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Introduction

Given an infinite cardinal λ and a group G,

we consider
the following question.

Question

Is G isomorphic to the automorphism group of a field of
cardinality λ?
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If K is a field of cardinality λ,

then the group Aut(K) has cardinality
at most 2λ. A simple cardinality argument shows that there are
groups of cardinality 2λ that are not isomorphic to the automorphism
group of a field of cardinality λ. The following theorem shows that we
can also find such groups of cardinality λ+.

Theorem (De Bruijn, 1957)

If λ is an infinite cardinal, then the group Fin(λ+) consisting of all
finite permutations of λ+ cannot be embedded into the group
Sym(λ) consisting of all permutations of λ.



Introduction

If K is a field of cardinality λ, then the group Aut(K) has cardinality
at most 2λ.

A simple cardinality argument shows that there are
groups of cardinality 2λ that are not isomorphic to the automorphism
group of a field of cardinality λ. The following theorem shows that we
can also find such groups of cardinality λ+.

Theorem (De Bruijn, 1957)

If λ is an infinite cardinal, then the group Fin(λ+) consisting of all
finite permutations of λ+ cannot be embedded into the group
Sym(λ) consisting of all permutations of λ.



Introduction

If K is a field of cardinality λ, then the group Aut(K) has cardinality
at most 2λ. A simple cardinality argument shows that there are
groups of cardinality 2λ that are not isomorphic to the automorphism
group of a field of cardinality λ.

The following theorem shows that we
can also find such groups of cardinality λ+.

Theorem (De Bruijn, 1957)

If λ is an infinite cardinal, then the group Fin(λ+) consisting of all
finite permutations of λ+ cannot be embedded into the group
Sym(λ) consisting of all permutations of λ.



Introduction

If K is a field of cardinality λ, then the group Aut(K) has cardinality
at most 2λ. A simple cardinality argument shows that there are
groups of cardinality 2λ that are not isomorphic to the automorphism
group of a field of cardinality λ. The following theorem shows that we
can also find such groups of cardinality λ+.

Theorem (De Bruijn, 1957)

If λ is an infinite cardinal, then the group Fin(λ+) consisting of all
finite permutations of λ+ cannot be embedded into the group
Sym(λ) consisting of all permutations of λ.



Introduction

If K is a field of cardinality λ, then the group Aut(K) has cardinality
at most 2λ. A simple cardinality argument shows that there are
groups of cardinality 2λ that are not isomorphic to the automorphism
group of a field of cardinality λ. The following theorem shows that we
can also find such groups of cardinality λ+.

Theorem (De Bruijn, 1957)

If λ is an infinite cardinal,

then the group Fin(λ+) consisting of all
finite permutations of λ+ cannot be embedded into the group
Sym(λ) consisting of all permutations of λ.



Introduction

If K is a field of cardinality λ, then the group Aut(K) has cardinality
at most 2λ. A simple cardinality argument shows that there are
groups of cardinality 2λ that are not isomorphic to the automorphism
group of a field of cardinality λ. The following theorem shows that we
can also find such groups of cardinality λ+.

Theorem (De Bruijn, 1957)

If λ is an infinite cardinal, then the group Fin(λ+) consisting of all
finite permutations of λ+

cannot be embedded into the group
Sym(λ) consisting of all permutations of λ.



Introduction

If K is a field of cardinality λ, then the group Aut(K) has cardinality
at most 2λ. A simple cardinality argument shows that there are
groups of cardinality 2λ that are not isomorphic to the automorphism
group of a field of cardinality λ. The following theorem shows that we
can also find such groups of cardinality λ+.

Theorem (De Bruijn, 1957)

If λ is an infinite cardinal, then the group Fin(λ+) consisting of all
finite permutations of λ+ cannot be embedded into the group
Sym(λ) consisting of all permutations of λ.



Introduction

The following result shows that a wide variety of groups of cardinality
at most 2λ is isomorphic to the automorphism group of a field of
cardinality λ.

Theorem (Fried & Kollár (1982), Kaplan & Shelah (2012))

Let λ be an infinite cardinal. If L is a first-order language of
cardinality at most λ, M is an L-model of cardinality at most λ and
p is either 0 or a prime number, then there is a field K of
characteristic p and cardinality λ such that the groups Aut(M) and
Aut(K) are isomorphic.

In particular, every group of cardinality at most λ is isomorphic to the
automorphism group of a field of cardinality λ.



Introduction

The following result shows that a wide variety of groups of cardinality
at most 2λ is isomorphic to the automorphism group of a field of
cardinality λ.

