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Die Mengenlehre ist das Fundament
der gesamten Mathematik

(Felix Hausdorff,
Grundzüge der Mengenlehre, 1914 )

1 Introduction

Georg Cantor characterized sets as follows:

Unter einer Menge verstehen wir jede Zusammenfassung M von bestimmten,
wohlunterschiedenen Objekten m unsrer Anschauung oder unseres Denkens
(welche die “Elemente” von M genannt werden) zu einem Ganzen.

Felix Hausdorff in Grundzüge formulated shorter:

Eine Menge ist eine Zusammenfassung von Dingen zu einem Ganzen, d.h. zu
einem neuen Ding.

Sets are ubiquitous in mathematics. According to Hausdorff

Differential- und Integralrechnung, Analysis und Geometrie arbeiten in Wirk-
lichkeit, wenn auch vielleicht in verschleiernder Ausdrucksweise, beständig mit
unendlichen Mengen.

In current mathematics, many notions are explicitly defined using sets. The following
example indicates that notions which are not set-theoretical prima facie can be construed set-
theoretically:

f is a real funktion ≡ f is a set of ordered pairs (x, f(x)) of real numbers, such
that ... ;

(x, y) is an ordered pair ≡ (x, y) is a set {x, y} ;

x is a real number ≡ x is a left half of a Dedekind cut in Q ≡ x is a subset of
Q, such that ;

r is a rational number ≡ r is an ordered pair of integers, such that ;

z is an integer ≡ z is an ordered pair of natural numbers (= non-negative
integers);

N= {0, 1, 2, };
0 is the empty set;

1 is the set {0};
2 is the set {0, 1}; etc. etc.

We shall see that all mathematical notions can be reduced to the notion of set .
Besides this foundational role, set theory is also the mathematical study of the infinite.

There are infinite sets like N,Q,R which can be subjected to the constructions and analyses of
set theory; there are various degrees of infinity which lead to a rich theory of infinitary combin-
atorics.

In this course, we shall first apply set theory to obtain the standard foundation of mathem-
atics and then turn towards “pure” set theory.
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2 The Language of Set Theory

If m is an element of M one writes m ∈ M . If all mathematical objects are reducible to sets,
both sides of these relation have to be sets. This means that set theory studies the ∈-relation
m ∈ M for arbitrary sets m and M . As it turns out, this is sufficient for the purposes of set
theory and mathematics. In set theory variables range over the class of all sets, the ∈-relation is
the only undefined structural component, every other notion will be defined from the ∈-relation.
Basically, set theoretical statement will thus be of the form

∀x ∃y x∈ y u≡ v ,

belonging to the first-order predicate language with the only given predicate ∈.
To deal with the complexities of set theory and mathematics one develops a comprehensive

and intuitive language of abbreviations and definitions which, eventually, allows to write familiar
statements like

eiπ=−1

and to view them as statements within set theory.
The language of set theory may be seen as a low-level, internal language. The language of

mathematics possesses high-level “macro” expressions which abbreviate low-level statements in
an efficient and intuitive way.

3 Russell’s Paradox

Cantor’s naive description of the notion of set suggests that for any mathematical statement
ϕ(x) in one free variable x there is a set y such that

x∈ y↔ ϕ(x) ,

i.e., y is the collection of all sets x which satisfy ϕ .
This axiom is a basic principle in Gottlob Frege’s Grundgesetze der Arithmetik, 1893 ,

Grundgesetz V, Grundgesetz der Wertverläufe.
Bertrand Russell noted in 1902 that setting ϕ(x) to be x x this becomes

x∈ y↔ x x ,

and in particular for x= y :

y ∈ y↔ y y.

Contradiction.
This contradiction is usually called Russell’s paradox, antinomy, contradiction. It was also

discoved slightly earlier by Ernst Zermelo. The paradox shows that the formation of sets as
collections of sets by arbitrary formulas is not consistent.

4 The Zermelo-Fraenkel Axioms

The difficulties around Russell’s paradox and also around the axiom of choice lead Zermelo
to the formulation of axioms for set theory in the spirit of the axiomatics of David Hilbert of
whom Zermelo was an assistant at the time.

Zermelo’s main idea was to restrict Frege’s Axiom V to formulas which correspond to
mathematically important formations of collections, but to avoid arbitrary formulas which can
lead to paradoxes like the one exhibited by Russell.

The original axiom system of Zermelo was extended and detailed by Abraham Fraenkel
(1922), Dmitry Mirimanoff (1917/20), and Thoralf Skolem.

We shall discuss the axioms one by one and simultaneously introduce the logical language
and useful conventions.
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4.1 Set Existence

The set existence axiom

∃x∀y ¬y ∈ x ,

like all axioms, is expressed in a language with quantifiers ∃ (“there exists”) and ∀ (“for all”),
which is familiar from the ε-δ-statements in analysis. The language of set theory uses variables
x, y, which may satisfy the binary relations ∈ or =: x ∈ y (“x is an element of y”) or x = y .
These elementary formulas may be connected by the propositional connectives ∧ (“and”), ∨
(“or”), → (“implies”), ↔ (“is equivalent”), and ¬ (“not”). The use of this language will be demon-
strated by the subsequent axioms.

The axiom expresses the existence of a set which has no elements, i.e., the existence of the
empty set .

4.2 Extensionality

The axiom of extensionality

∀x∀x′(∀y(y ∈ x↔ y ∈ x′)→x= x′)

expresses that a set is exactly determined by the collection of its elements. This allows to prove
that there is exactly one empty set.

Lemma 1. ∀x∀x′(∀y ¬y ∈x∧∀y ¬y ∈ x′ →x= x′).

Proof. Consider x, x′ such that ∀y ¬y ∈ x∧∀y ¬y ∈ x′. Consider y . Then ¬y ∈ x and ¬y ∈ x′.
This implies ∀y(y ∈ x↔ y ∈ x′). The axiom of extensionality implies x=x′. !

Note that this proof is a usual mathematical argument, and it is also a formal proof in the
sense of mathematical logic. The sentences of the proof can be derived from earlier ones by
purely formal deduction rules. The rules of natural deduction correspond to common sense fig-
ures of argumentation which treat hypothetical objects as if they would concretely exist.

4.3 Pairing

The pairing axiom

∀x∀y∃z∀u(u∈ z↔u= x∨u= y)

postulates that for all sets x, y there is set z which may be denoted as

z= {x, y}.

This formula, including the new notation, is equivalent to the formula

∀u(u∈ z↔u= x∨u= y).

In the sequel we shall extend the small language of set theory by hundreds of symbols and con-
ventions, in order to get to the ordinary language of mathematics with notations like

N,R, 385
√

, π,

(

1 0
0 1

)

,

∫

a

b

f ′(x)dx=f(b)− f(a), etc.

Such notations are chosen for intuitive, pragmatic, or historical reasons.
Using the notation for unordered pairs, the pairing axiom may be written as

∀x∀y∃z z= {x, y}.

By the axiom of extensionality, the term-like notation has the expected behaviour. E.g.:

Lemma 2. ∀x∀y∀z∀z ′ (z= {x, y}∧ z ′= {x, y}→z= z ′).

Proof. Exercise. !
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Note that we implicitly use several notational conventions: variables have to be chosen in a
reasonable way, for example the symbols z and z ′ in the lemma have to be taken different and
different from x and y. We also assume some operator priorities to reduce the number of
brackets: we let ∧ bind stronger than ∨, and ∨ stronger than → and ↔.

We used the “term” {x, y} to occur within set theoretical formulas. This abbreviation is than
to be expanded in a natural way, so that officially all mathematical formulas are formulas in
the “pure” ∈-language. We want to see the notation {x, y} as an example of a class term. We
define uniform notations and convention for such abbreviation terms.

4.4 Class Terms

The extended language of set theory contains class terms and notations for them. There are
axioms for class terms that fix how extended formulas can be reduced to formulas in the unex-
tended ∈-language of set theory.

Definition 3. A class term is of the form {x|ϕ} where x is a variable and ϕ ∈ L∈. The usage
of these class terms is defined recursively by the following axioms: If {x|ϕ} and {y |ψ} are class
terms then

− u ∈ {x|ϕ} ↔ ϕ
u

x
, where ϕ

u

x
is obtained from ϕ by (resonably) substituting the variable x

by the variable u ;

− u= {x|ϕ}↔∀v (v ∈u↔ ϕ
v

x
);

− {x|ϕ}= u↔∀v (ϕ v

x
↔ v ∈u);

− {x|ϕ}= {y |ψ}↔∀v (ϕ v

x
↔ ψ

v

y
);

− {x|ϕ}∈ u↔∃v(v ∈u∧ v= {x|ϕ};
− {x|ϕ}∈ {y |ψ}↔∃v(ψ v

y
∧ v= {x|ϕ}).

A term is either a variable or a class term.

Definition 4.

a) ∅ {x|x x} is the empty set;

b) V {x|x= x} is the universe (of all sets);

c) {x, y} {u|u= x∨ u= y} is the unordered pair of x and y .

Lemma 5.

a) ∅∈V.

b) ∀x, y {x, y}∈ V.

Proof. a) By the axioms for the reduction of abstraction terms, ∅ ∈ V is equivalent to the fol-
lowing formulas

∃v(v= v ∧ v= ∅)
∃v v= ∅
∃v ∀w (w ∈ v↔w w)

∃v∀ww v

which is equivalent to the axiom of set existence. So ∅ ∈ V is another way to write the axiom of
set existence.
b) ∀x, y {x, y}∈V abbreviates the formula

∀x, y∃z(z= z ∧ z= {x, y}).

This can be expanded equivalently to the pairing axiom

∀x, y∃z∀u(u∈ z↔u= x∨u= y). !
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So a) and b) are concise equivalent formulations of the axiom Ex and Pair.
We also introduce bounded quantifiers to simplify notation.

