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Die Mengenlehre ist das Fundament
der gesamten Mathematik

(FELIX HAUSDORFF,

Grundzuge der Mengenlehre, 1914)

1 Introduction

GEORG CANTOR characterized sets as follows:

Unter einer Menge verstehen wir jede Zusammenfassung M von bestimmten,
wohlunterschiedenen Objekten m unsrer Anschauung oder unseres Denkens
(welche die “Elemente” von M genannt werden) zu einem Ganzen.

FELIX HAUSDORFF in Grundzuge formulated shorter:

Eine Menge ist eine Zusammenfassung von Dingen zu einem Ganzen, d.h. zu
einem neuen Ding.

Sets are ubiquitous in mathematics. According to HAUSDORFF

Differential- und Integralrechnung, Analysis und Geometrie arbeiten in Wirk-
lichkeit, wenn auch vielleicht in verschleiernder Ausdrucksweise, bestandig mit
unendlichen Mengen.

In current mathematics, many notions are explicitely defined using sets. The following
example indicates that notions which are not set-theoretical prima facie can be construed set-
theoretically:

f is a real funktion = f is a set of ordered pairs (z, f(z)) of real numbers, such
that ... ;

(z,y) is an ordered pair = (z,y) is a set ...{z, y}... ;

z is a real number = x is a left half of a DEDEKIND cut in Q = z is a subset of
@, such that ... ;

r is a rational number = r is an ordered pair of integers, such that ... ;

z is an integer = z is an ordered pair of natural numbers (= non-negative
integers);
N=1{0,1,2,...};

0 is the empty set;
1 is the set {0};
2 is the set {0, 1}; etc. etc.

We shall see that all mathematical notions can be reduced to the notion of set.

Besides this foundational role, set theory is also the mathematical study of the infinite.
There are infinite sets like N, QQ, R which can be subjected to the constructions and analyses of
set theory; there are various degrees of infinity which lead to a rich theory of infinitary combin-
atorics.

In this course, we shall first apply set theory to obtain the standard foundation of mathem-
atics and then turn towards “pure” set theory.
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2 The Language of Set Theory

If m is an element of M one writes m € M. If all mathematical objects are reducible to sets,
both sides of these relation have to be sets. This means that set theory studies the €-relation
m € M for arbitrary sets m and M. As it turns out, this is sufficient for the purposes of set
theory and mathematics. In set theory variables range over the class of all sets, the €-relation is
the only undefined structural component, every other notion will be defined from the €-relation.
Basically, set theoretical statement will thus be of the form

LV 3y TEY...U=0...,

belonging to the first-order predicate language with the only given predicate €.

To deal with the complexities of set theory and mathematics one develops a comprehensive
and intuitive language of abbreviations and definitions which, eventually, allows to write familiar
statements like

eim=—1

and to view them as statements within set theory.

The language of set theory may be seen as a low-level, internal language. The language of
mathematics possesses high-level “macro” expressions which abbreviate low-level statements in
an efficient and intuitive way.

3 RUSSELL’s Paradox

CANTOR’s naive description of the notion of set suggests that for any mathematical statement
©(z) in one free variable x there is a set y such that

rEY o(x),

i.e., y is the collection of all sets x which satisfy ¢ .

This axiom is a basic principle in GOTTLOB FREGE'’s Grundgesetze der Arithmetik, 1893,
Grundgesetz V, Grundgesetz der Wertverlaufe.

BERTRAND RUSSELL noted in 1902 that setting ¢(z) to be = ¢ x this becomes

reEyré,
and in particular for x =y :

yeEycydy.
Contradiction.
This contradiction is usually called RUSSELL’s paradox, antinomy, contradiction. It was also
discoved slightly earlier by ERNST ZERMELO. The paradox shows that the formation of sets as
collections of sets by arbitrary formulas is not consistent.

4 The ZERMELO-FRAENKEL Axioms

The difficulties around RUSSELL’s paradox and also around the axiom of choice lead ZERMELO
to the formulation of axioms for set theory in the spirit of the axiomatics of DAVID HILBERT of
whom ZERMELO was an assistant at the time.

ZERMELO’s main idea was to restrict FREGE’s Axiom V to formulas which correspond to
mathematically important formations of collections, but to avoid arbitrary formulas which can
lead to paradoxes like the one exhibited by RUSSELL.

The original axiom system of ZERMELO was extended and detailed by ABRAHAM FRAENKEL
(1922), DMITRY MIRIMANOFF (1917/20), and THORALF SKOLEM.

We shall discuss the axioms one by one and simultaneously introduce the logical language
and useful conventions.
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4.1 Set Existence
The set existence axiom
JaVy ~yex,

like all axioms, is expressed in a language with quantifiers 3 (“there exists”) and V (“for all”),
which is familiar from the e-d-statements in analysis. The language of set theory uses variables
Z, ¥y, ... which may satisfy the binary relations € or =: z € y (“x is an element of y”) or x =y .
These elementary formulas may be connected by the propositional connectives A (“and”), V
(“or”), — (“implies”), +> (“is equivalent”), and — (“not”). The use of this language will be demon-
strated by the subsequent axioms.

