THE INFLUENCE OF CLOSED MAXIMALITY PRINCIPLES ON Σ_1^1 -SUBSETS OF GENERALIZED BAIRE SPACES

PHILIPP LÜCKE

ABSTRACT. Let κ be an infinite cardinal. The generalized Baire space of κ is the set ${}^{\kappa}\kappa$ of all functions $f: \kappa \to \kappa$ equipped with the topology whose basic open sets are of the form $U_s = \{f \in {}^{\kappa}\kappa \mid s \subseteq f\}$ for some partial function $s: \kappa \xrightarrow{part} \kappa$ of cardinality less than $cof(\kappa)$. A subset of $({}^{\kappa}\kappa)^n$ is a Σ_1^1 -subset if it is the projection of a closed subset of $({}^{\kappa}\kappa)^{n+1}$ and it is a Π_1^1 -subset if its complement is a Σ_1^1 -subset.

It is a well-known phenomenon that many basic and interesting questions about Σ_1^1 - and Π_1^1 -subsets of generalized Baire spaces of regular uncountable cardinals κ with $\kappa = \kappa^{<\kappa}$ are independent from the axioms of set theory plus large cardinal axioms. We will consider the following examples of such questions.

- (1) We call a well-ordering $\langle A, \prec \rangle$ a Σ_1^1 -well-ordering of a subset of ${}^{\kappa}\kappa$ if \prec is a Σ_1^1 -subset of ${}^{\kappa}\kappa \times {}^{\kappa}\kappa$. Is the least upper bound of the order-types of Σ_1^1 -well-orderings of subsets of ${}^{\kappa}\kappa$ greater than 2^{κ} ?
- (2) Given a regular cardinal λ < κ, we define Club(S^κ_λ) to be the set of all characteristic functions of subsets X ⊆ κ such that S^κ_λ ∩ (κ \ X) is not a stationary subset of κ, where S^κ_λ = {α < κ | cof(α) = λ}. Clearly, Club(S^κ_λ) is a Σ¹₁-subset of ^κκ. Is Club(S^κ_λ) also a Π¹₁-subset?
- (3) Let \mathcal{TO}_{κ} be the class of all trees of cardinality and height κ without cofinal branches and let \preceq denote the ordering of trees in \mathcal{TO}_{κ} under order-preserving embeddability. We can identify \mathcal{TO}_{κ} with a Π_1^1 -subset of ${}^{\kappa}\kappa$ and \preceq is equal to the intersection of a Σ_1^1 -subset of ${}^{\kappa}\kappa \times {}^{\kappa}\kappa$ with $\mathcal{TO}_{\kappa} \times \mathcal{TO}_{\kappa}$. What is the bounding and the dominating number of the resulting partial order $\langle \mathcal{TO}_{\kappa}, \preceq \rangle$?

In my talk, I want to introduce a class of forcing axioms that settle the above questions. These axioms are variants of the *maximality principle* introduced by Jonathan Stavi and Jouko Väänänen and rediscovered by Joel Hamkins.

Mathematisches Institut, Rheinische Friedrich-Wilhelms-Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany

E-mail address: pluecke@math.uni-bonn.de