THE EMBEDDABILITY RELATION ON MODELS OF SIZE κ IS (STRONGLY) INVARIANTLY UNIVERSAL WHEN $\kappa^\kappa = \kappa$.

LUCA MOTTO ROS

Abstract. Given an uncountable cardinal κ, we analyze the descriptive set-theoretical complexity of the embeddability relation on models of size κ of a given $\mathcal{L}_{\kappa^+\kappa}$-sentence. In particular, we show that if $\kappa^{<\kappa} = \kappa$, then the relation \sqsubseteq_κ of embeddability on models of size κ is strongly invariantly universal for analytic quasi-orders, that is: for every analytic quasi-order R on the generalized Cantor space \mathcal{K} there is an $\mathcal{L}_{\kappa^+\kappa}$-sentence ψ such that the restriction of \sqsubseteq_κ to the models of ψ is Borel-isomorphic to R. As a consequence, we get that such embeddability relations fully characterize the class of all analytic quasi-orders on arbitrary standard Borel κ-spaces. This work extends previous results dealing with the special cases $\kappa = \omega$ (Friedman-Motto Ros 2010) and κ weakly compact (Motto Ros 2011), and is optimal: if $\kappa^{<\kappa} > \kappa$, then \sqsubseteq_κ is not invariantly universal. This is joint work with Heike Mildenberger.