The axiom expresses the existence of a set which has no elements, i.e., the existence of the
empty set.

4.2 Extensionality

The axiom of extensionality

Vava' (Vy(y ez yea’) sz =2a’)

expresses that a set is exactly determined by the collection of its elements. This allows to prove
that there is exactly one empty set.

Lemma 1. VaVaz/(Vy ~y €xAVy ~y €z’ mz=21').

Proof. Consider x, z’ such that Yy -y € zAVy -y € z’. Consider y. Then -y € x and —y € z’.
This implies Vy(y € x> y € 2’). The axiom of extensionality implies x =z’. O

Note that this proof is a usual mathematical argument, and it is also a formal proof in the
sense of mathematical logic. The sentences of the proof can be derived from earlier ones by
purely formal deduction rules. The rules of natural deduction correspond to common sense fig-
ures of argumentation which treat hypothetical objects as if they would concretely exist.

4.3 Pairing
The pairing axiom
VaVyIzVu(u €z u=axVu=y)
postulates that for all sets =, y there is set z which may be denoted as
z={x,y}.
This formula, including the new notation, is equivalent to the formula
Vu(u€zru=xzVu=y).

In the sequel we shall extend the small language of set theory by hundreds of symbols and con-
ventions, in order to get to the ordinary language of mathematics with notations like

b
N, R, \/ﬁ,ﬂ',(é ?),l f(x)dx=f(b) — f(a),etc.

Such notations are chosen for intuitive, pragmatic, or historical reasons.
Using the notation for unordered pairs, the pairing axiom may be written as

VaVydz z={z, y}.

By the axiom of extensionality, the term-like notation has the expected behaviour. E.g.:

Lemma 2. VaVyVaVz' (z={z,y} A2/ ={z,y} —z=2').
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Proof. Exercise. O

Note that we implicitly use several notational conventions: variables have to be chosen in a
reasonable way, for example the symbols z and z’ in the lemma have to be taken different and
different from x and y. We also assume some operator priorities to reduce the number of
brackets: we let A bind stronger than Vv, and V stronger than — and <.

We used the “term” {z, y} to occur within set theoretical formulas. This abbreviation is than
to be expanded in a natural way, so that officially all mathematical formulas are formulas in
the “pure” €-language. We want to see the notation {z, y} as an example of a class term. We
define uniform notations and convention for such abbreviation terms.

4.4 Class Terms

The extended language of set theory contains class terms and notations for them. There are
axioms for class terms that fix how extended formulas can be reduced to formulas in the unex-
tended €-language of set theory.

Definition 3. A class term is of the form {x|@} where x is a variable and ¢ € L€. The usage
of these class terms is defined recursively by the following azioms: If {x|p} and {y|v} are class
terms then

— ue{zlp} e @%, where @% is obtained from ¢ by (resonably) substituting the variable x
by the variable u ;

- u={z]p} Vo (veus po);

- {z|p}=ueYo(p-veu);

= A{zler={ylv} Vo (eg < v);

— {zlpleuo Toweurv={z|p};

= A{zletef{ylv} & vy Av={z]e}).

A term is either a variable or a class term.

Definition 4.
a) 0:={z|x+=x} is the empty set;
b) V:={xz|x=ux} is the universe (of all sets);

¢) {z,y}:={ulu=xVu=y} is the unordered pair of x and y.
Lemma 5.

a) DeV.

b) Va,y {z,y}cV.

Proof. a) By the axioms for the reduction of abstraction terms, () € V is equivalent to the fol-
lowing formulas

Jvv=vAv=0)
FJvv=10
FvVw (w eve w#w)
JoVww ¢ v
which is equivalent to the axiom of set existence. So () € V' is another way to write the axiom of

set existence.
b) Va,y {x,y} €V abbreviates the formula

Ve, y3z(z=zAz={z,y}).
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This can be expanded equivalently to the pairing axiom

Vo, yFzVu(u €z u=xzVu=y). O

So a) and b) are concise equivalent formulations of the axiom Ex and Pair.
We also introduce bounded quantifiers to simplify notation.

Definition 6. Let A be a term. Then Vx € Ap>Va(x € A— @) and Jx € Ap+— Tz (x € AN p).

Definition 7. Let z,y,z,... be variables and X,Y ,Z,... be class terms. Define
a) XCY&VeeXzeY, X is a subclass of Y
b) XUY :={z|lreXVzeY} is the union of X and Y;
¢) XNY :={z|lre X Az €Y} is the intersection of X and Y;
d) X\Y:={z|lxre X ANz ¢Y} is the difference of X and Y;
) U X:={z|FyeXxcy} is the union of X ;
f) N X:={z|Vye Xz ey} is the intersection of X ;
)
)
)
)

9y

g) P(X):={x]x C X} is the power class of X;

h) {X}:={x|x=X} is the singleton set of X;

{X, Y} ={z|lr=XVz=Y} is the (unordered) pair of X and Y;
{Xoy o0y Xna b ={zjlz=XoV..Va =X, _1}.

1

J

One can prove the well-known boolean properties for these operations. We only give a few
examples.