Definition 6. Let A be a term. Then ∀x∈Aϕ↔∀x(x∈A→ ϕ) and ∃x∈Aϕ↔∃x (x∈A∧ ϕ).

Definition 7. Let x, y, z, be variables and X,Y , Z , be class terms. Define

a) X ⊆ Y ↔∀x∈X x∈Y, X is a subclass of Y ;

b) X ∪Y {x|x∈X ∨ x∈Y } is the union of X and Y ;

c) X ∩Y {x|x∈X ∧ x∈Y } is the intersection of X and Y ;

d) X \Y {x|x∈X ∧x Y } is the difference of X and Y ;

e)
⋃

X {x|∃y ∈X x∈ y} is the union of X ;

f )
⋂

X {x|∀y ∈X x∈ y} is the intersection of X ;

g) P(X): ={x|x⊆X} is the power class of X;

h) {X}: ={x|x=X} is the singleton set of X;

i) {X,Y }: ={x|x=X ∨ x= Y } is the (unordered) pair of X and Y;

j ) {X0, , Xn−1}: ={x|x=X0∨ ∨x=Xn−1}.

One can prove the well-known boolean properties for these operations. We only give a few
examples.

Proposition 8. X ⊆Y ∧Y ⊆X→X = Y.

Proposition 9.
⋃

{x, y}= x∪ y.

Proof. We show the equality by two inclusions:
(⊆). Let u∈

⋃

{x, y}. ∃v(v ∈{x, y}∧u∈ v). Let v ∈{x, y}∧u∈ v. (v=x∨ v= y)∧ u∈ v.
Case 1 . v= x. Then u∈ x. u∈x∨u∈ y. Hence u∈ x∪ y.
Case 2 . v= y. Then u∈ y. u∈ x∨ u∈ y. Hence u∈x∪ y.

Conversely let u∈x∪ y. u∈x∨u∈ y.
Case 1 . u∈x. Then x∈{x, y}∧u∈ x. ∃v(v ∈{x, y}∧ u∈ v) and u∈

⋃

{x, y}.
Case 2 . u∈ y. Then x∈ {x, y}∧u∈x. ∃v(v ∈{x, y}∧ u∈ v) and u∈

⋃

{x, y}. !

Exercise 1. Show: a)
⋃

V =V . b)
⋂

V = ∅ . c)
⋃

∅= ∅ . d)
⋂

∅=V .

4.5 Ordered Pairs

Combining objects into ordered pairs (x, y) is taken as an undefined fundamental operation of
mathematics. We cannot use the unordered pair {x, y} for this purpose, since it does not
respect the order of entries:

{x, y}= {y, x}.

We have to introduce some asymmetry between x and y to make them distinguishable. Fol-
lowing Kuratowski and Wiener we define:

Definition 10. (x, y): ={{x}, {x, y}} is the ordered pair of x and y.

The definition involves substituting class terms within class terms. We shall see in the fol-
lowing how these class terms are eliminated to yield pure ∈-formulas.

Lemma 11. ∀x∀y∃z z=(x, y).

Proof. Consider sets x and y. By the pairing axiom choose u and v such that u= {x} and v =
{x, y}. Again by pairing choose z such that z= {u, v}. We argue that z=(x, y). Note that

(x, y)= {{x}, {x, y}}= {w |w= {x}∨w= {x, y}}.
Then z=(x, y) is equivalent to

∀w(w ∈ z↔w= {x}∨w= {x, y}),
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∀w(w=u∨w= v↔ (w= {x}∨w= {x, y}),
and this is true by the choice of u and v. !

The Kuratowski-pair satisfies the fundamental property of ordered pairs:

Lemma 12. (x, y)= (x′, y ′)→x=x′∧ y= y ′.

Proof. Assume (x, y)= (x′, y ′), i.e.,
(1) {{x}, {x, y}}= {{x′}, {x′, y ′}}.
Case 1 . x= y. Then

{x}= {x, y},
{{x}, {x, y}}= {{x}, {x}}= {{x}},
{{x}}= {{x′}, {x′, y ′}},
{x}= {x′} and x= x′,
{x}= {x′, y ′} and y ′= x.

Hence x= x′ and y=x= y ′ as required.
Case 2 . x y. (1) implies

{x′}= {x} or {x′}= {x, y}.
The right-hand side would imply x=x′= y, contradicting the case assumption. Hence

{x′}= {x} and x′= x.
Then (1) implies

{x, y}= {x′, y ′}= {x, y ′} and y= y ′. !

Exercise 2.

a) Show that 〈x, y〉 {{x, ∅}, {y, {∅}}} also satisfies the fundamental property of ordered pairs (F.
Hausdorff).

b) Can {x, {y, ∅}} be used as an ordered pair?

Exercise 3. Give a set-theoretical formalization of an ordered-triple operation.

4.6 Relations and Functions

Ordered pairs allow to introduce relations and functions in the usual way. One has to distin-
guish between sets which are relations and functions, and class terms which are relations and
functions.

Definition 13. A term R is a relation if all elements of R are ordered pairs, i.e., R ⊆ V × V.
Also write Rxy or xRy instead of (x, y) ∈ R . If A is a term and R ⊆ A × A then R is a rela-
tion on A.

Note that this definition is really an infinite schema of definitions, with instances for all
terms R and A . The subsequent extensions of our language are also infinite definition schemas.
We extend the term language by parametrized collections of terms.

Definition 14. Let t(x) be a term in the variables x and let ϕ be an ∈-formula. Then
{t(x )|ϕ} stands for {z |∃x (ϕ∧ z= t(x )}.

Definition 15. Let R,S,A be terms.

a) The domain of R is dom(R) {x |∃yxRy}.
b) The range of R is ran(R) {y |∃xxRy}.
c) The field of R is field(R) dom(R)∪ ran(R).

d) The restriction of R to A is R "A {(x, y)|xRy∧x∈A}.
e) The image of A under R is R[A] R′′A {y |∃x∈AxRy}.
f ) The preimage of A under R is R−1[A] {x|∃y ∈AxRy}.
g) The composition of S and R (“S after R”) is S ◦R {(x, z)|∃y (xRy∧ySz)}.
h) The inverse of R is R−1: ={(y, x)|xRy}.
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Relations can play different roles in mathematics.

Definition 16. Let R be a relation.

a) R is reflexive iff ∀x∈field(R) xRx .

b) R is irreflexive iff ∀x∈field(R) ¬xRx .

c) R is symmetric iff ∀x, y (xRy→yRx).

d) R is antisymmetric iff ∀x, y (xRy ∧ yRx→x= y).

e) R is transitive iff ∀x, y, z (xRy∧yRz→xRz).

f ) R is connex iff ∀x, y ∈ field(R) (xRy ∨ yRx∨x= y).

g) R is an equivalence relation iff R is reflexive, symmetric and transitive.

h) Let R be an equivalence relation. Then [x]R : ={y |yRx} is the equivalence class of x
modulo R .

It is possible that an equivalence class [x]R is not a set: [x]R V . Then the formation of the col-
lection of all equivalence classes modulo R may lead to contradictions. Another important
family of relations is given by order relations .

Definition 17. Let R be a relation.

a) R is a partial order iff R is reflexive, transitive and antisymmetric.

b) R is a linear order iff R is a connex partial order.

c) Let A be a term. Then R is a partial order on A iff R is a partial order and field(R) =
A .

d) R is a strict partial order iff R is transitive and irreflexive.

e) R is a strict linear order iff R is a connex strict partial order.

Partial orders are often denoted by symbols like #, and strict partial orders by <. A common
notation in the context of (strict) partial orders R is to write

∃pRqϕ and ∀pRqϕ for ∃p(pRq ∧ ϕ) and ∀p(pRq→ϕ) resp.

One of the most important notions in mathematics is that of a function.

Definition 18. Let F be a term. Then F is a function if it is a relation which satisfies

∀x, y, y ′ (xFy∧xFy ′→y= y ′).

If F is a function then

F (x): ={u|∀y (xFy→u∈ y)}
is the value of F at x.

If F is a function and xFy then y = F (x). If there is no y such that xFy then F (x) = V ;
the “value” V at x may be read as “undefined”. A function can also be considered as the
(indexed) sequence of its values, and we also write

(F (x))x∈A or (Fx)x∈A instead of F :A→V .

We define further notions associated with functions.

Definition 19. Let F ,A,B be terms.

a) F is a function from A to B, or F : A → B, iff F is a function, dom(F ) = A, and
range(F )⊆B .

b) F is a partial function from A to B, or F : A⇀ B, iff F is a function, dom(F ) ⊆ A, and
range(F )⊆B .

c) F is a surjective function from A to B iff F :A→B and range(F )=B.

The Zermelo-Fraenkel Axioms 7



d) F is an injective function from A to B iff F :A→B and

∀x, x′∈A (x x′→F (x) F (x′))

e) F is a bijective function from A to B, or F : A ↔ B, iff F : A → B is surjective and
injective.

f ) AB: ={f |f :A→B} is the class of all functions from A to B.

One can check that these functional notions are consistent and agree with common usage:

Exercise 4. Define a relation ∼ on V by

x∼ y ∃f f : x↔ y.

One say that x and y are equinumerous or equipollent. Show that ∼ is an equivalence relation on V . What is
the equivalence class of ∅ ? What is the equivalence class of {∅} ?

Exercise 5. Consider functions F :A→B and F ′:A→B. Show that

F =F ′ iff ∀a∈A F (a) =F ′(a).

4.7 Unions

The union axiom reads

∀x∃y∀z(z ∈ y↔∃w(w ∈x∧ z ∈w)).

Lemma 20. The union axiom is equivalent to ∀x
⋃

x∈ V.

Proof. Observe the following equivalences:
∀x

⋃

x∈ V
↔∀x∃y (y= y ∧ y=

⋃

x)
↔∀x∃y∀z(z ∈ y↔ z ∈

⋃

x)
↔∀x∃y∀z(z ∈ y↔∃w ∈ x z ∈w)

which is equivalent to the union axiom. !

