6. Problem set for "Models of set theory I", Summer 2011

Stefan Geschke, Philipp Schlicht, Anne Fernengel, Allard van Veen

Problem 21 (Regular open sets). Suppose (\mathbb{P}, \leq) is a partial order.
a) Let $\mathcal{F} \subseteq \operatorname{ro}(\mathbb{P})$ be a family of regular open sets. Show that $\bigcap \mathcal{F}$ is regular open.
b) Let $A \subseteq \mathbb{P}$. Show that $\neg A$ is a regular open subset of \mathbb{P}.
c) Suppose $\mathbb{P}=F n(\omega, 2)$. Find regular open sets $A, B \subseteq \mathbb{P}$ such that $A \cup B$ is not regular open.
d) Suppose M is a countable transitive model of ZFC and $(\mathbb{P},<) \in M$. Show that for every formula $\varphi\left(\tau_{1}, \ldots, \tau_{n}\right)$ in the forcing language, the truth value $\llbracket \varphi\left(\tau_{1}, \ldots, \tau_{n}\right) \rrbracket$ is a regular open subset of \mathbb{P}. Lemma 6.19 might be useful.

Solution: a) If $p \in \operatorname{reg}(\bigcap \mathcal{F})$ (i.e. $\bigcap \mathcal{F}$ is predense below p), then for every $A \in \mathcal{F}, A$ is predense below p. Since each $A \in \mathcal{F}$ is regular open, $p \in A$. So $\operatorname{reg}(\bigcap \mathcal{F}) \subseteq \bigcap \mathcal{F}$.
b) Let $p \in \operatorname{reg}(\neg A)$ (i.e. $\neg A$ is predense below p, recall $\neg A=\{p: \forall q \in$ $A(p \perp q)\})$. To show $p \in \neg A$, suppose $p \| q$ for some $q \in A$. Let $r \leq p, q$. Let $s \in \neg A$ with $s \| r$. Then $s \| q$. Contradiction.
c) Let $A=\{p: p(0)=0\}$ and $B=\{p: p(0)=1\}$. Then $A \cup B$ is predense below \emptyset, but $\emptyset \notin A \cup B$.
d) Suppose $\llbracket \varphi\left(\tau_{1}, \ldots, \tau_{n}\right) \rrbracket$ is predense below p. We want to show $p \in$ $\llbracket \varphi\left(\tau_{1}, \ldots, \tau_{n}\right) \rrbracket$. If G is generic over M and $p \in G$, then $G \cap \llbracket \varphi\left(\tau_{1}, \ldots, \tau_{n}\right) \rrbracket \neq \emptyset$ by Lemma 6.19 c). Hence $M[G] \vDash \varphi\left(\tau_{1}, \ldots, \tau_{n}\right)$, and (by definition) $p \in$ $\llbracket \varphi\left(\tau_{1}, \ldots, \tau_{n}\right) \rrbracket$.

Problem 22 (Separative partial orders). A partial order $(\mathbb{P},<)$ is called weakly separative if for all $p, q \in \mathbb{P}$ we have

$$
p=q \Leftrightarrow \forall r \in \mathbb{P}(r \perp p \Leftrightarrow r \perp q) .
$$

\mathbb{P} is called separative if for all $p, q \in \mathbb{P}$ with $p \not \leq q$, there is $r \leq p$ with $r \perp q$. Suppose \mathbb{B} is a Boolean algebra with smallest element 0 . A set $A \subseteq \mathbb{B}$ is called dense in \mathbb{B} if $A-\{0\}$ is dense in $\mathbb{B}-\{0\}$. Let $e: \mathbb{P} \rightarrow r o(\mathbb{P})$ be the map defined in section 6.3. Show:
a) Every separative partial order is weakly separative.
b) Give an example of a finite partial order that is weakly separative, but not separative. It is sufficient to find a partial order without a largest element.
c) The range of e is dense in $\operatorname{ro}(\mathbb{P})$.
d) e is one-to-one iff \mathbb{P} is weakly separative.

Solution: a) Suppose $\forall r \in \mathbb{P}(r \perp p \Leftrightarrow r \perp q)$ but $p \neq q$, say $p \not \leq q$. Let $r \leq p$ with $r \perp q$. Contradiction.
b) a, b, c minimal, $a, b \leq d, a, b, c \leq e$.
c) Given $A \in \operatorname{ro}(\mathbb{P})$, let $p \in A$. Then $e(p)=\operatorname{reg}(\{p\}) \subseteq \operatorname{reg}(A)=A$, so $e(p) \leq A$ in $r o(\mathbb{P})$.
d) Suppose e is one-to-one. If $p \neq q$, then $e(p) \neq e(q)$, so there is $r \in \mathbb{P}$ with $\{p\}$ predense below r and $\{q\}$ not predense below r. Let $s \leq r$ with $s \perp q$. Then $s \| p$ but $s \perp q$. The other direction is easy.