Proposition 8. X CYAY CX - X=Y.
Proposition 9. |J {z,y}=2Uy.

Proof. We show the equality by two inclusions:
(Q). Let uel {z,y}. w(we{z,y} ANuecv). Letve{z,y}Auev. (v=axVv=y)Au€cw.
Case 1. v=x2. Thenu€z. ucxVuecy. Hence ucxUy.
Case 2. v=y. Thenuecy. ucxVuecy. HenceuecaxUy.
Conversely let uexzUy. uexVucy.
Case 1. u€x. Then x € {z,y} Auczx. v(ve{z,y}Auecv)and uel {z,y}.
Case 2. u€y. Then x € {z,y} Auex. wwe{z,y}Auecv)and uel {z,y}. O

Exercise 1. Show:a) |JV=V.b) N V=0.¢c) J0=0.4d) NO=V.

4.5 Ordered Pairs

Combining objects into ordered pairs (x, y) is taken as an undefined fundamental operation of
mathematics. We cannot use the unordered pair {z, y} for this purpose, since it does not
respect the order of entries:

{z,yt={y,z}.

We have to introduce some asymmetry between x and y to make them distinguishable. Fol-
lowing KURATOWSKI and WIENER we define:

Definition 10. (z,y):={{z},{z,y}} is the ordered pair of z and y.

The definition involves substituting class terms within class terms. We shall see in the fol-
lowing how these class terms are eliminated to yield pure €-formulas.

Lemma 11. VaVy3dzz=(z,y).
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Proof. Consider sets z and y. By the pairing axiom choose u and v such that u={z} and v =
{z,y}. Again by pairing choose z such that z={u,v}. We argue that z=(z,y). Note that
(z,y) =z} {z, y}} ={wlw={z} vw={z,y}}.
Then z = (x,y) is equivalent to
Vw(wezew={z}Vw={z,y}),
Vww=uVw=v< (w={z}Vw={z,y}),
and this is true by the choice of u and v. O

The KURATOWSKI-pair satisfies the fundamental property of ordered pairs:
Lemma 12. (z,y)= (¢, y) wz=2'Ay=1y'.

Proof. Assume (x,y)=(z,y’), i.e.,
(1) {z} {z, v} = {2} {2 v}
Case 1. x=1y. Then
{z}={z,y},
{{z}, {z, v} ={az} {2} ={{=}},
{{z}}={{z"} {=", ¢} },
{z}={2'} and z =2/,
{z}={a',y'} and ¢y’ ==.
Hence z =12’ and y =z =y’ as required.
Case 2. x+#y. (1) implies
{2} ={x} or {2} = {z, y}.
The right-hand side would imply = =x'=y, contradicting the case assumption. Hence
{z'}={«} and 2’ ==.
Then (1) implies
{zay}:{zlay/}:{xvyl} andy:yl' O

Exercise 2.

a) Show that (z, y) := {{z, 0}, {y, {0}}} also satisfies the fundamental property of ordered pairs (F.
HAUSDORFF).

b) Can {z,{y,0}} be used as an ordered pair?

Exercise 3. Give a set-theoretical formalization of an ordered-triple operation.

4.6 Relations and Functions

Ordered pairs allow to introduce relations and functions in the usual way. One has to distin-
guish between sets which are relations and functions, and class terms which are relations and
functions.

Definition 13. A term R is a relation if all elements of R are ordered pairs, i.e., RCV x V.
Also write Rxy or xRy instead of (z,y) € R. If A is a term and R C A x A then R is a rela-
tion on A.

Note that this definition is really an infinite schema of definitions, with instances for all
terms R and A . The subsequent extensions of our language are also infinite definition schemas.
We extend the term language by parametrized collections of terms.

Definition 14. Let t(Z) be a term in the variables & and let ¢ be an €-formula. Then
{t(@)|p} stands for {z|3Z(p N z=1t(Z)}.
Definition 15. Let R, S, A be terms.

a) The domain of R is dom(R):={z|Jyx Ry}.

b) The range of R is ran(R):={y|Jzz Ry}.

c) The field of R is field(R) := dom(R) Uran(R).
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QU

) The restriction of R to A is Rl A:={(x,y)[x Ryrz € A}.

) The image of A under R is R[A]:=R"A:={y|3x € AxRy}.
) The preimage of A under R is R™Y[A]:={x|Jy€ Az Ry}.
)
)

(9]

~

The composition of S and R (“S after R”) is So R:={(z,2)|3y (xRyAySz)}.
The inverse of R is R~':={(y,z)|z Ry}.

IS NS

Relations can play different roles in mathematics.

Definition 16. Let R be a relation.
a) R is reflexive iff Vo €field(R) z Rz .

b) R is irreflexive iff Vz €field(R) ~zRx .

¢) R is symmetric iff Vz,y (x Ry—yRx).

d) R is antisymmetric iff Vo, y(x Ry AyRx—x=1y).

e) R is transitive iff Vo, y,z (t RyAyRz—xz Rz).

f) R is connex iff Va,y€field(R) (xRyVyRxVz=y).

g9) R is an equivalence relation iff R is reflexive, symmetric and transitive.

h) Let R be an equivalence relation. Then [z]r : ={y|yRx} is the equivalence class of x

modulo R .