Note that the union of x is usually viewed as the union of all elements of x:
⋃

x=
⋃

w∈x

w ,

where we define
⋃

a∈A

t(a)= {z |∃a∈Az ∈ t(a)}.

Graphically
⋃

x can be illustrated like this:
Combining the axioms of pairing and unions we obtain:

Lemma 21. ∀x0, , xn−1 {x0, , xn−1}∈V .

Note that this is a schema of lemmas, one for each ordinary natural number n . We prove
the schema by complete induction on n .

Proof. For n= 0, 1, 2 the lemma states that ∅ ∈ V , ∀x {x} ∈ V , and ∀x, y {x, y} ∈ V resp., and
these are true by previous axioms and lemmas. For the induction step assume that the lemma
holds for n , n$ 1. Consider sets x0, , xn . Then

{x0, , xn}= {x0, , xn−1}∪ {xn}.

The right-hand side exists in V by the inductive hypothesis and the union axiom. !

4.8 Separation

It is common to form a subset of a given set consisting of all elements which satisfy some condi-
tion. This is codified by the separation schema. For every ∈-formula ϕ(z, x1, , xn) postulate:

∀x1 ∀xn∀x∃y∀z (z ∈ y↔z ∈ x∧ ϕ(z, x1, , xn)).
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Using class terms the schema can be reformulated as: for every term A postulate

∀xA∩x∈ V .

The crucial point is the restriction to the given set x . The unrestricted, Fregean version A ∈ V
for every term A leads to the Russell antinomy. We turn the antinomy into a consequence of
the separation schema:

Theorem 22. V V.

Proof. Assume that V ∈ V . Then ∃xx= V . Take x such that x= V . Let R be the Russellian
class:

R: ={x|x x}.

By separation, y R∩x∈ V . Note that R∩x=R∩ V =R . Then

y ∈ y↔y ∈R↔y y ,

contradiction. !

This simple but crucial theorem leads to the distinction:

Definition 23. Let A be a term. Then A is a proper class iff A V.

Set theory deals with sets and proper classes. Sets are the favoured objects of set theory, the
axiom mainly state favorable properties of sets and set existence. Sometimes one says that a
term A exists if A ∈ V . The intention of set theory is to construe important mathematical
classes like the collection of natural and real numbers as sets so that they can be treated set-the-
oretically. Zermelo observed that this is possible by requiring some set existences together
with the restricted separation principle.

Exercise 6. Show that the class {{x}|x∈V } of singletons is a proper class.

4.9 Power Sets

The power set axiom in class term notation is

∀xP(x)∈V .

The power set axiom yields the existence of function spaces.

Definition 24. Let A,B be terms. Then

A×B: ={(a, b)|a∈A∧ b∈B}

is the cartesian product of A and B.

Exercise 7.

By the specific implementation of Kuratowski ordered pairs:

Lemma 25. A×B ⊆P(P(A∪B)).

Proof. Let (a, b)∈A×B. Then

a, b ∈ A∪B

{a}, {a, b} ⊆ A∪B

{a}, {a, b} ∈ P(A∪B)

(a, b) = {{a}, {a, b}} ⊆ P(A∪B)

(a, b) = {{a}, {a, b}} ∈ P(P(A∪B))

!
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Theorem 26.

a) ∀x, y x× y ∈ V.

b) ∀x, y xy ∈ V.

Proof. Let x, y be sets. a) Using the axioms of pairing, union, and power sets, P(P(x∪ y))∈V .
By the previous lemma and the axiom schema of separation,

x× y=(x× y)∩P(P(x∪ y))∈V .

b) xy ⊆P(x× y) since a function f :x→ y is a subset of x× y . By the separation schema,

xy=x y∩P(x× y)∈ V . !

Note that to “find” the sets in this theorem one has to apply the power set operation repeatedly.
We shall see that the universe of all sets can be obtained by iterating the power set operation.

The power set axiom leads to higher cardinalities . The theory of cardinalities will be
developed later, but we can already prove Cantor’s theorem:

Theorem 27. Let x∈ V.

a) There is an injective map f :x→P(x).

b) There does not exist an injective map g:P(x)→x .

Proof. a) Define the map f :x→P(x) by u {u}. This is a set since

f = {(u, {u})|u∈x}⊆x×P(x)∈ V .

f is injective: let u, u′∈x, u u′. By extensionality,

f(u)= {u} {u′}= f(u′).

b) Assume there were an injective map g:P(x)→ x . Define the Cantorean set

c= {u|u∈ x∧u g−1(u)}∈P (x)

similar to the class R in Russell’s paradox.
Let u0= g(c). Then g−1(u0) = c and

u0∈ c↔u0 g−1(u0) = c.

Contradiction. !

4.10 Replacement

If every element of a set is definably replaced by another set, the result is a set again. The
schema of replacement postulates for every term F :

F is a function →∀xF [x]∈ V .

Lemma 28. The replacement schema implies the separation schema.

Proof. Let A be a term and x∈V .
Case 1 . A∩x= ∅ . Then A∩ x∈V by the axiom of set existence.
Case 2 . A∩x ∅ . Take u0∈A∩ x . Define a map F :x→x by

F (u)=

{

u , if u∈A∩x
u0 , else

Then by replacement

A∩x=F [x]∈ V

as required. !
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4.11 Infinity

All the axioms so far can be realized in a domain of finite sets, see exercise 12. The true power
of set theory is set free by postulating the existence of one infinite set and continuing to assume
the axioms. The axiom of infinity expresses that the set of “natural numbers” exists. To this
end, some “number-theoretic” notions are defined.

Definition 29.

a) 0:=∅ is the number zero.

b) For any term t, t+1:=t∪{t} is the successor of t.

These notions are reasonable in the later formalization of the natural numbers. The axiom of
infinity postulates the existence of a set which contains 0 and is closed under successors

∃x (0∈x∧∀n∈ x n+1∈ x).

Intuitively this says that there is a set which contains all natural numbers. Let us define set-the-
oretic analogues of the standard natural numbers:

Definition 30. Define

a) 1:=0+ 1;

b) 2:=1+ 1;

c) 3:=2+ 1; ...

From the context it will be clear, whether “3”, say, is meant to be the standard number “three”
or the set theoretical object

3 = 2∪{2}
= (1+ 1)∪{1+ 1}
= ({∅}∪ {{∅}})∪{{∅}∪ {{∅}}}
= {∅, {∅}, {∅}∪ {{∅}}}.

The set-theoretic axioms will ensure that this interpretation of “three” has the important
number-theoretic properties of “three”.

4.12 Foundation

The axiom schema of foundation provides structural information about the set theoretic uni-
verse V . It can be reformulated by postulating, for any term A :

A ∅→∃x∈AA∩ x= ∅ .

Viewing ∈ as some kind of order relation this means that every non-empty class has an ∈-min-
imal element x ∈ A such that the ∈-predecessors of x are not in A. Foundation excludes circles
in the ∈-relation:

Lemma 31. Let n be a natural number $1 . Then there are no x0, , xn−1 such that

x0∈x1∈ ∈ xn−1∈ x0 .

Proof. Assume not and let x0∈x1∈ ∈ xn−1∈ x0 . Let

A= {x0, , xn−1}.

A ∅ since n$ 1 . By foundation take x∈A such that A∩x= ∅ .
Case 1 . x= x0 . Then xn−1∈A∩ x= ∅ , contradiction.
Case 2 . x= xi , i > 0 . Then xi−1∈A∩ x= ∅ , contradiction. !

Exercise 8. Show that x x+1 .
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Exercise 9. Show that the successor function x x+1 is injective.

Exercise 10. Show that the term {x, {x, y}} may be taken as an ordered pair of x and y .

Theorem 32. The foundation scheme is equivalent to the following, Peano-type, induction
scheme: for every term B postulate

∀x (x⊆B→x∈B)→B=V .

This says that if a “property” B is inherited by x if all elements of x have the property B, then
every set has the property B.

Proof. (→) Assume B were a term which did not satisfy the induction principle:

∀x (x⊆B→ x∈B) and B V .

Set A=V \B ∅ . By foundation take x∈A such that A∩x= ∅ . Then
u∈x→u A→u∈B ,

i.e., x⊆B . By assumption, B is inherited by x : x∈B . But then x A , contradiction.
(←) Assume A were a term which did not satisfy the foundation scheme:

A ∅ and ∀x∈AA∩x ∅ .

Set B = V \ A . Consider x ⊆ B . Then A ∩ x = ∅ . By assumption, x A and x ∈ B . Thus
∀x (x⊆B→x∈B). The induction principle implies that B=V . Then A= ∅, contradiction. !

This proof shows, that the induction principle is basically an equivalent formulation of the
foundation principle. The ∈-relation is taken as some binary relation without reference to spe-
cific properties of this relation. This leads to:

Exercise 11. A relation R on a domain D is called wellfounded, iff for all terms A

∅ A∧A⊆D→∃x∈A A∩{y |yRx}= ∅.

Formulate and prove a principle for R-induction on D which coressponds to the assumption that R is well-
founded on D.

4.13 Set Theoretic Axiom Schemas

Note that the axiom system introduced is an infinite informal set of axioms. It seems unavoid-
able that we have to go back to some previously given set notions to be able to define the collec-
tion of set theoretical axioms - another example of the frequent circularity in foundational the-
ories.

Definition 33. The system ZF of the Zermelo-Fraenkel axioms of set theory consists of the
following axioms:

a) The set existence axiom (Ex):

∃x∀y¬y ∈x

- there is a set without elements, the empty set.

b) The axiom of extensionality (Ext):

∀x∀y(∀z(z ∈ x↔ z ∈ y)→ x= y)

- a set is determined by its elements, sets having the same elements are identical.

c) The pairing axiom (Pair):

∀x∀y∃z∀w (u∈ z↔u= x∨ u= y).