Theorem (Fried & Kollár (1982), Kaplan & Shelah (2012))

Let λ be an infinite cardinal.

If L is a first-order language of
cardinality at most λ, M is an L-model of cardinality at most λ and
p is either 0 or a prime number, then there is a field K of
characteristic p and cardinality λ such that the groups Aut(M) and
Aut(K) are isomorphic.

In particular, every group of cardinality at most λ is isomorphic to the
automorphism group of a field of cardinality λ.



Introduction

The following result shows that a wide variety of groups of cardinality
at most 2λ is isomorphic to the automorphism group of a field of
cardinality λ.

Theorem (Fried & Kollár (1982), Kaplan & Shelah (2012))

Let λ be an infinite cardinal. If L is a first-order language of
cardinality at most λ,

M is an L-model of cardinality at most λ and
p is either 0 or a prime number, then there is a field K of
characteristic p and cardinality λ such that the groups Aut(M) and
Aut(K) are isomorphic.

In particular, every group of cardinality at most λ is isomorphic to the
automorphism group of a field of cardinality λ.



Introduction

The following result shows that a wide variety of groups of cardinality
at most 2λ is isomorphic to the automorphism group of a field of
cardinality λ.

Theorem (Fried & Kollár (1982), Kaplan & Shelah (2012))

Let λ be an infinite cardinal. If L is a first-order language of
cardinality at most λ, M is an L-model of cardinality at most λ

and
p is either 0 or a prime number, then there is a field K of
characteristic p and cardinality λ such that the groups Aut(M) and
Aut(K) are isomorphic.

In particular, every group of cardinality at most λ is isomorphic to the
automorphism group of a field of cardinality λ.



Introduction

The following result shows that a wide variety of groups of cardinality
at most 2λ is isomorphic to the automorphism group of a field of
cardinality λ.

Theorem (Fried & Kollár (1982), Kaplan & Shelah (2012))

Let λ be an infinite cardinal. If L is a first-order language of
cardinality at most λ, M is an L-model of cardinality at most λ and
p is either 0 or a prime number,

then there is a field K of
characteristic p and cardinality λ such that the groups Aut(M) and
Aut(K) are isomorphic.

In particular, every group of cardinality at most λ is isomorphic to the
automorphism group of a field of cardinality λ.



Introduction

The following result shows that a wide variety of groups of cardinality
at most 2λ is isomorphic to the automorphism group of a field of
cardinality λ.

Theorem (Fried & Kollár (1982), Kaplan & Shelah (2012))

Let λ be an infinite cardinal. If L is a first-order language of
cardinality at most λ, M is an L-model of cardinality at most λ and
p is either 0 or a prime number, then there is a field K of
characteristic p and cardinality λ

such that the groups Aut(M) and
Aut(K) are isomorphic.

In particular, every group of cardinality at most λ is isomorphic to the
automorphism group of a field of cardinality λ.



Introduction

The following result shows that a wide variety of groups of cardinality
at most 2λ is isomorphic to the automorphism group of a field of
cardinality λ.

Theorem (Fried & Kollár (1982), Kaplan & Shelah (2012))

Let λ be an infinite cardinal. If L is a first-order language of
cardinality at most λ, M is an L-model of cardinality at most λ and
p is either 0 or a prime number, then there is a field K of
characteristic p and cardinality λ such that the groups Aut(M) and
Aut(K) are isomorphic.

In particular, every group of cardinality at most λ is isomorphic to the
automorphism group of a field of cardinality λ.



Introduction

The following result shows that a wide variety of groups of cardinality
at most 2λ is isomorphic to the automorphism group of a field of
cardinality λ.

Theorem (Fried & Kollár (1982), Kaplan & Shelah (2012))

Let λ be an infinite cardinal. If L is a first-order language of
cardinality at most λ, M is an L-model of cardinality at most λ and
p is either 0 or a prime number, then there is a field K of
characteristic p and cardinality λ such that the groups Aut(M) and
Aut(K) are isomorphic.

In particular, every group of cardinality at most λ is isomorphic to the
automorphism group of a field of cardinality λ.



Introduction
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λ = ℵ0. Results of Winfried Just, Saharon Shelah and Simon Thomas
motivate its generalization to uncountable cardinalities.
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The following results show that the above question has a negative
answer for singular strong limit cardinals of countable cofinality.

Theorem (Shelah (2003))

Let L be a countable first-order language and M be a countable
L-model. Then Aut(M) is not an uncountable free group.