It is possible that an equivalence class [z]g is not a set: [z]g ¢ V . Then the formation of the col-
lection of all equivalence classes modulo R may lead to contradictions. Another important
family of relations is given by order relations.
Definition 17. Let R be a relation.

a) R is a partial order iff R is reflexive, transitive and antisymmetric.

b) R is a linear order iff R is a connex partial order.

c) Let A be a term. Then R is a partial order on A iff R is a partial order and field(R) =
A.

d) R is a strict partial order iff R is transitive and irreflexive.

e) R is a strict linear order iff R is a connex strict partial order.

Partial orders are often denoted by symbols like <, and strict partial orders by <. A common
notation in the context of (strict) partial orders R is to write

IpRqy and VpRqyp for IAp(pRq A ¢) and Vp(p Rq— ) resp.

One of the most important notions in mathematics is that of a function.

Definition 18. Let F be a term. Then F is a function if it is a relation which satisfies
Ve, y,y (xFyncFy' —y=1y).
If F is a function then
F(x):={ulVy (z Fy—u e y)}
is the value of F at x.
If Fis a function and x Fy then y = F(z). If there is no y such that x Fy then F(z) =V;

the “value” V at x may be read as “undefined”. A function can also be considered as the
(indexed) sequence of its values, and we also write

(F(x))zea or (Fy)zeca instead of F: A—V.
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We define further notions associated with functions.

Definition 19. Let F', A, B be terms.

a) F is a function from A to B, or F: A — B, iff F is a function, dom(F) = A, and
range(F)C B.

b) F is a partial function from A to B, or F: A— B, iff F is a function, dom(F) C A, and
range(F)C B.
¢) Fis a surjective function from A to B iff F: A— B and range(F) = B.
d) Fis an injective function from A to B iff F: A— B and
Ve, o' € A (x# a2’ = F(x) £ F(z'))
e) F is a bijective function from A to B, or F: A < B, iff F: A — B is surjective and
injective.

f) AB:={f|f: A— B} is the class of all functions from A to B.

One can check that these functional notions are consistent and agree with common usage:
Exercise 4. Define a relation ~ on V' by
r~y«—3If frzey.

One say that z and y are equinumerous or equipollent. Show that ~ is an equivalence relation on V. What is
the equivalence class of ) 7 What is the equivalence class of {0} 7

Exercise 5. Consider functions F': A— B and F’: A— B. Show that
F=F'iff Va€ A F(a)=F'(a).

4.7 Unions

The union azxiom reads

VedyVz(z € y < Jw(w €z A z € w)).

Lemma 20. The union aziom is equivalent to Yz |J x € V.

Proof. Observe the following equivalences:
Vel JzeV
<Vrdy(y=yrny=U z)
“VrIyVz(zeyo zell z)
VrIyVz(z ey Jwerz e w)
which is equivalent to the union axiom. U

Note that the union of x is usually viewed as the union of all elements of x:

U= w,

weT

U t(a)={z|3ac Azct(a)}.

acA

where we define

Graphically |J x can be illustrated like this:
Combining the axioms of pairing and unions we obtain:

Lemma 21. Vzo,...,2n—1{Z0,...,Tn-1} €V.

Note that this is a schema of lemmas, one for each ordinary natural number n . We prove
the schema by complete induction on n .
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Proof. For n=0, 1,2 the lemma states that P € V, Vz {z} € V, and Vz,y {z,y} €V resp., and
these are true by previous axioms and lemmas. For the induction step assume that the lemma
holds for n, n>1. Consider sets zg, ..., z,. Then

{0, ey tn} ={x0,...; 2n_1} U{xn}.

The right-hand side exists in V' by the inductive hypothesis and the union axiom. O

4.8 Separation

It is common to form a subset of a given set consisting of all elements which satisfy some condi-
tion. This is codified by the separation schema. For every e-formula ¢(z,x1, ..., z,) postulate:

V. Ve,YeIyWz (z € yrz €2 A (2,21, .0y Tn)).
Using class terms the schema can be reformulated as: for every term A postulate

VeANzeV.

The crucial point is the restriction to the given set x. The unrestricted, FREGEan version A €V
for every term A leads to the RUSSELL antinomy. We turn the antinomy into a consequence of
the separation schema:

Theorem 22. V¢ V.

Proof. Assume that V € V. Then dxx =V. Take x such that x =V. Let R be the RUSSELLian
class:

R:={z|z¢z}.
By separation, y:= RNz € V. Note that RNz=RNV =R. Then
yeycyeRGyty,
contradiction. 0
This simple but crucial theorem leads to the distinction:

Definition 23. Let A be a term. Then A is a proper class iff A¢ V.

Set theory deals with sets and proper classes. Sets are the favoured objects of set theory, the
axiom mainly state favorable properties of sets and set existence. Sometimes one says that a
term A exists if A € V. The intention of set theory is to construe important mathematical
classes like the collection of natural and real numbers as sets so that they can be treated set-the-
oretically. ZERMELO observed that this is possible by requiring some set existences together
with the restricted separation principle.