- z is the unordered pair of x and y.

d) The union axiom (Union):

∀x∃y∀z(z ∈ y↔∃w(w ∈x∧ z ∈w))
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- y is the union of all elements of x.

e) The separation schema (Sep) postulates for every ∈-formula ϕ(z, x1, , xn):

∀x1 ∀xn∀x∃y∀z (z ∈ y↔z ∈x∧ ϕ(z, x1, , xn))

- this is an infinite scheme of axioms, the set z consists of all elements of x which satisfy
ϕ.

f ) The powerset axiom (Pow):

∀x∃y∀z(z ∈ y↔∀w(w ∈ z→w ∈x))

- y consists of all subsets of x.

g) The replacement schema (Rep) postulates for every ∈-formula ϕ(x, y, x1, , xn):

∀x1 ∀xn(∀x∀y∀y ′((ϕ(x, y, x1, , xn)∧ ϕ(x, y ′, x1, , xn))→ y= y ′)→
∀u∃v∀y (y ∈ v↔∃x(x∈u∧ ϕ(x, y, x1, , xn))))

- v is the image of u under the map defined by ϕ.

h) The axiom of infinity (Inf):

∃x(∃y (y ∈x∧∀z¬z ∈ y)∧∀y(y ∈x→∃z(z ∈ x∧∀w(w ∈ z↔w ∈ y ∨w= y))))

- by the closure properties of x, x has to be infinite.

i) The foundation schema (Found) postulates for every ∈-formula ϕ(x, x1, , xn):

∀x1 ∀xn(∃xϕ(x, x1, , xn)→∃x(ϕ(x, x1, , xn)∧∀x′(x′∈x→¬ϕ(x′, x1, , xn))))

- if ϕ is satisfiable then there are ∈-minimal elements satisfying ϕ.

4.14 ZF in Class Notation

Using class terms, the ZF can be formulated concisely:

Theorem 34. The ZF axioms are equivalent to the following system; we take all free variables
of the axioms to be universally quantified:

a) Ex: ∅∈ V.

b) Ext: x⊆ y ∧ y⊆ x→x= y .

c) Pair: {x, y}∈ V.

d) Union:
⋃

x∈ V.

e) Sep: A∩x∈ V.

f ) Pow: P(x)∈ V.

g) Rep: F is a function →F [x]∈V.

h) Inf: ∃x (0∈x∧∀n∈ x n+1∈ x).

i) Found: A ∅→∃x∈AA∩x= ∅ .

This axiom system can be used as a foundation for all of mathematics. Axiomatic set theory
considers various axiom systems of set theory.

Definition 35. The axiom system ZF− consists of the ZF-axioms except the power set axiom.
The system EML (“elementary set theory”) consists of the axioms Ex, Ext, Pair, and Union.

Exercise 12. Consider the axiom system HF consisting of the axioms of EML together with the induction
principle: for every term B postulate

∀x, y (x⊆B ∧ y ∈B→ x∪{y} ∈B)→B=V .
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Show that every axiom of ZF except Inf is provable in HF, and that HF proves the negation of Inf (HF axio-
matizes the heriditarily finite sets, i.e., those sets such that the set itself and all its iterated elements are
finite).

5 Ordinal Numbers

We had defined some “natural numbers” in set theory. Recall that

0 = ∅
1 = 0+1=0∪{0} = {0}
2 = 1+1=1∪{1} = {0, 1}
3 = 2+1=2∪{2} = {0, 1, 2}

We would then like to have N = {0, 1, 2, 3, }. To obtain a set theoretic formalization of num-
bers we note some properties of the informal presentation:

1. ”Numbers” are ordered by the ∈-relation:
m<n iff m∈n.

E.g., 1∈ 3 but not 3∈ 1.

2. On each “number”, the ∈-relation is a strict linear order : 3 = {0, 1, 2} is strictly linearly
ordered by ∈.

3. ”Numbers” are “complete” with respect to smaller “numbers”

i < j <m→ i∈m.

This can be written with the ∈-relation as

i∈ j ∈m→ i∈m.

Definition 36.

a) A is transitive, Trans(A), iff ∀y ∈A∀x∈ y x∈A .

b) x is an ordinal (number), Ord(x), if Trans(x)∧∀y ∈ xTrans(y).

c) Let Ord: ={x|Ord(x)} be the class of all ordinal numbers.

We shall use small greek letter α, β, as variables for ordinals. So ∃αϕ stands for ∃α ∈ Ord ϕ,
and {α|ϕ} for {α|Ord(α)∧ ϕ}.

Exercise 13. Show that arbitrary unions and intersections of transitive sets are again transitive.

We shall see that the ordinals extend the standard natural numbers. Ordinals are particu-
larly adequate for enumerating infinite sets.

Theorem 37.

a) 0∈Ord.

b) ∀α α+1∈Ord .

Proof. a) Trans(∅) since formulas of the form ∀y ∈ ∅ are tautologously true. Similarly ∀y ∈
∅ Trans(y).
b) Assume α∈Ord.
(1) Trans(α+1).
Proof . Let u∈ v ∈α+1=α∪ {α}.
Case 1 . v ∈α. Then u∈α⊆α+1, since α is transitive.
Case 2 . v=α. Then u∈α⊆α+1. qed(1)
(2) ∀y ∈α+1Trans(y).
Proof . Let y ∈α+1=α∪{α}.
Case 1 . y ∈α. Then Trans(y) since α is an ordinal.
Case 2 . y=α. Then Trans(y) since α is an ordinal. !
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Exercise 14.

a) Let A⊆Ord be a term, A ∅ . Then
⋂

A∈Ord.

b) Let x⊆Ord be a set. Then
⋃

x∈Ord.

Theorem 38. Trans(Ord).

Proof. This follows immediately from the transitivity definition of Ord. !

Exercise 15. Show that Ord is a proper class. (Hint: if Ord∈V then Ord∈Ord.)

Theorem 39. The class Ord is strictly linearly ordered by ∈, i.e.,

a) ∀α, β, γ (α∈ β ∧ β ∈ γ→α∈ γ).

b) ∀α α α.

c) ∀α, β (α∈ β ∨α= β ∨ β ∈α).

Proof. a) Let α, β, γ ∈Ord and α∈ β ∧ β ∈ γ. Then γ is transitive, and so α∈ γ.
b) follows immediately from the non-circularity of the ∈-relation.
c) Assume that there are “incomparable” ordinals. By the foundation schema choose α0∈Ord ∈-
minimal such that ∃β¬(α0∈ β ∨α0= β ∨ β ∈α0). Again, choose β0∈Ord ∈-minimal such that ¬
(α0∈ β0∨α0= β0∨ β0∈α0). We obtain a contradiction by showing that α0= β0:

Let α∈α0 . By the ∈-minimality of α0 , α is comparable with β0 : α∈ β0∨α= β0∨ β0∈α . If
α= β0 then β0∈α0 and α0, β0 would be comparable, contradiction. If β0∈α then β0∈α0 by the
transitivity of α0 and again α0, β0 would be comparable, contradiction. Hence α∈ β0 .

For the converse let β ∈ β0 . By the ∈-minimality of β0 , β is comparable with α0 : β ∈ α0 ∨
β =α0∨α0∈ β . If β =α0 then α0∈ β0 and α0, β0 would be comparable, contradiction. If α0∈ β
then α0 ∈ β0 by the transitivity of β0 and again α0, β0 would be comparable, contradiction.
Hence β ∈α0 .

But then α0= β0 contrary to the choice of β0 . !

Definition 40. Let <: =∈∩(Ord×Ord) = {(α, β)|α ∈ β} be the natural strict linear ordering of
Ord by the ∈-relation.

Theorem 41. Let α∈Ord. Then α+1 is the immediate successor of α in the ∈-relation:

a) α<α+1;

b) if β <α+1, then β=α or β <α.

Definition 42. Let α be an ordinal. α is a successor ordinal, Succ(α), iff ∃β α= β +1 . α is a
limit ordinal, Lim(α), iff α 0 and α is not a successor ordinal. Also let

Succ: ={α|Succ(α)} and Lim {α|Lim(α)}.

The existence of limit ordinals will be discussed together with the formalization of the natural
numbers.

5.1 Induction

Ordinals satisfy an induction theorem which generalizes complete induction on the integers:

Theorem 43. Let ϕ(x, v0, , vn−1) be an ∈-formula and x0, , xn−1 ∈ V. Assume that the
property ϕ(x, x0, , xn−1) is inductive, i.e.,

∀α(∀β ∈α ϕ(β, x0, , xn−1)→ ϕ(α, x0, , xn−1)).

Then ϕ holds for all ordinals:

∀αϕ(α, x0, , xn−1).
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Proof. It suffices to show that

B= {x|x∈Ord→ ϕ(x, x0, , xn−1)}=V .

Theorem 32 implies

∀x (x⊆B→x∈B)→B=V

and it suffices to show

∀x (x⊆B→x∈B).

Consider x ⊆ B. If x Ord then x ∈B. So assume x ∈ Ord. For β ∈ x we have β ∈ B, β ∈ Ord,
and so ϕ(β, x0, , xn−1). By the inductivity of ϕ we get ϕ(x, x0, , xn−1) and again x∈B. !

Induction can be formulated in various forms:

Exercise 16. Prove the following transfinite induction principle: Let ϕ(x) = ϕ(x, v0, , vn−1) be an ∈-for-
mula and x0, , xn−1∈V . Assume

a) ϕ(0) (the initial case),

b) ∀α (ϕ(α)→ ϕ(α+1)) (the successor step),

c) ∀λ∈Lim (∀α<λϕ(α)→ϕ(λ)) (the limit step).

Then ∀αϕ(α).