Problem 23 (Boolean algebras). Suppose \mathbb{B} is a complete Boolean algebra and $S \subseteq \mathbb{B}-\{0\}$. Let $p \| q$ mean that p, q are compatible in the partial order $\mathbb{B}-\{0\}$, i.e. there is $r \leq p, q$ in $\mathbb{B}-\{0\}$. Show for all $p, q \in \mathbb{B}-\{0\}$:
a) $p \perp q$ iff $p \wedge q=0$, and $p \leq q$ iff $p \wedge q=p$ iff $p \wedge \neg q=0$.
b) $p \leq q$ implies $r \wedge p \leq r \wedge q$, and (\mathbb{B}, \leq) is separative (see Problem 22).
c) $p \wedge \bigvee S=\bigvee_{s \in S}(p \wedge s)$ (to show this, write $s=(p \wedge s) \vee(\neg p \wedge s)$ for each $s \in S)$.
d) S is predense below p iff $\forall q \leq p(q \| \bigvee S)$ iff $p \leq \bigvee S$.

Solution: a) $p \wedge q=0$ iff there is no $0 \neq r \leq p, q . p \leq q$ iff $p \wedge q=p$ is easy. If $p \wedge \neg q=0$, then $p=(p \wedge \neg q) \vee(p \wedge q)=p \wedge q$. If $p \wedge q=p$ and $p \wedge \neg q \neq 0$, $p \wedge \neg q$ is a common extension of q and $\neg q$, contradiction.
b) If $p \wedge q=p$, then $r \wedge p=r \wedge(p \wedge q) \leq r \wedge q . \mathbb{B}$ is separative: If $p \not \leq q$, let $r:=p \wedge \neg q \neq 0$ by a). Then $r \leq p$ and $r \perp q$.
c) For \geq note that $p \wedge \bigvee S$ is an upper bound of all $p \wedge s$. For \leq let $q=\bigvee_{s \in S}(p \wedge s)$ and write $s=(p \wedge s) \vee(\neg p \wedge s)$ for all $s \in S$. Then $q \vee \neg p$ is an upper bound of all $s \in S$, so $\bigvee S \leq q \vee \neg p$. Then $p \wedge \bigvee S \leq q$.
d) That S is predense below p means that for all $q \leq p$ there is $s \in S$ with $s \| q$ (i.e. $s \wedge q \neq 0)$. This is equivalent to $\forall q \leq p(q \wedge \bigvee S \neq 0)$ by c). If $p \leq \bigvee S$, this is clearly true. If $p \not \leq \bigvee S$, let $r \leq p$ with $r \perp \bigvee S$. Then $\bigvee_{s \in S}(r \wedge s)=0$ by c), so $\forall s \in S(r \wedge s=0)$. So S if not predense below p.

Problem 24 (Generic filters). Suppose N is a countable transitive model of ZFC and $(\mathbb{P}, \leq) \in N$ is a partial order.
a) Suppose H is an arbitrary subset of \mathbb{P}. If σ, τ are \mathbb{P}-names, let $\sigma<_{H} \tau$ iff there is $p \in H$ with $(\sigma, p) \in \tau$. Show that $<_{H}$ is wellfounded on $N^{\mathbb{P}}$. Find the function F that is used in the Recursion Theorem 2.4 to define τ_{H} for $\tau \in N^{\mathbb{P}}$ (as in Definition 6.8).
b) Suppose $H \subseteq \mathbb{P}$ and $H \in N$. Show by induction on $<_{H}$ that $N[H] \subseteq N$.
c) Let $\alpha:=O r d^{N}$. Find a set $a \subseteq \omega$ such that $\alpha \in M$ for every model of ZFC with $a \in M$. You may use that there is a bijection $g: \omega \times \omega \rightarrow \omega$ which is an element of every transitive model of ZFC.
d) Let $\mathbb{P}=F n(\omega, 2)$ and $\alpha:=\operatorname{Ord}^{N}$. Let $\chi_{a}: \omega \rightarrow 2$ be the characteristic function of the set a in c). Use Problem 13 to find a filter $H \subseteq \mathbb{P}$ such that $\alpha \in M$ for every transitive model M of ZFC with $H \in M$. Conclude that $H \notin N[G]$ for every generic extension $N[G]$ of N.

Solution: a) $<_{H}$ is well-founded since $\sigma<_{H} \tau$ implies $\operatorname{rank}(\sigma)<\operatorname{rank}(\tau)$. The function in the Recursion Theorem is $F(a, h)=\operatorname{range}(h)$.
b) If $H \in N$, we can apply the Recursion Theorem in N and define an interpretation that we could call $\tau_{H, N}$ for $\tau \in N^{\mathbb{P}}$, so $\tau_{H, N}=\left\{\sigma_{H, N}: \exists p \in\right.$ $H((\sigma, p) \in \tau)\}$. Then $\tau_{H}=\tau_{H, N}$ by induction on $<_{H}$.
c) Let $f: \omega \rightarrow \alpha$ be a bijection and let E be the preimage of \in. Let $g: \omega \times \omega \rightarrow \omega$ be a bijection (for example we can choose $g \in L_{\omega+2}$) and let a be the image of E. Every transitive model of ZFC which contains a contains $g^{-1}[a]$ and hence α by applying the Mostowski collapse.
d) Let $H=G_{\chi_{a}}$ in Problem 13 d). Then every transitive model of ZFC with $H \in M$ contains $\chi_{a}=\bigcup G_{\chi_{a}}$ and hence α by c).

Due Wednesday 18 May.