Exercise 6. Show that the class {{z}|z € V'} of singletons is a proper class.

4.9 Power Sets
The power set axiom in class term notation is
Ve P(x)eV.

The power set axiom yields the existence of function spaces.

Definition 24. Let A, B be terms. Then
Ax B:={(a,b)lac ANbe B}
is the cartesian product of A and B.

Exercise 7.
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By the specific implementation of KURATOWSKI ordered pairs:
Lemma 25. Ax BCP(P(AUB)).

Proof. Let (a,b) € A x B. Then

a,b € AUB
{a},{a,b} C AUB
{a},{a,b} € P(AUB)
(a,b) ={{a},{a,b}} € P(AUB)
(a,0) ={{a},{a,b}} € P(P(AUB))

Theorem 26.
a) Ve, yx xyeV.
b) Va,y *yeV.

Proof. Let x,y be sets. a) Using the axioms of pairing, union, and power sets, P(P(zUy)) € V.
By the previous lemma and the axiom schema of separation,

rxy=(@xxy)NPPxUy))eV.
b) *y CP(z X y) since a function f:x— y is a subset of x x y. By the separation schema,
Ty="yNPxxy)eV. O
Note that to “find” the sets in this theorem one has to apply the power set operation repeatedly.
We shall see that the universe of all sets can be obtained by iterating the power set operation.

The power set axiom leads to higher cardinalities. The theory of cardinalities will be
developed later, but we can already prove CANTOR’s theorem:

Theorem 27. Let x € V.
a) There is an injective map f:x— P(x).

b) There does not exist an injective map g: P(x) = x .

Proof. a) Define the map f:z— P(x) by u+ {u}. This is a set since
f={(u,{up)juecx}CaxPx)eV.
f is injective: let u,u’ € z, u#u'. By extensionality,
fu)={u}#{u'} = f(u).
b) Assume there were an injective map g: P(x) — = . Define the CANTORean set
c={uluexhug¢ g (u)} € P(z)

similar to the class R in RUSSELL’s paradox.
Let up= g(c). Then g~!(ug) =c and

ug € cerug ¢ g Hug) =c.
Contradiction. O

4.10 Replacement

If every element of a set is definably replaced by another set, the result is a set again. The
schema of replacement postulates for every term F':

F is a function —»Vx Fz] € V.
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Lemma 28. The replacement schema implies the separation schema.

Proof. Let A be a term and z€ V.
Case 1. ANz =0. Then ANz €V by the axiom of set existence.
Case 2. ANz +#(. Take up€ ANx. Define a map F:z—x by

F(u){ u,ifue ANz
ug , else
Then by replacement

ANnz=Flz]eV

as required. O

4.11 Infinity

All the axioms so far can be realized in a domain of finite sets, see exercise 777. The true power
of set theory is set free by postulating the existence of one infinite set and continuing to assume
the axioms. The aziom of infinity expresses that the set of “natural numbers” exists. To this
end, some “number-theoretic” notions are defined.
Definition 29.

a) 0:=0 is the number zero.

b) For any term t, t+1:=tU{t} is the successor of t.
These notions are reasonable in the later formalization of the natural numbers. The axiom of

infinity postulates the existence of a set which contains 0 and is closed under successors

Jx(0exAVnexzn+1lex).

Intuitively this says that there is a set which contains all natural numbers. Let us define set-the-
oretic analogues of the standard natural numbers:

Definition 30. Define

a) 1:=0+1;
b) 2:=1+1;
c) 3:=2+41; ..

From the context it will be clear, whether “3”, say, is meant to be the standard number “three”
or the set theoretical object
3 = 20{2}
(1+1)U{1+1}
{0y u{{0}H) u{{0tu{{0}}}
= {0.{0} {0 U {{0}}}.

The set-theoretic axioms will ensure that this interpretation of “three” has the important
number-theoretic properties of “three”.

4.12 Foundation

The azxiom schema of foundation provides structural information about the set theoretic uni-
verse V. It can be reformulated by postulating, for any term A:

A#£D—Tze AANz=0.

Viewing € as some kind of order relation this means that every non-empty class has an €-min-
imal element x € A such that the €-predecessors of z are not in A. Foundation excludes circles
in the e-relation:
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Lemma 31. Let n be a natural number >1. Then there are no xg,...,T,_1 such that

TpEX1E...€ETHL_1E€ET).

Proof. Assume not and let xp€x1€...€x,,_1E€x0. Let
A:{xo,...,xn_l}.

A0 since n>1. By foundation take x € A such that ANz =0.
Case 1. t=zy. Then z,_1 € ANz =0, contradiction.
Case 2. x=uxz;,1>0. Then z,_1€ANxz=0, contradiction. O

Exercise 8. Show that z#£x+1.
Exercise 9. Show that the successor function x+ x + 1 is injective.

Exercise 10. Show that the term {z,{z, y}} may be taken as an ordered pair of z and y.

Theorem 32. The foundation scheme is equivalent to the following, PEANO-type, induction
scheme: for every term B postulate

Ve(xr CB—x€B)—»B=V.
This says that if a “property” B is inherited by x if all elements of x have the property B, then
every set has the property B.