5.2 Natural Numbers

We have 0, 1, ∈ Ord. We shall now define and study the set of natural numbers/integers
within set theory. Recall the axiom of infinity:

∃x (0∈ x∧∀u∈x u+1∈ x).

The set of natural numbers should be the ⊆-smallest such x.

Definition 44. Let ω =
⋂

{x|0 ∈ x ∧ ∀u ∈ x u + 1 ∈ x} be the set of natural numbers. Some-
times we write N instead of ω.

Theorem 45.

a) ω ∈V.

b) ω ⊆Ord.

c) (ω, 0,+1) satisfy the second order Peano axiom, i.e.,

∀x⊆ω (0∈ x∧∀n∈x n+1∈x→x=ω).

d) ω ∈Ord.

e) ω is a limit ordinal.

Proof. a) By the axiom of infinity take a set x0 such that

0∈x0∧∀u∈ x0 u+1∈x0 .

Then

ω=
⋂

{x|0∈ x∧∀u∈x u+1∈ x}= x0∩
⋂

{x|0∈ x∧∀u∈ x u+1∈ x}∈V

by the separation schema.
b) By a), ω ∩Ord ∈ V . Obviously 0∈ ω ∩Ord ∧ ∀u ∈ ω ∩Ord u+ 1∈ ω ∩Ord. So ω ∩Ord is one
factor of the intersection in the definition of ω and so ω ⊆ω ∩Ord . Hence ω ⊆Ord .
c) Let x ⊆ ω and 0 ∈ x ∧ ∀u ∈ x u + 1 ∈ x. Then x is one factor of the intersection in the defini-
tion of ω and so ω ⊆ x . This implies x=ω.
d) By b), every element of ω is transitive and it suffices to show that ω is transitive. Let

x= {n|n∈ω ∧∀m∈n m∈ω}⊆ω.
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We show that the hypothesis of c) holds for x. 0 ∈ x is trivial. Let u ∈ x. Then u + 1 ∈ ω. Let
m ∈ u+ 1. If m ∈ u then m ∈ ω by the assumption that u ∈ x. If m= u then m ∈ x ⊆ ω. Hence
u+1∈x and ∀u∈ x u+1∈ x. By b), x=ω. So ∀n∈ωn∈x , i.e.,

∀n∈ω∀m∈n m∈ω.

e) Of course ω 0 . Assume for a contradiction that ω is a successor ordinal, say ω = α + 1 .
Then α∈ω . Since ω is closed under the +1-operation, ω=α+1∈ω . Contradiction. !

Thus the axiom of infinity implies the existence of the set of natural numbers, which is also
the smallest limit ordinal. The axiom of infinity can now be reformulated equivalently as:

h) Inf: ω ∈V .

5.3 Recursion

Recursion, often called induction, over the natural numbers is a ubiquitous method for defining
mathematical object. We prove the following recursion theorem for ordinals.

Theorem 46. Let G: V → V. Then there is a canonical class term F, given by the subsequent
proof, such that

F :Ord→V and ∀α F (α)=G(F "α).

We then say that F is defined recursively (over the ordinals) by the recursion rule G. F is
unique in the sense that if another term F ′ satisfies

F ′:Ord→V and ∀α F ′(α)=G(F ′ "α)

then F =F ′.

Proof. We say that H : dom(H)→V is G-recursive if

dom(H)⊆Ord , dom(H) is transitive, and ∀α∈dom(H) H(α) =G(H "α).

(1) Let H, H ′ be G-recursive. Then H, H ′ are compatible, i.e., ∀α ∈ dom(H) ∩ dom(H ′) H(α) =
H ′(α).
Proof . We want to show that

∀α∈Ord (α∈dom(H)∩ dom(H ′)→H(α)=H ′(α)).

By the induction theorem it suffices to show that α ∈ dom(H) ∩ dom(H ′) →H(α) = H ′(α) is
inductive, i.e.,

∀α ∈Ord (∀y ∈ α (y ∈ dom(H) ∩ dom(H ′)→H(y) =H ′(y))→ (α ∈ dom(H) ∩ dom(H ′)→H(α) =

H ′(α))).

So let α∈Ord and ∀y ∈α (y ∈ dom(H)∩ dom(H ′)→H(y)=H ′(y)). Let α∈ dom(H)∩ dom(H ′).
Since dom(H) and dom(H ′) are transitive, α⊆dom(H) and α⊆ dom(H ′). By assumption

∀y ∈α H(y)=H ′(y).

Hence H "α=H ′ "α. Then

H(α)=G(H "α)=G(H ′ "α)=H ′(α).

qed(1)
Let

F : =
⋃

{f |f is G-recursive}.

be the union of the class of all approximations to the desired function F .
(2) F is G-recursive.
Proof . By (1), F is a function. Its domain dom(F ) is the union of transitive classes of ordinals
and hence dom(F )⊆Ord is transitive.
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Let α ∈ dom(F ). Take some G-recursive functionf such that α ∈ dom(f). Since dom(f) is
transitive, we have

α⊆ dom(f)⊆dom(F ).

Moreover

F (α)= f(α)=G(f "α) =G(F "α).

qed(2)
(3) ∀α α∈dom(F ).
Proof . By induction on the ordinals. We have to show that α ∈ dom(F ) is inductive in the vari-
able α. So let α∈Ord and ∀y ∈α y ∈dom(F ). Hence α⊆ dom(F ). Let

f =F "α∪{(α,G(F "α))}.

f is a function with dom(f)=α+1∈Ord. Let α′<α+1. If α′<α then

f(α′)=F (α′)=G(F "α′)=G(f "α′).

if α′=α then also

f(α′)= f(α) =G(F "α)=G(f "α) =G(f "α′).

Hence f is G-recursive and α∈dom(f)⊆ dom(F ). qed(3)
The extensional uniqueness of F follows from (1) !

Theorem 47. Let a0 ∈ V, Gsucc:Ord× V → V, and Glim:Ord× V → V. Then there is a canonic-
ally defined class term F :Ord→V such that

a) F (0)= a0 ;

b) ∀αF (α+1)=Gsucc(α, F (α));

c) ∀λ∈Lim F (λ)=Glim(λ, F "λ).

Again F is unique in the sense that if some F ′ also satisfies a)-c) then F =F ′.
We say that F is recursively defined by the properties a)-c).

Proof. We incorporate a0 , Gsucc , and Glim into a single recursion rule G:V →V ,

G(f) =















a0 , if f = ∅,
Gsucc(α, f(α)) , if f :α+1→ V ,
Glim(λ, f) , if f :λ→V and Lim(λ),
∅ , else.

Then the term F :Ord→V defined recursively by the recursion rule G satisfies the theorem. !

In many cases, the limit rule will just require to form the union of the previous values so
that

F (λ) =
⋃

α<λ

F (α).

Such recursions are called continuous (at limits).

5.4 Ordinal Arithmetic

We extend the recursion rules of standard integer arithmetic continuously to obtain transfinite
version of the arithmetic operations. The initial operation of ordinal arithmetic is the +1-opera-
tion defined before. Ordinal arithmetic satisfies some but not all laws of integer arithmetic.

Definition 48. Define ordinal addition +:Ord×Ord→Ord recursively by

δ+0 = δ

δ+(α+1) = (δ+α)+1

δ+λ =
⋃

α<λ

(δ+α) , for limit ordinals λ
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Definition 49. Define ordinal multiplication · :Ord×Ord→Ord recursively by

δ · 0 = 0

δ · (α+1) = (δ ·α)+ δ

δ ·λ =
⋃

α<λ

(δ ·α) , for limit ordinals λ

Definition 50. Define ordinal exponentiation __ :Ord×Ord→Ord recursively by

δ0 = 1

δα+1 = δα · δ
δλ =

⋃

α<λ

δα , for limit ordinals λ

Exercise 17. Explore which of the standard ring axioms hold for the ordinals with addition and multiplica-
tion. Give proofs and counterexamples.

Exercise 18. Show that for any ordinal α , α + ω is a limit ordinal. Use this to show that the class Lim of
all limit ordinals is a proper class.

6 Number Systems

We are now able to give set-theoretic formalizations of the standard number systems with their
arithmetic operations.

6.1 Natural Numbers

Definition 51. The structure

N: =(ω,+"(ω×ω), ·"(ω ×ω), <"(ω×ω), 0, 1)

is called the structure of natural numbers, or arithmetic. We sometimes denote this structure
by

N: =(ω,+, ·, <, 0, 1).

N is an adequate formalization of arithmetic within set theory since N satisfies all standard
arithmetical axioms.

Exercise 19. Prove:

a) + [ω×ω] {m+n|m∈ω ∧n∈ω}⊆ω .

b) · [ω×ω] {m ·n|m∈ω ∧n∈ω}⊆ω .

c) Addition and multiplication are commutative on ω .

d) Addition and multiplication satisfy the usual monotonicity laws with respect to <.

Definition 52. We define the structure

Z (Z,+Z, ·Z, <Z, 0Z, 1Z)

of integers as follows:

a) Define an equivalence relation ≈ on N×N by

(a, b)≈ (a′, b′) iff a+ b′= a′+ b.

b) Let a− b: =[(a, b)]≈ be the equivalence class of (a, b) in ≈. Note that every a− b is a set.

c) Let Z: ={a− b|a∈N∧ b∈N} be the set of integers.

d) Define the integer addition +Z:Z×Z→Z by

(a− b) +Z (a′− b′) (a+ a′)− (b+ b′).
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e) Define the integer multiplication ·Z:Z×Z→Z by

(a− b) ·Z (a′− b′) (a · a′+ b · b′)− (a · b′+ a′ · b).

f ) Define the strict linear order <Z on Z by

(a− b)<Z (a′− b′) iff a+ b′<a′+ b.

g) Let 0Z: =0− 0 and 1Z: =1− 0.

