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Problem 21 (Regular open sets). Suppose (P,≤) is a partial order.

a) Let F ⊆ ro(P) be a family of regular open sets. Show that
⋂
F is

regular open.

b) Let A ⊆ P. Show that ¬A is a regular open subset of P.

c) Suppose P = Fn(ω, 2). Find regular open sets A,B ⊆ P such that

A ∪B is not regular open.

d) Suppose M is a countable transitive model of ZFC and (P, <) ∈M .

Show that for every formula ϕ(τ1, ..., τn) in the forcing language,

the truth value Jϕ(τ1, ..., τn)K is a regular open subset of P. Lemma

6.19 might be useful.

Solution: a) If p ∈ reg(
⋂
F) (i.e.

⋂
F is predense below p), then for every

A ∈ F , A is predense below p. Since each A ∈ F is regular open, p ∈ A. So

reg(
⋂
F) ⊆

⋂
F .

b) Let p ∈ reg(¬A) (i.e. ¬A is predense below p, recall ¬A = {p : ∀q ∈
A(p ⊥ q)}). To show p ∈ ¬A, suppose p||q for some q ∈ A. Let r ≤ p, q. Let

s ∈ ¬A with s||r. Then s||q. Contradiction.

c) Let A = {p : p(0) = 0} and B = {p : p(0) = 1}. Then A ∪ B is predense

below ∅, but ∅ /∈ A ∪B.

d) Suppose Jϕ(τ1, ..., τn)K is predense below p. We want to show p ∈
Jϕ(τ1, ..., τn)K. If G is generic over M and p ∈ G, then G∩ Jϕ(τ1, ..., τn)K 6= ∅
by Lemma 6.19 c). Hence M [G] � ϕ(τ1, ..., τn), and (by definition) p ∈
Jϕ(τ1, ..., τn)K.

Problem 22 (Separative partial orders). A partial order (P, <) is called

weakly separative if for all p, q ∈ P we have

p = q ⇔ ∀r ∈ P(r ⊥ p⇔ r ⊥ q).

P is called separative if for all p, q ∈ P with p 6≤ q, there is r ≤ p with r ⊥ q.
Suppose B is a Boolean algebra with smallest element 0. A set A ⊆ B is

called dense in B if A − {0} is dense in B − {0}. Let e : P → ro(P) be the

map defined in section 6.3. Show:

a) Every separative partial order is weakly separative.



b) Give an example of a finite partial order that is weakly separative,

but not separative. It is sufficient to find a partial order without a

largest element.

c) The range of e is dense in ro(P).

d) e is one-to-one iff P is weakly separative.

Solution: a) Suppose ∀r ∈ P(r ⊥ p ⇔ r ⊥ q) but p 6= q, say p 6≤ q. Let

r ≤ p with r ⊥ q. Contradiction.

b) a, b, c minimal, a, b ≤ d, a, b, c ≤ e.
c) Given A ∈ ro(P), let p ∈ A. Then e(p) = reg({p}) ⊆ reg(A) = A, so

e(p) ≤ A in ro(P).

d) Suppose e is one-to-one. If p 6= q, then e(p) 6= e(q), so there is r ∈ P with

{p} predense below r and {q} not predense below r. Let s ≤ r with s ⊥ q.

Then s||p but s ⊥ q. The other direction is easy.

Problem 23 (Boolean algebras). Suppose B is a complete Boolean algebra

and S ⊆ B−{0}. Let p||q mean that p, q are compatible in the partial order

B− {0}, i.e. there is r ≤ p, q in B− {0}. Show for all p, q ∈ B− {0}:

a) p ⊥ q iff p ∧ q = 0, and p ≤ q iff p ∧ q = p iff p ∧ ¬q = 0.

b) p ≤ q implies r ∧ p ≤ r ∧ q, and (B,≤) is separative (see Problem

22).

c) p∧
∨
S =

∨
s∈S(p∧ s) (to show this, write s = (p∧ s)∨ (¬p∧ s) for

each s ∈ S).

d) S is predense below p iff ∀q ≤ p(q||
∨
S) iff p ≤

∨
S.

Solution: a) p ∧ q = 0 iff there is no 0 6= r ≤ p, q. p ≤ q iff p ∧ q = p is easy.

If p∧¬q = 0, then p = (p∧¬q)∨ (p∧ q) = p∧ q. If p∧ q = p and p∧¬q 6= 0,

p ∧ ¬q is a common extension of q and ¬q, contradiction.

b) If p∧ q = p, then r ∧ p = r ∧ (p∧ q) ≤ r ∧ q. B is separative: If p 6≤ q, let

r := p ∧ ¬q 6= 0 by a). Then r ≤ p and r ⊥ q.
c) For ≥ note that p ∧

∨
S is an upper bound of all p ∧ s. For ≤ let

q =
∨
s∈S(p ∧ s) and write s = (p ∧ s) ∨ (¬p ∧ s) for all s ∈ S. Then q ∨ ¬p

is an upper bound of all s ∈ S, so
∨
S ≤ q ∨ ¬p. Then p ∧

∨
S ≤ q.

d) That S is predense below p means that for all q ≤ p there is s ∈ S with

s||q (i.e. s ∧ q 6= 0). This is equivalent to ∀q ≤ p(q ∧
∨
S 6= 0) by c). If

p ≤
∨
S, this is clearly true. If p 6≤

∨
S, let r ≤ p with r ⊥

∨
S. Then∨

s∈S(r ∧ s) = 0 by c), so ∀s ∈ S(r ∧ s = 0). So S if not predense below p.

Problem 24 (Generic filters). Suppose N is a countable transitive model

of ZFC and (P,≤) ∈ N is a partial order.



a) Suppose H is an arbitrary subset of P. If σ, τ are P-names, let

σ <H τ iff there is p ∈ H with (σ, p) ∈ τ . Show that <H is well-

founded on NP. Find the function F that is used in the Recursion

Theorem 2.4 to define τH for τ ∈ NP (as in Definition 6.8).

b) Suppose H ⊆ P and H ∈ N . Show by induction on <H that

N [H] ⊆ N .

c) Let α := OrdN . Find a set a ⊆ ω such that α ∈ M for every

model of ZFC with a ∈ M . You may use that there is a bijection

g : ω×ω → ω which is an element of every transitive model of ZFC.

d) Let P = Fn(ω, 2) and α := OrdN . Let χa : ω → 2 be the charac-

teristic function of the set a in c). Use Problem 13 to find a filter

H ⊆ P such that α ∈M for every transitive model M of ZFC with

H ∈M . Conclude that H /∈ N [G] for every generic extension N [G]

of N .

Solution: a) <H is well-founded since σ <H τ implies rank(σ) < rank(τ).

The function in the Recursion Theorem is F (a, h) = range(h).

b) If H ∈ N , we can apply the Recursion Theorem in N and define an

interpretation that we could call τH,N for τ ∈ NP, so τH,N = {σH,N : ∃p ∈
H((σ, p) ∈ τ)}. Then τH = τH,N by induction on <H .

c) Let f : ω → α be a bijection and let E be the preimage of ∈. Let

g : ω × ω → ω be a bijection (for example we can choose g ∈ Lω+2) and

let a be the image of E. Every transitive model of ZFC which contains a

contains g−1[a] and hence α by applying the Mostowski collapse.

d) Let H = Gχa in Problem 13 d). Then every transitive model of ZFC with

H ∈M contains χa =
⋃
Gχa and hence α by c).
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