Theorem (Shelah (2003))

Let 〈λn | n < ω〉 be a sequence of infinite cardinals with 2λn < 2λn+1

for all n < ω, λ =
∑

n<ω λn and µ =
∑

n<ω 2
λn .

If L is a first-order language of cardinality λ and M is an L-model of
cardinality λ such that Aut(M) has cardinality greater than µ, then
Aut(M) is not a free group.
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In contrast, Winfried Just, Saharon Shelah and Simon Thomas
showed that it is consistent

to have a regular uncountable cardinal κ
with κ = κ<κ and a field K of cardinality κ whose automorphism
group is a free group of cardinality 2κ.

The following result shows that the existence of such fields already
follows from the axioms of ZFC for a larger class of cardinals.

Theorem (L. & Shelah)

Let λ be a cardinal with λ = λℵ0 and p be either 0 or a prime
number. Then there is a field K of characteristic p and cardinality λ
whose automorphism group is a free group of cardinality 2λ.

In particular, there always is a field K whose automorphism group is a
free group of cardinality greater than the cardinality of K.
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A combination of the above results allows us to completely answer
our question under certain cardinal arithmetic assumptions.

Corollary

Assume that the Continuum Hypothesis and the Singular Cardinal
Hypothesis hold. Then the following statements are equivalent for
every infinite cardinal λ.

There is a field of cardinality λ whose automorphism group is a
free group of cardinality greater than λ.

There is a cardinal κ ≤ λ with 2κ > λ and cof(κ) > ω.

The methods developed in the proof of the above theorem also allow
us to derive several other interesting statements.
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For example, we can use them to prove the corresponding results for
free abelian groups.

Theorem (L. & Shelah)

Let λ be a cardinal with λ = λℵ0 and p be either 0 or a prime
number. Then there is a field K of characteristic p and cardinality λ
whose automorphism group is a free abelian group of cardinality 2λ.

Again, this drastically contrasts the countable setting, as the
following result shows.

Theorem (Solecki (1999))

Let L be a countable first-order language and M be an L-model.
Then Aut(M) is not an uncountable free abelian group.
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We can also use these methods to show that the above cardinal
arithmetic assumption is consistently not necessary for the existence
of such fields.

Theorem (L. & Shelah)

Let λ be a cardinal with λ = λℵ0 and p be either 0 or a prime
number. If G is Add(ω, κ)-generic over the ground model V for some
cardinal κ, then there is a field K of characteristic p and cardinality λ
in V[G] such that Aut(K)V[G] is a free group of cardinality greater or
equal to (2λ)V in V[G].

Finally, our constructions show that, if it is consistent to have a
cardinal λ of uncountable cofinality such that there is no field of
cardinality λ whose automorphism group is a free group of cardinality
greater than λ, then it is necessary to use large cardinals to construct
a model of this statement.
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Theorem (L. & Shelah)

Let λ be a regular uncountable cardinal such that there is no field of
cardinality λ

whose automorphism group is a free group of cardinality
greater than λ. Then λ+ is an inaccessible cardinal in L[x] for every
x ⊆ κ.

Theorem (L. & Shelah)

Let λ be a singular cardinal of uncountable cofinality such that there
is no field of cardinality λ whose automorphism group is a free group
of cardinality greater than λ. Then there is an inner model with a
Woodin cardinal.
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Representing inverse limits as automorphism groups of fields

We recall some standard definitions.

A pair D = 〈D,≤D〉 is a directed set if ≤D is a reflexive, transitive
binary relation on the set D with the property that for all p, q ∈ D
there is a r ∈ D with p, q ≤D r.

Given a directed set D = 〈D,≤D〉, a pair

I = 〈〈Gp | p ∈ D〉, 〈hp,q | p, q ∈ D, p ≤D q〉〉

an inverse system of groups over D if the following statements hold
for all p, q, r ∈ D with p ≤D q ≤D r.

Gp is a group and hp,q : Gq −→ Gp is a homomorphism of
groups.

hp,p = idGp and hp,q ◦ hq,r = hp,r.

Given such an inverse system I, we call the subgroup

GI = {(gp)p∈D | hp,q(gq) = gp for all p, q ∈ D with p ≤D q}

of the product of the Gp’s the inverse limit of I.
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Representing inverse limits as automorphism groups of fields

The following result is the first step in the proof of the above theorem.

Theorem

Let
I = 〈〈Gq | q ∈ D〉, 〈hq,r | q, r ∈ D, q ≤D r〉〉

be an inverse system of groups over a directed set D = 〈D,≤D〉 and
p be either 0 or a prime number. Then there is a field K of
characteristic p with the following properties.