Exercise 20. Check that the above definitions are sound, i.e., that they do not depend on the choice of rep-
resentatives of equivalence classes.

Exercise 21. Check that Z satisfies (a sufficient number) of the standard axioms for rings.

The structure Z extends the structure N in a natural and familiar way: define an injective
map e:N→Z by

n n− 0.

The embedding e is a homomorphism:

a) e(0)= 0− 0=0Z and e(1)= 1− 0= 1Z;

b) e(m+n)= (m+n)− 0= (m+n)− (0+0)= (m− 0)+Z (n− 0)= e(m)+Z e(n);

c) e(m ·n) = (m ·n)− 0= (m ·n+0 · 0)− (m · 0+n · 0)= (m− 0) ·Z (n− 0)= e(m) ·Z e(n);

d) m<n↔m+0<n+0↔ (m− 0)<Z (n− 0)↔e(m)<Z e(n).

By this injective homomorphism, one may consider N as a substructure of Z : N⊆Z .

6.2 Rational Numbers

Definition 53. We define the structure

Q0
+ (Q0

+,+Q, ·Q, <Q, 0Q, 1Q)

of non-negative rational numbers as follows:

a) Define an equivalence relation % on N× (N \ {0}) by

(a, b)% (a′, b′) iff a · b′= a′ · b.

b) Let
a

b
: =[(a, b)]% be the equivalence class of (a, b) in 3. Note that

a

b
is a set.

c) Let Q0
+: ={a

b
|a∈N∧ b∈ (N \ {0})} be the set of non-negative rationals.

d) Define the rational addition +Q:Q0
+×Q0

+→Q0
+ by

a

b
+Q a′

b′
a · b′+ a′ · b

b · b′ .

e) Define the rational multiplication ·Q:Q0
+×Q0

+→Q0
+ by

a

b
·Q a′

b′
a · a′

b · b′ .

f ) Define the strict linear order <Q on Q0
+ by

a

b
<Q a′

b′
iff a · b′<a′ · b.

g) Let 0Q: =0

1
and 1Q: =1

1
.

Again one can check the soundness of the definitions and the well-known laws of standard non-
negative rational numbers. Also one may assume N to be embedded into Q0

+ as a substructure.
The transfer from non-negative to all rationals, including negative rationals can be performed in
analogy to the transfer from N to Z .
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Definition 54. We define the structure

Q (Q,+Q, ·Q, <Q, 0Q, 1Q)

of rational numbers as follows:

a) Define an equivalence relation ≈ on Q0
+×Q0

+ by

(p, q)≈ (p′, q ′) iff p+ q ′= p′+ q .

b) Let p− q: =[(p, q)]≈ be the equivalence class of (p, q) in ≈.

c) Let Q: ={p− q |p∈Q0
+∧ p∈Q0

+} be the set of rationals.

Exercise 22. Continue the definition of the structure Q and prove the relevant properties.

6.3 Real Numbers

Definition 55. r⊆Q0
+ is a positive real number if

a) ∀p∈ r∀q ∈Q0
+(q <Q p→q ∈ r), i.e., r is an initial segment of (Q0

+, <Q);

b) ∀p∈ r∃q ∈ r p<Q q , i.e., r is right-open in (Q0
+, <Q);

c) 0∈ r Q0
+, i.e., r is nonempty and bounded in (Q0

+, <Q).

Definition 56. We define the structure

R+ (R+,+R, ·R, <R, 1R)

of positive real numbers as follows:

a) Let R+ be the set of positive reals.

b) Define the real addition +R:R+×R+→R+ by

r+R r ′= {p+Q p′|p∈ r∧ p′∈ r ′}.

c) Define the real multiplication ·R:R+×R+→R+ by

r ·R r ′= {p ·Q p′|p∈ r∧ p′∈ r ′}.

d) Define the strict linear order <R on R+ by

r <R r ′ iff r ⊆ r ′∧ r r ′.

e) Let 1R: ={p∈Q0
+|q <Q 1}.

We justify some details of the definition.

Lemma 57.

a) R+∈ V.

b) If r, r ′∈R+ then r+R r ′, r ·R r ′∈R+.

c) <R is a strict linear order on R+.

Proof. a) If r ∈ R+ then r ⊆ Q0
+ and r ∈ P(Q0

+). Thus R+ ⊆ P(Q0
+), and R+ is a set by the

power set axiom and separation.
b) Let r, r ′∈R+. We show that

r ·R r ′= {p ·Q p′|p∈ r∧ p′∈ r ′}∈R+.

Obviously r ·R r ′⊆Q0
+ is a non-empty bounded initial segment of (Q0

+, <Q).

Consider p∈ r ·R r ′, q ∈Q0
+, q <Q p . Let p= a

b
·Q a′

b′
where a

b
∈ r and a′

b′
∈ r ′. Let q= c

d
. Then

c

d
= c · b′

d · a′
·Q a′

b′
, where

c · b′
d · a′

= q ·Q b′

a′
<Q p ·Q b′

a′
=

a

b
·Q a′

b′
·Q b′

a′
=

a

b
∈ r .
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Hence
c · b′

d · a′
∈ r and

c

d
=

c · b′
d · a′

·Q a′

b′
∈ r ·R r ′.

Similarly one can show that r ·R r ′ is open on the right-hand side.
c) The transitivity of <R follows from the transitivity of the relation !. To show that <R is

connex, consider r, r ′ ∈ R+, r r ′. Then r and r ′ are different subsets of Q0
+. Without loss of

generality we may assume that there is some p ∈ r ′ \ r . We show that then r <R r ′, i.e., r ! r ′.

Consider q ∈ r . Since p r we have p≮Q q and q#Q p . Since r ′ is an initial segment of Q0
+, q ∈

r ′. !

Exercise 23. Show that (R+, ·R, 1R) is a multiplicative group.

We can now construct the complete real line R from R+ just like we constructed Z from N .
Details are left to the reader. We can also proceed to define the structure C of complex numbers
from R .

Exercise 24. Formalize the structure C of complex numbers such that R⊆C .

6.4 Discussion

The constructions carried out in the previous subsections contained many arbitrary choices. One
could, e.g., define rational numbers as reduced fractions instead of equivalence classes of frac-
tions, ensure that the canonical embeddings of number systems are inclusions, etc. If such
choices have been made in reasonable ways we obtain the following theorem, which contains
everything one wants to know about the number systems. So the statements of the following
theorem can be seen as first- and second-order axioms for these systems.

Theorem 58. There are structures N,Z,Q,R, and C with the following properties:

a) the domains of these structures which are also denoted by N, Z, Q, R, and C, resp., sat-
isfy

ω=N⊆Z⊆Q⊆R⊆C ;

b) there are functions +: C ×C → C and · : C × C→ C on C which are usually written as
binary infix operations;

c) (C,+, ·, 0, 1) is a field; for a, b ∈C write a− b for the unique element z such that a= b+
z ; for a, b∈C with b 0 write a

b
for the unique element z such that a= b·z ;

d) there is a constant i, the imaginary unit, such that i·i+1=0 and

C= {x+ i·y |x, y ∈R};

e) there is a strict linear order < on R such that (R, <, +"R2, · " R2, 0, 1) is an ordered
field.

f ) (R, <) is complete, i.e., bounded subsets of R possess suprema:

∀X ⊆R (X ∅∧∃b∈R∀x∈Xx<b ∃b∈R (∀x∈Xx<b∧¬∃b′<b∀x∈Xx<b′))

g) Q is dense in (R, <):

∀r, s∈R (r < s ∃a, b, c∈Q a<r < b< s<c);

h) (Q,+"Q2, · "Q2, 0, 1) is a field; moreover

Q=
{

a

b
|a∈Z, b∈Z \ {0}

}

;

i) (Z,+"Z2, · "Z2, 0, 1) is a ring with a unit; moreover

Z= {a− b |a, b∈N};

j ) +"N2 agrees with ordinal addition on ω ; · "N2 agrees with ordinal multiplication on ω ;
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k) (N,+1, 0) satisfies the second-order Peano axioms, i.e., the successor function n n+ 1
is injective, 0 is not in the image of the successor function, and

∀X ⊆N (0∈X ∧∀n∈Xn+1∈X X =N).

This theorem is all we require from the number systems. The details of the previous construc-
tion will not be used again. So we have the standard complex plane, possibly with the identifica-
tion of N and ω.

C

0 1

i

N
Q⊆R

Z

z= x+ iy

x

y

Remark 59. In set theory the set R of reals is often identified with the sets ωω or ω2 , basically
because all these sets have the same cardinality. We shall come back to this in the context of
cardinality theory.

7 Sequences

The notion of a sequence is crucial in many contexts.

Definition 60.

a) A set w is an α-sequence iff w:α→ V; then α is called the length of the α-sequence w and
is denoted by |α|. w is a sequence iff it is an α-sequence for some α . A sequence w is
called finite iff |w |<ω .

b) A finite sequence w: n→ V may be denoted by its enumeration w0, , wn−1 where we write
wi instead of w(i). One also writes w0 wn−1 instead of w0, , wn−1 , in particular if w
is considered to be a word formed out of the symbols w0, , wn−1 .

c) An ω-sequence w:ω→V may be denoted by w0, w1, where w0, w1, suggests a definition
of w .

d) Let w: α→ V and w ′: α′ → V be sequences. Then the concatenation wˆw ′: α + α′ → V is
defined by

(wˆw ′) "α=w "α and ∀i <α′ wˆw ′(α+ i)=w ′(i).

e) Let w:α→V and x∈ V. Then the adjunction wx of w by x is defined as

wx=wˆ{(0, x)}.
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Sequences and the concatenation operation satisfy the algebraic laws of a monoid with cancella-
tion rules.

Proposition 61. Let w,w ′, w ′′ be sequences. Then

a) (wˆw ′)ˆw ′′=wˆ(w ′ ˆw ′′).

b) ∅ˆw=wˆ∅=w .

c) wˆw ′=wˆw ′′→w ′=w ′′.

