Define z = {i < v|3J € yN; < < N;41}.
Then z is cofinal in «y with card(z) < card(y) = cof(X). Hence cof(~y) < cof(R,). O

Theorem 116. FEvery successor cardinal Ny 41 is regular.

Proof. Assume that N, is singular. Let x have minimal cardinality such that x is cofinal in
No+1 - Then card(z) < N, . Let f: N, — z be surjective. Using the axiom of choice take a
sequence (g;]0 <@ < R, 41) of surjective functions g;: R, — i . Define function h: R, X Ry — Ng4q
by

h(€,¢)=95(e)(C)-
(1) h: Ny x X, — N, 41 is surjective.
Proof . Let v € R 1. Take { <N, such that f(&) >v. gpe): Vo — f(§) is surjective. Take ¢ <
R, such that gr¢)(¢) =v. Thus v="h(&, () €ran(h). ged(1)
This implies

N1 =card(Rg41) <card(Ry X Ng) =R, - Ry =N, .
Contradiction. O
So Ng, N1, No, ..., N, ... are all regular.

Question 117. (Hausdorfl) Are there regular limit cardinals >¥q ?

Definition 118. For (k;|i <0) a sequence of finite or infinite cardinals define the sum

Z nicard<U K X {z})

<8 <9
and the product

H K= Card( X i<5m-)
i<d
where

><l<5141:{f|f(5—>V/\VZ<(Sf(Z)€Al}

Theorem 119. (Konig) If (ki < d) and (N|i < J) are sequences of cardinals such that Vi <
0Ki < \; then

LY

i<$ i<s

Proof. Assume for a contradiction that ZK(; Ki = Hi<6 X; and that G: Ui<6 ki X {i} < X
i<\ were a surjection. For i < 4§

card({G(v, 1) (1) |v < ki }) < ki < Ag
and one can choose v; € \; \ {G(v,4)(i)|v < k;}. Define f € X;s)\; by
f@)=uv;.
Since G is surjective, take (v, i) € dom(G) such that G(vg,i0) = f. Then
G(vo,i0)(i0) = f(io) = vie# G (v, o) (io)
for all v < K;,. Contradiction. O
Theorem 120. If k, \ are cardinals such that k> 2 and \ >N then

cof(k*) > A
Hence

cof(2%0) > Ny
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and in particular
2R0L N, .

Proof. Assume that cof(x*) < A. Then there is a function f: A — x* such that ran(f) is cofinal
in £*. Then J,_, f(i) =+ and so

:‘i)‘:CaI'd< U f(z)) <Card< U f(@) x {z}) zcard< U card(f(i)) x {z}) :Z card(f(1)).
i< i<A i<A i<A
But by Konig’s Theorem,

A=A A= (=TT #*> ) card(£(i)). O

<A <A