The groups Aut(K) and GI are isomorphic.

|K| ≤ max{ℵ0,
∑

q∈D |Gq|}.
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characteristic p with the following properties.

The groups Aut(K) and GI are isomorphic.
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Free groups as inverse limits

Let D = 〈D,≤D〉 be a directed set.

Consider the following game
G(D) of perfect information and infinite length between Player I and
Player II:

in the i-th round of this game Player I chooses an element
p2i from D and then Player II chooses an element p2i+1 from
D. Player I wins a run (pi)i<ω of G(D) if and only if either
there is an i < ω with p2i 6≤D p2i+1 or p2i+1 ≤D p2i+2 holds
for all i < ω and there is a p ∈ D with pi ≤D p for all i < ω.

A winning strategy for Player II is a function s : <ωD −→ D with the
property that Player II wins every run (pi)i<ω that is played according
to s, in the sense that s(〈p0, . . . , p2i〉) = p2i+1 holds for all i < ω.
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Free groups as inverse limits

The following result shows how free groups can be represented as
inverse limits of systems of groups assuming the existence of certain
suitable inverse systems of sets.

Theorem

Let D = 〈D,≤D〉 be a directed set with the property that Player II
has no winning strategy in G(D). If

I0 = 〈〈Ap | p ∈ D〉, 〈fp,q | p, q ∈ D, p ≤D q〉〉

is an inverse system of sets over D with inverse limit AI0 , then there
exists an inverse system of groups

I = 〈〈Gp | p ∈ D〉, 〈hp,q | p, q ∈ D, p ≤D q〉〉

over D with the following properties.

The group Gp has cardinality max{ℵ0, |Ap|} for every p ∈ D.

GI is a free group of cardinality max{ℵ0, |AI0|}.
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Good inverse systems of sets

Definition

Let λ and ν be infinite cardinals.

We say that an inverse system

I = 〈〈Ap | p ∈ D〉, 〈fp,q | p, q ∈ D, p ≤D q〉〉

of sets over a directed set D = 〈D,≤D〉 is (λ, ν)-good if the following
statements hold.

Player II has no winning strategy in G(D).
|D| ≤ λ and |Ap| ≤ λ for all p ∈ D.

The inverse limit of I has cardinality ν.

The following proposition summarizes the above results.

Proposition

If there exists a (λ, ν)-good inverse system I0 over D and p is either 0 or a
prime number, then there is a field K of characteristic p and cardinality λ
with the property that Aut(K) is a free group of cardinality ν.
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Good inverse systems of sets

Our theorem is now a consequence of the following lemma.

Lemma

If λ is a cardinal with λ = λℵ0 , then there is a (λ, 2λ)-good inverse system
of sets.

Proof.

Define D = 〈[λ]ℵ0 ,⊆〉. Given u, v ∈ [λ]ℵ0 with u ⊆ v, set Au = u2 and
define fu,v : Av −→ Au by fu,v(s) = s � u for all s ∈ v2. Let I denote the
resulting inverse system of sets.

If x ∈ λ2, then we define ~ax = (x � u)u∈[λ]ℵ0 ∈
∏
u∈[λ]ℵ0 Au. It is easy to

see that ~ax is an element of AI and the resulting map is a bijection of λ2
and AI.
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Let λ be a regular uncountable cardinal

and assume that there is a x ⊆ κ
such that λ+ is not inaccessible in L[x]. Then there is a y ⊆ λ with
λ+ = (λ+)L[y] and 〈(<κ2)L[y],⊆〉 is a tree of cardinality and height λ,
because our assumptions imply (λ<λ)L[y] = λ. Since the set of cofinal
branches through this tree has cardinality at least (2λ)L[y] = λ+, the above
lemma shows that there is a field of cardinality λ whose automorphism
group is a free group of cardinality λ+.

Now, let λ be a singular cardinal of uncountable cofinality and assume
that there is no inner model with a Woodin cardinal. Then we can
construct the core model K below one Woodin cardinal. It satisfies the
Generalized Continuum Hypothesis and has the covering property. In
particular, we have λ+ = (λ+)K. But this means that 〈(<λ2)K,⊆〉 is a
tree of cardinality and height λ and the set of cofinal branches through
this tree has cardinality at least (2λ)K = λ+. As above, there is a field of
cardinality λ whose automorphism group is a free group of cardinality λ+.
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Thank you for listening!
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