There are many other operations on sequences. One can permute sequences, substitute elements
of a sequence, etc.

7.1 (ω-)Sequences of Reals

ω-sequences are particularly prominent in analysis. One may now define properties like

lim
i→∞

wi= z iff ∀ε∈R+∃m<ω∀i <ω (i$m→ (z − ε<wi∧wi<z+ ε))

or

∀x:ω→R ( lim
i→∞

xi= a→ lim
i→∞

f(xi)= f(a)).

If x0, x1, is given then the partial sums
∑

i=0

n

xi

are defined recursively as
∑

i=0

0

xi=0 and
∑

i=0

n+1

xi=(
∑

i=0

n

xi)+ xn .

The map ϕ: ω2→R defined by

ϕ((xi)i<ω) =
∑

i=0

∞

xi

2i+1 = lim
n→∞

∑

i=0

n
xi

2i+1 .

maps the function space ω2 surjectively onto the real interval

[0, 1]= {r ∈R |0# r# 1}.

Such maps are the reason that one often identifies ω2 with R in set theory.

7.2 Symbols and Words

Languages are mathematical objects of growing importance. Mathematical logic takes terms and
formulas as mathematical material. Terms and formulas are finite sequences of symbols from
some alphabet. We represent the standard symbols =, ∈, etc. by some set-theoretical terms =̇,
∈̇, etc. Note that details of such a formalization are highly arbitrary. One really only has to fix
certain sets to denote certain symbols.

Definition 62. Formalize the basic set-theoretical symbols by

a) =̇=0, ∈̇=1, ∧̇=2, ∨̇=3, →̇=4, ↔̇=5, ¬̇=6, (̇ =7, )̇ = 8, ∃̇=9, ∀̇=10.

b) Variables v̇n=(1, n) for n<ω.

c) Let L∈= {=̇, ∈̇, ∧̇, ∨̇, →̇, ↔̇, ¬̇, (̇, )̇, ∃̇, ∀̇} ∪ {(1, n)|n<ω} be the alphabet of set theory.

d) A word over L∈ is a finite sequence with values in L∈ .

e) Let L∈
∗ = {w |∃n<ω w:n→L∈} be the set of all words over L∈ .

f ) If ϕ is a standard set-theoretical formula, we let ϕ̇ ∈ L∈
∗ denote the formalization of ϕ.

E.g., Ex˙ = ∃̇v̇0∀̇v̇1¬̇v̇1∈̇v̇0 is the formalization of the set existence axiom. If the intention
is clear, one often omits the formalization dots and simply writes Ex˙ = ∃v0∀v1¬v1∈ v0 .

24 Section 7



This formalization can be developed much further, so that the notions and theorems of first-
order logic are available in the theory ZF. By carrying out the definition of the axiom system

ZF within set theory, one obtains a term ZḞ which represents ZF within ZF. This (quasi) self-
referentiality is the basis for limiting results like the Gödel incompleteness theorems.

8 The von Neumann Hierarchy

We use ordinal recursion to obtain more information on the universe of all sets.

Definition 63. Define the von Neumann Hierarchy (Vα)α∈Ord by recursion:

a) V0= ∅ ;
b) Vα+1=P(Vα) ;

c) Vλ=
⋃

α<λ
Vα for limit ordinals λ .

We show that the von Neumann hierarchy is indeed a (fast-growing) hierarchy

Lemma 64. Let β <α∈Ord. Then

a) Vβ ∈ Vα

b) Vβ ⊆Vα

c) Vα is transitive

Proof. We conduct the proof by a simultaneous induction on α .
α=0: ∅ is transitive, thus a)-c) hold at 0.
For the successor case assume that a)-c) hold at α . Let β <α+1. By the inductive assumption,
Vβ ⊆ Vα and Vβ ∈ P(Vα) = Vα+1 . Thus a) holds at α + 1. Consider x ∈ Vα . By the inductive
assumption, x ⊆ Vα and x ∈ Vα+1 . Thus Vα ⊆ Vα+1 . Then b) at α + 1 follows by the inductive
assumption. Now consider x∈Vα+1=P(Vα). Then x⊆Vα⊆Vα+1 and Vα+1 is transitive.
For the limit case assume that α is a limit ordinal and that a)-c) hold at all γ < α . Let β < α .
Then Vβ ∈ Vβ+1 ⊆

⋃

γ<α
Vγ = Vα hence a) holds at α . b) is trivial for limit α . Vα is transitive

as a union of transitive sets. !

The Vα are nicely related to the ordinal α .

Lemma 65. For every α , Vα∩Ord=α .

Proof. Induction on α . V0∩Ord= ∅∩Ord= ∅=0 .
For the successor case assume that Vα∩Ord= α . Vα+1 ∩Ord is transitive, and every element of
Vα+1 ∩ Ord is transitive. Hence Vα+1 ∩ Ord is an ordinal, say δ = Vα+1 ∩ Ord . α = Vα ∩ Ord
implies that α ∈ Vα+1∩Ord= δ and α+ 1# δ . Assume for a contradiction that α+ 1< δ . Then
α+1∈Vα+1 and α+1⊆Vα∩Ord=α , contradiction. Thus α+1= δ=Vα+1∩Ord .
For the limit case assume that α is a limit ordinal and that Vβ ∩ Ord = β holds for all β < α .
Then

Vα∩Ord=(
⋃

β<α

Vβ)∩Ord=
⋃

β<α

(Vβ ∩Ord)=
⋃

β<α

β=α.

!

The foundation schema implies that the Vα-hierarchy exhausts the universe V .

Theorem 66.

a) ∀x⊆
⋃

α∈Ord Vα ∃β x⊆Vβ .

b) V =
⋃

α∈Ord Vα .

Proof. a) Let x⊆
⋃

α∈Ord . Define a function f :x→Ord by

f(u)=min {γ |u∈Vγ}.
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By the axioms of replacement and union, β =
⋃

{f(u) + 1|u ∈ x} ∈ V and β ∈ Ord. Let u ∈ x .
Then f(u)< f(u)+ 1# β and u∈ Vf(u)⊆Vβ . Thus x⊆Vβ .
b) Let B=

⋃

α∈Ord Vα . By the schema of ∈-induction it suffices to show that

∀x (x⊆B→x∈B).

So let x ⊆ B =
⋃

α∈Ord Vα . By a) take β such that x ⊆ Vβ . Then x ∈ Vβ+1 ⊆
⋃

α∈Ord Vα =
B . !

The Vα-hierarchy ranks the elements of V into levels.

Definition 67. Define the rank (function) rk:V →Ord by

x∈Vrk(x)+1 \Vrk(x) .

The rank function satisfies a recursive law.

Lemma 68. ∀x rk(x) =
⋃

y∈x
rk(y)+ 1 .

Proof. Let us prove the statement

∀x∈Vα rk(x)=
⋃

y∈x

rk(y)+ 1

by induction on α . The case α = 0 is trivial. The limit case is obvious since Vλ =
⋃

α<λ
Vα for

limit λ .
For the successor case assume that the statement holds for α . Consider x ∈ Vα+1 . If x ∈ Vα

the statement holds by the inductive assumption. So assume that x ∈ Vα+1 \ Vα . Then rk(x) =
α . Let y ∈ x ⊆ Vα . Then y ∈ Vβ+1 \ Vβ for some β = rk(y) < α . rk(y) + 1 ⊆ α . Thus
⋃

y∈x
rk(y) + 1⊆ α . Assume that γ =

⋃

y∈x
rk(y) + 1<α . Let y ∈ x . Then rk(y) + 1# γ and

y ∈ Vrk(y)+1 ⊆ Vγ . Thus x ⊆ Vγ , x ∈ Vγ+1 ⊆ Vα , contradicting the assumption that x ∈ Vα+1 \
Vα . !

Lemma 69. Let A be a term. Then A∈V iff ∃α A⊆Vα .

The previous analysis of the Vα-hierarchy suggest the following picture of the universe V .

Ord V

Vα

Vα+1

ω

α

α+1

0

n
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9 The Axiom of Choice

Natural numbers n∈N are used to enumerate finite sets a as

a= {a0, a1, , an−1}.

Assuming the axiom of choice, one can use ordinals to enumerate any set a as

a= {ai | i <α}.

Definition 70. The Axiom of Choice, AC is the statement

∀x(∅ x∧∀u, v ∈x(u v→u∩ v= ∅)→∃z∀u∈x∃wu∩ z= {w}).

The axiom expresses that for every set x consisting of nonempty pairwise disjoint elements there
exists a choice set z , i.e., for every element u ∈ x the intersection u ∩ z consists exactly of one
element. Thus z “chooses” one element out of every element of x .

x

u

w

z

It seems intuitively clear that such choices are possible. On the other hand we shall see that
the axiom of choice has unintuitive, paradoxical consequences.

Theorem 71. The following statements are equivalent:

a) AC ;

b) ∀x∃g (g is a function with domain x∧∀u ∈ x (u ∅ → g(u) ∈ u)); such a function g is
called a choice function for x ;

c) ∀x∃α∃ff :α↔x .

Proof. a) → b) Assume AC. Let x be a set. We may assume that every element of x is
nonempty. The class

x′= {{u}× u|u∈ x}
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is the image of x under the set valued map u {u}× u, and thus a set by replacement. The ele-
ments {u} × u of x′ are nonempty and pairwise disjoint. By AC, take a choice set z for x′.
Define a choice function g:x→V by letting g(u) be the unique element of u such that

({u}× u)∩ z= {(u, g(u))}.

b)→ c) Assume b). Let x be a set and let g: P(x) \ {∅}→ V be a choice function for P(x) \ {∅}.
Define a function F :Ord→x∪ {x} by ordinal recursion such that

F (α)=

{

g(x \F [α]), if x \F [α] ∅ ;
x, if x \F [α] = ∅.