Proof. (—) Assume B were a term which did not satisfy the induction principle:
Ve(x CB—x€B) and B#V.
Set A=V \ B#0. By foundation take z € A such that ANz =0. Then
uer—u¢ Aou€eB,

i.e.,, x C B. By assumption, B is inherited by x: z € B. But then 2 ¢ A, contradiction.
(+) Assume A were a term which did not satisfy the foundation scheme:

A#+QPand Ve e AANz+0.

Set B=V \ A. Consider x C B. Then ANz = (. By assumption, * ¢ A and z € B . Thus
Vx (x € B— z € B). The induction principle implies that B=V. Then A=), contradiction. [

This proof shows, that the induction principle is basically an equivalent formulation of the
foundation principle. The €-relation is taken as some binary relation without reference to spe-
cific properties of this relation. This leads to:

Exercise 11. A relation R on a domain D is called wellfounded, iff for all terms A
0+ANACD—Izc AAN{y|yRx}=0.

Formulate and prove a principle for R-induction on D which coressponds to the assumption that R is well-
founded on D.

4.13 Set Theoretic Axiom Schemas

Note that the axiom system introduced is an infinite informal set of axioms. It seems unavoid-
able that we have to go back to some previously given set notions to be able to define the collec-
tion of set theoretical axioms - another example of the frequent circularity in foundational the-
ories.

Definition 33. The system ZF of the ZERMELO-FRAENKEL axioms of set theory consists of the
following axioms:
a) The set existence axiom (Ex):

JaVy—-yecx
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b)

4.14

- there is a set without elements, the empty set.
The axiom of extensionality (Ext):
VaVy(Vz(z €z z€y) > =1)
- a set is determined by its elements, sets having the same elements are identical.
The pairing axiom (Pair):
VaVy3IzVw (u € zu=2Vu=y).
- z s the unordered pair of x and y.

The union axiom (Union):

VedyVz(z € y < Jw(w €z A z € w))
-y is the union of all elements of x.
The separation schema (Sep) postulates for every €-formula (2,1, ..., %n):
Vi, Ve, YedyVz (z € yorz€x A p(z, 21, .0y Tp))

- this is an infinite scheme of axioms, the set z consists of all elements of x which satisfy
©.

The powerset axiom (Pow):

Ve3yvz(z € y+>Vw(w € z— w € x))
-y consists of all subsets of x.

The replacement schema (Rep) postulates for every €-formula o(z,y,x1,...,2n):

V1. Ve, (VavVyVy' ((e(z, y, 21, ..., 2o) Ao(z, ¥/, 21, 0oy n)) 2 y=y') —
YuduVy (y ever Jz(z cun o(z, ¥, 21, ..., 22))))

- v is the image of u under the map defined by .
The axiom of infinity (Inf):

Jr(Fy(yexAVzzey) AVy(yerx— Iz(z€x AVw(w €z weyVw=y))))

- by the closure properties of x, x has to be infinite.

The foundation schema (Found) postulates for every €-formula (x,x1,...,xy):
Voy.. Ve,(Fee(x, 1, ..., xn) = J2(@(x, 21, .0y 20) AVE (2 €2 — —(2), 21, ..., 22))))

- if @ is satisfiable then there are €-minimal elements satisfying p.

ZF in Class Notation

Using class terms, the ZF can be formulated concisely:

Theorem 34. The ZF axioms are equivalent to the following system; we take all free variables
of the axioms to be universally quantified:

Ez: feV.

Ext: xCyNyCorz—ax=y.
Pair: {z,y}eV.

Union: |J zeV.

Sep: ANz eV.

Pow: P(z)eV.

Rep: F is a function — F[z] € V.
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h) Inf: 3z (0€xAVnexzn+1ex).
i) Found: A#(0—3Ixc AANxz=0.

This axiom system can be used as a foundation for all of mathematics. Axiomatic set theory
considers various axiom systems of set theory.

Definition 35. The axiom system ZF~ consists of the ZF-axioms except the power set axiom.
The system EML (“elementary set theory”) consists of the azioms Ex, Ext, Pair, and Union.

Nach Einfuehrung der Axiome etwas zu Axiomatik sagen, Geometrische Axiomensysteme,
Hilberts formale Auffassung, Hausdorffs Meinung dazu, axiomatische Mengenlehre untersucht
verschiedene Axiomensysteme, insbesondere ist ZFC unvollstaendig, etc.

5 Ordinal Numbers

We had defined some “natural numbers” in set theory. Recall that

0=10

0+1=0u{0} = {0}
1+1=1u0{1}={0,1}
= 24+1=20{2}={0,1,2}

wW N =
I

We would then like to have N = {0, 1, 2, 3, ...}. To obtain a set theoretic formalization of num-
bers we note some properties of the informal presentation:

1. "Numbers” are ordered by the &-relation:
m<n iff men.
E.g.,, 1€3 but not 3e1.

