12. Problem set for "Models of set theory I", Summer 2011

Stefan Geschke, Philipp Schlicht, Anne Fernengel, Allard van Veen

Problem 45 (Two-step iteration and κ -chain condition). Let κ be an uncountable regular cardinal. A partial order (\mathbb{P}, \leq) satisfies the κ -c.c. iff $|A| < \kappa$ for every antichain $A \subseteq \mathbb{P}$. Suppose \mathbb{P} is a partial order and $\dot{\mathbb{Q}}$ is a \mathbb{P} -name such that $1_{\mathbb{P}} \Vdash (\dot{\mathbb{Q}}$ is a partial order). Prove that if $\mathbb{P} * \dot{\mathbb{Q}}$ satisfies the κ -c.c., then $1_{\mathbb{P}} \Vdash (\dot{\mathbb{Q}}$ satisfies the κ -c.c.). You may prove the claim of this and the following problems inside a countable transitive model M of ZFC, if this is more convenient for you.

Problem 46 (Two-step iteration of κ -closed forcings). Let κ be an uncountable regular cardinal. A partial order (\mathbb{P}, \leq) is κ -closed iff for every $\lambda < \kappa$ and every sequence $p_0 \geq p_1 \geq ... \geq p_\alpha \geq ...$ for $\alpha < \lambda$ in \mathbb{P} , there is a condition $p \in \mathbb{P}$ with $p \leq p_\alpha$ for all $\alpha < \lambda$ (this should not be confused with another commonly used definition of κ -closure, where $\lambda < \kappa$ is replaced by $\lambda \leq \kappa$, as in Jech's book). Suppose \mathbb{P} is a κ -closed partial order and $\dot{\mathbb{Q}}$ is a \mathbb{P} -name such that $1_{\mathbb{P}} \Vdash (\dot{\mathbb{Q}} \text{ is a } \kappa\text{-closed partial order})$, then $\mathbb{P}*\dot{\mathbb{Q}}$ is κ -closed.

Problem 47. Suppose \mathbb{P} and \mathbb{Q} are partial orders. Show that there is a dense embedding (see Problem 25) $f : \mathbb{P} \times \mathbb{Q} \to \mathbb{P} * \check{\mathbb{Q}}$.

Problem 48. Suppose (T, \leq) is a pruned Suslin tree as in the proof of Theorem 9.4, i.e. T is a Suslin tree and every node of T has successors on every countable height. Let (\mathbb{P}, \leq) denote T with the reversed partial order. We equip $\mathbb{P} \times \mathbb{P}$ with the product partial order, i.e. $(p,q) \leq (r,s)$ iff $p \leq r$ and $q \leq s$. Show that $(\mathbb{P} \times \mathbb{P}, \leq)$ does not satisfy the c.c.c.

Please hand in your solutions on Wednesday, 06 July before the lecture. This is the last problem set.