At “time” α, the function F chooses an element F (α) ∈ x which has not been chosen before. If
all elements of x have been chosen, this is signaled by F by the value x which is not an element
of x.
(1) Let α< β and F (β) x . Then F (α), F (β)∈ x and F (α) F (β).
Proof . F (β) x implies that x \ F [β] ∅ and hence F (β) = g(x \ F [β]) ∈ x \ F [β]. Since α ∈ β,
x \F [α] ∅ and F (α)= g(x \F [α])∈ x \F [α]. F (α) F (β) follows from F (β)∈x \F [β]. qed(1)
(2) There is α∈Ord such that F (α)= x .
Proof . Assume not. Then by (1), F : Ord → x is injective. Hence F−1 is a function and Ord =
F−1[x]. By replacement, Ord is a set, but this is a contradiction. qed(2)

By (2) let α be minimal such that F (α) = x . Let f = F " α: α→ x . By the definition of F ,
x \F [α] = ∅ , i.e., F [α] = x and f is surjective. By (1), f is also injective, i.e., f :α↔ x .

c) → a) Assume c). Let the set x consist of nonempty pairwise disjoint elements. Apply c) to
⋃

x . Take an ordinal α and a function f :α→
⋃

x . Define a choice set z for x by setting

z= {f(ξ)|∃u∈x (f(ξ)∈u∧∀ζ < ξf(ζ) u)}.

So z chooses for every u∈ x that f(ξ)∈ u with ξ minimal. !

We shall later use the enumeration property c) to define the cardinality of a set. Zorn’s
Lemma is an important existence principle which is also equivalent to AC.

Definition 72. Let (P ,#) be a partial order.

a) X ⊆ P is a chain in (P , #) if (X, #) is a linear order where (X, #) is a short notation
for the structure (X,#∩X2).

b) An element p∈P is an upper bound for X ⊆P iff ∀x∈Xx# p .

c) (P ,#) is inductive iff every chain in (P ,#) possesses an upper bound.

d) An element p∈P is a maximal element of (P ,#) iff ∀q ∈P (q$ p→q= p).

Theorem 73. The axiom of choice is equivalent to the following principle, called Zorn’s
Lemma: every inductive partial order (P ,#)∈ V possesses a maximal element.

Proof. Assume AC and let (P ,#) ∈ V be an inductive partial order. Let g: P(P ) \ {∅}→ V be
a choice function for P(P ) \ {∅}. Define a function F : Ord → P ∪ {P } by ordinal recursion; if
there is an upper bound for F [α] which is not an element of F [α] let

F (α) = g({p∈P \F [α] | p is an upper bound for F [α]});
otherwise set

F (α)=P .

At “time” α, the function F chooses a strict upper bound of F [α] if possible. If this is not pos-
sible, this is signaled by F by the value P .

The definition of F implies immediately:
(1) Let α< β and F (β) P . Then F (α)<F (β).
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(2) There is α∈Ord such that F (α)=P .
Proof . Assume not. Then by (1), F : Ord → P ∈ V is injective, and we get the same contradic-
tion as in the proof of Theorem 71. qed(2)

By (2) let α be minimal such that F (α) = P . By (1), F [α] is a chain in (P , #). Since the
partial order is inductive, take an upper bound p of F [α]. We claim that p is a maximal element
of (P , #). Assume not and let q ∈ P , q > p. Then q is a strict upper bound of F [α] and q
F [α]. But then the definition of F yields F (α) P , contradiction.

For the converse assume Zorn’s Lemma and consider a set x consisting of nonempty pairwise
disjoint elements. Define the set of “partial choice sets” which have empty or singleton intersec-
tion with every element of x :

P =
{

z ⊆
⋃

x | ∀u∈ x(u∩ z= ∅∨∃wu∩ z= {w})
}

.

P is partially ordered by ⊆ . If X is a chain in (X, ⊆) then
⋃

X is an upper bound for X.
Hence (X,⊆) is inductive.

By Zorn’s Lemma let z be a maximal element of (X, ⊆). We claim that z is a “total” choice
set for x :
(3) ∀u∈ x∃wu∩ z= {w}.
Proof . If not, take u ∈ x such that u ∩ z = ∅. Take w ∈ u and let z ′= z ∪ {w}. Then z ′ ∈ P , con-
trary to the the ⊆-maximality of z. !

Theorem 74. Every vector space U ∈ V has a basis B, which is linearly independent and spans
U.

Proof. Let U be a vector space with scalar field K. Let

P = {b⊆U | b is linearly independent in U }.

We shall apply Zorn’s lemma to the partial order (P ,⊆).
(1) (P ,⊆) is inductive.
Proof . Let X ⊆ P be a chain. Let c=

⋃

X ⊆ U . We show that c is linearly independent. Con-
sider a linear combination

k0·v0+ + kn−1·vn−1=0,

where v0, , vn−1 ∈ c and k0, , kn−1 ∈ K . Take b0, , bn−1 ∈ X such that v0 ∈ b0 , , vn−1 ∈
bn−1 . Since X is a chain there is some bi , i < n such that b0, , bn−1⊆ bi . Then v0, , vn−1∈ bi .
Since bi∈P is linearly independent, k0= = kn−1=0 . qed(1)

By Zorn’s lemma, (P ,⊆) has a maximal element, say B. B is linearly independent since B ∈
P .
(2) B spans U .
Proof . Let v ∈ U . If v ∈ B then v is in the span of B. So consider the case that v B . Then
B ∪ {v} is a proper superset of B. By the ⊆-maximality of B, B ∪ {v} is linearly dependent. So
there is a non-trivial linear combination

k0·v0+ + kn−1·vn−1+ k·v=0,

where v0, , vn−1∈B and at least one of the coefficients k0, , kn−1, k ∈K is non-zero. If k=0,

k0·v0+ + kn−1·vn−1=0

would be a non-trivial representation of 0, contradicting that B is linearly independent. Hence
k 0 and

v=− k0
k
·v0− − kn−1

k
·vn−1 .

So v is in the span of B. !

Actually one can show the converse of this Theorem: if every vector space has a basis, then
AC holds.

As another application of Zorn’s lemma we consider filters which are collections of “large”
subsets of some domain.
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Definition 75. Let Z be a set. We say that F is a filter on Z if

a) F ⊆P(Z);

b) ∅ F, Z ∈F ;

c) X ∈F and X ⊆ Y ⊆Z implies that Y ∈F ;

d) X,Y ∈F implies that X ∩ Y ∈F .

If moreover

X ⊆Z→X ∈F ∨ (Z \X)∈F

we call F an ultrafilter on Z.

Important examples of filters are neighbourhood filters Nx of points x in some topological
space (Z, T ):

Nx= {U ⊆Z |U is a neighbourhood of x}.

x

A combinatorial example is the Frechet filter on ω :

F = {X ⊆ω | ∃n∈ω∀m∈ω (m>n→m∈X)}.

The expression “A(n) holds for almost all n∈ω” is equivalent to

{n∈ω |A(n)}∈F .

Theorem 76. Let F be a filter on the set Z . Then there is an extension G ⊇ F such that G is
an ultrafilter on Z.

Proof. Let

P = {H ⊆P(Z)|H is a filter on U and H ⊇F }.

We shall apply Zorn’s lemma to the partial order (P ,⊆).
(1) (P ,⊆) is inductive.
Proof . Let C ⊆ P be a chain. Let H ′ =

⋃

X ⊆ P(Z). We show that H ′ is a filter on Z. Trivi-
ally ∅ H ′. Consider X ∈H ′ and X ⊆ Y ⊆ Z. Then X ∈H for some H ∈C. Since H is a filter,
X ∈H and so Y ∈H ⊆H

′

.
For the closure under intersections consider X, Y ∈ H ′. Then X ∈ H0 for some H0 ∈ C, and

Y ∈H1 for some H1∈C. Since C is a chain, we have, wlog, that H0⊆H1. Then X, Y ∈H1 , and
X ∩Y ∈H1⊆H ′. qed(1)

By Zorn’s lemma, let G∈P be a maximal element. Then G is a filter which extends F .
(2) G is an ultrafilter on Z.
Proof . Consider X0⊆Z and assume that X0 G. Define

G′= {Y ⊆Z | ∃X ∈G Y ⊇X ∩X0}.
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G′⊇G since for any X ∈G we have X ⊇X ∩X0 and X ∈G′. G′ G since X0∈G′ and X0 G .
G′ satisfies the axioms 75 a), c), d) and the condition Z ∈ G′ of b). Since G is maximal w.r.t.

inclusion, G′ is not a filter. The only possibility for that is that ∅∈G′, i.e., X1∩X0= ∅ for some
X1∈G. But then X1⊆Z \X0 and so Z \X0∈G . !

Definition 77. The axiom system ZFC consists of the ZF-axioms together with the axiom of
choice AC.

The system ZFC is usually taken as the foundation of mathematics. The ZF axioms have a
good intuitive motivation. The axiom of choice is more controversial; AC has desirable con-
sequences like Zorn’s Lemma and its applications, but on the other hand AC has some paradox-
ical and problematic consequences. The status of AC within set theory can be compared to the
parallel axiom in geometry. Similar to the situation in (non-)euclidean geometry one can show
that if there is a model of the ZF axioms then there is a model of ZFC.

Exercise 25. Show that in the theory ZF the axiom of choice is equivalent to the Hausdorff Maximality
Principle which says: for every partial order (P ,!) ∈ V there is an inclusion maximal chain X in (P ,!), i.e.,
if Y ⊇X is a chain in (P ,!) then Y =X. [Hausdorff, Grundzüge der Mengenlehre, p. 141: Wir haben damit
für eine teilweise geordnete Menge A die Existenz größter geordneter Teilmengen B bewiesen; natürlich kann
es deren verschiedene geben.]
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