2. On each “number”, the €-relation is a strict linear order: 3 = {0, 1, 2} is strictly linearly
ordered by €.

3. "Numbers” are “complete” with respect to smaller “numbers”
i<j<m-—iem.
This can be written with the &€-relation as
1EJEM —TEM.
Definition 36.
a) A is transitive, Trans(A), iff Vye AVeeyz € A.
b) x is an ordinal (number), Ord(z), if Trans(z)AVy €z Trans(y).
¢) Let Ord: ={x|Ord(x)} be the class of all ordinal numbers.
We shall use small greek letter «, 3, ... as variables for ordinals. So Ja stands for da € Ord ¢,
and {a|¢} for {a|Ord(a) A p}.
Exercise 12. Show that arbitrary unions and intersections of transitive sets are again transitive.
We shall see that the ordinals extend the standard natural numbers. Ordinals are particu-
larly adequate for enumerating infinite sets.
Theorem 37.
a) 0€0rd.
b) Va a+1€0rd.
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Proof. a) Trans(()) since formulas of the form Vy € (... are tautologously true. Similarly Vy €
() Trans(y).

b) Assume « € Ord.

(1) Trans(a 4+ 1).

Proof. Let uevea+1l=aU{a}.

Case 1. vE€a. Then u € a Ca+1, since « is transitive.

Case 2. v=a. Thenuea Ca+1. ged(1)

(2) Vy € o+ 1 Trans(y).

Proof. Let yea+1=aU{a}.

Case 1. y € a. Then Trans(y) since « is an ordinal.

Case 2. y=a. Then Trans(y) since « is an ordinal. O

Exercise 13.
a) Let A COrd be a term, A#(. Then (| A€ Ord.
b) Let  C Ord be a set. Then |J A€ Ord.

Theorem 38. Trans(Ord).
Proof. This follows immediately from the transitivity definition of Ord. U
Exercise 14. Show that Ord is a proper class. (Hint: if Ord € V' then Ord € Ord.)

Theorem 39. The class Ord is strictly linearly ordered by €, i.e.,

a) Vo, B,y (a€ BABEY—aE).
b) Va a ¢ a.
¢) Va,B(a€BVa=pVEEaq).

Proof. a) Let a, 8,7€O0rd and e € S A S € ~. Then ~ is transitive, and so « € .

b) follows immediately from the non-circularity of the €-relation.

¢) Assume that there are “incomparable” ordinals. By the foundation schema choose o € Ord €-
minimal such that 35-(apg€ BV ap= 58V B € ap). Again, choose Sy € Ord €-minimal such that —
(a0 € BoVag= oV Po € ap). We obtain a contradiction by showing that «g= So:

Let a € ag. By the e-minimality of g, a is comparable with Sy: a € foVa= GV g€ . If
a = fy then By € ag and ay, By would be comparable, contradiction. If Sy € « then Sy € ag by the
transitivity of ag and again «g, 89 would be comparable, contradiction. Hence a € S .

For the converse let § € 5y . By the €-minimality of Sy, [ is comparable with ag: 8 € ag V
B=aoVag€ p.If f=agthen ag€ [y and ag, Sy would be comparable, contradiction. If ag € 8
then oy € By by the transitivity of By and again ag, By would be comparable, contradiction.
Hence 5 € ay.

But then ag= 5y contrary to the choice of Sy. O

Definition 40. Let <:=€eN(Ord x Ord) = {(«, B)|a € B} be the natural strict linear ordering of
Ord by the €-relation.
Theorem 41. Let o« € Ord. Then a+ 1 is the immediate successor of o in the €-relation:

a) a<a-+1;

b) if B<a+1, then f=a or f<a.

Definition 42. Let a be an ordinal. « is a successor ordinal, Succ(a), iff Iba=6+1. a isa
limit ordinal, Lim(«), iff «#£0 and a is not a successor ordinal. Also let

Succ: ={«|Succ(w)} and Lim:= {«|Lim(a)}.

The existence of limit ordinals will be discussed together with the formalization of the natural
numbers.
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5.1 Induction
Ordinals satisfy an induction theorem which generalizes complete induction on the integers:
Theorem 43. Let p(z, vg, ..., Vn—1) be an €-formula and xg, ..., xn—1 € V. Assume that the
property p(x, Tg, ..., Tp—1) is inductive, i.e.,

Va(VBea (8,20, .ccstn—1) = (@, oy .., Tn—1)).
Then ¢ holds for all ordinals:

Vap(a, oy ..y Tn—1).

Proof. It suffices to show that
B={z]x €Ord— p(z,z0,....,2n-1)} =V.
Theorem 32 implies
Ve(x CB—x€B)—»B=V
and it suffices to show
Ve (xt CB—xz€B).
Consider  C B. If x ¢ Ord then z € B. So assume z € Ord. For 8 € x we have g € B, 8 € Ord,
and so ¢(f,xg,...,Zn—1). By the inductivity of ¢ we get p(z,xo,...,2n-1) and again € B. 0O
Induction can be formulated in various forms:

Exercise 15. Prove the following transfinite induction principle: Let ¢(z) = p(z, vo, ..., vn—1) be an €-for-
mula and zg, ..., 2,1 € V. Assume

a) ¢(0) (the initial case),

b) Va (¢(a) = ¢(a+1)) (the successor step),

¢) VA€Lim (Va <A p(a) = ¢(A)) (the limit step).
Then Vo p(a).

5.2 Natural Numbers

We have 0, 1, ... € Ord. We shall now define and study the set of natural numbers/integers
within set theory. Recall the axiom of infinity:

Jz (0ezAVueczut+lex).

The set of natural numbers should be the C-smallest such x.

Definition 44. Let w: =) {z|0 € x AVu €z u+ 1 € x} be the set of natural numbers. Some-
times we write N instead of w.
Theorem 45.

a) weV.

b) wCOrd.

¢) (w,0,41) satisfy the second order PEANO axiom, i.e.,

VrCw(0€exAVnezn+ler—r=w).
d) weOrd.

e) w is a limit ordinal.

Proof. a) By the axiom of infinity take a set z¢ such that
OexgAVuexgu+1exy.
Then
w= ﬂ {zl0exAVuezu+lex}=xN ﬂ {z|]0exAVuezu+lex}eV
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by the separation schema.

b) By a), wnNOrd € V. Obviously 0 e wNOrd AVu € wNOrd u+1€wnOrd. So wNOrd is one
factor of the intersection in the definition of w and so w CwNOrd. Hence w C Ord.

c) Let s Cwand 0 €z AVu€xu+ 1€z Then x is one factor of the intersection in the defini-
tion of w and so w Cx. This implies = w.

d) By b), every element of w is transitive and it suffices to show that w is transitive. Let

z={nnewAVmenmew} Cw.

We show that the hypothesis of ¢) holds for z. 0 € x is trivial. Let w € . Then u+ 1 € w. Let
meEu+ 1. If m €wu then m € w by the assumption that v € x. If m =u then m € x C w. Hence
utlezandVuezu+1l€x. Byb), z=w. SoVnewnez, ie.,

YnewvVmenmew.
e) Of course w # 0 . Assume for a contradiction that w is a successor ordinal, say w = a + 1.

Then aw € w. Since w is closed under the +1-operation, w=a+ 1 €w. Contradiction. 0

Thus the axiom of infinity implies the existence of the set of natural numbers, which is also
the smallest limit ordinal. The axiom of infinity can now be reformulated equivalently as:
h) Inf: we V.

Exercise 16. Show that |J (+1) =« and that Lim(y) » |J v=1.
Exercise 17. Show that
news(n=0vimenn=m+1)AVmen(m=0vIAemm=I+1)

5.3 Recursion
Recursion, often called induction, over the natural numbers is a ubiquitous method for defining

mathematical object. We prove the following recursion theorem for ordinals.

Theorem 46. Let G: V — V. Then there is a canonical class term F, given by the subsequent
proof, such that

F:0rd—Vand Va F(a)=G(F | a).

We then say that F is defined recursively (over the ordinals) by the recursion rule G. F is
unique in the sense that if another term F' satisfies

F’:Ord =V and Yo F'(a) =G(F' | a)
then F =F'.

Proof. We say that H:dom(H) —V is G-recursive if
dom(H) C Ord,dom(H) is transitive, and Vo €dom(H) H(a) =G(H | o).

(1) Let H, H' be G-recursive. Then H, H' are compatible, i.e., Yo € dom(H) Ndom(H’) H(a) =
H'(a).
Proof. We want to show that

Va € Ord (e € dom(H)Ndom(H') — H(a) = H'()).

By the induction theorem it suffices to show that a € dom(H) N dom(H’) — H(«a) = H'(«) is
inductive, i.e.,

Va € Ord (Vy € a (y € dom(H) Ndom(H') - H(y) = H'(y)) = (e« € dom(H) Ndom(H') = H (o) =
H'(a))).

So let a € Ord and Vy €  (y € dom(H) Ndom(H') = H(y) = H'(y)). Let a € dom(H) Ndom(H’).
Since dom(H) and dom(H’) are transitive, « C dom(H) and o C dom(H'). By assumption

Vyea H(y)=H'(y).
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Hence H [a=H’|a. Then

qed(1)
Let

F: :U {f|f is G-recursive}.

be the union of the class of all approrimations to the desired function F'.
(2) F is G-recursive.
Proof. By (1), F is a function. Its domain dom(F') is the union of transitive classes of ordinals
and hence dom(F') C Ord is transitive.

Let a € dom(F'). Take some G-recursive functionf such that o € dom(f). Since dom(f) is
transitive, we have

a Cdom(f) Cdom(F).

Moreover

ged(2)

(3) Va a€dom(F).

Proof. By induction on the ordinals. We have to show that a € dom(F) is inductive in the vari-
able a. So let & € Ord and Vy € o y € dom(F). Hence o C dom(F'). Let

f=Flau{(a,G(FTa))}.
f is a function with dom(f)=a+1€Ord. Let o’ <a+ 1. If o’ <a then
fla)=F()=G(F o) =G(f ).
if &’ =« then also
fla)=fla)=G(Fla)=G(fla)=G(fa).

Hence f is G-recursive and « € dom(f) C dom(F'). ged(3)
The extensional uniqueness of F' follows from (1) O



