4. Problem set for "Models of set theory I", Summer 2011

Stefan Geschke, Philipp Schlicht, Anne Fernengel, Allard van Veen

Problem 13. The set Fn(X, 2) of finite partial functions from X to 2 is partially ordered by reverse inclusion, i.e. $p \leq q$ iff $p \supseteq q$. Show:

- (1) If $G \subseteq Fn(X, 2)$ is a filter, then $f_G := \bigcup G$ is a function.
- (2) For all $x \in X$ the set $D_x := \{p \in Fn(X, 2) : x \in dom(p)\}$ is dense in Fn(X, 2).
- (3) If $G \subseteq Fn(X, 2)$ is a $\{D_x : x \in X\}$ -generic filter, then $dom(f_G) = X$.
- (4) For every function $f: X \to 2$ the set $G_f := \{p \in Fn(X, 2) : p \subseteq f\}$ is a $\{D_x : x \in X\}$ -generic filter.

(1) Suppose $(x, i), (x, j) \in \bigcup G$ with $i \neq j$. Let $p, q \in G$ with $(x, i) \in p$ and $(y, j) \in q$. Then there is a function r (in G) with $p \cup q \subseteq r$, contradiction. (2) Given $p \in Fn(X, 2)$ with $x \notin dom(p)$, let $q = p \cup \{(x, 0)\}$, then $q \in D_x$. (3) By (1) and (2).

(4) G_f is a filter since it is downwards closed and any $p, q \in G_f$ are compatible. Clearly $G \cap D_x \neq \emptyset$.

Problem 14. Let (A, \leq_A) and (B, \leq_B) be countably infinite, dense linear orders without endpoints. (Recall that a linear order is dense if strictly between any two elements there is another element of the linear order.) Show that (A, \leq_A) and (B, \leq_B) are isomorphic.

Hint: Use the Rasiowa-Sikorski Theorem. Consider the partial \mathbb{P} of isomorphisms between finite subsets of A and B, ordered by reverse inclusion. Find a countable family \mathcal{D} of dense subsets of \mathbb{P} such that for every \mathcal{D} -generic filter $G \subseteq \mathbb{P}$ the function $\bigcup G$ is an isomorphism from A to B. It might help to take another look at the previous problem.

Let \mathcal{D} be the set of $D_a := \{p : A \to B : p \text{ is a finite partial isomorphism} with <math>a \in dom(p)\}$ and $D^b := \{p : A \to B : p \text{ is a finite partial isomorphism} with <math>b \in range(p)\}.$

To see that D_a is dense, suppose $p: A \to B$ is a partial isomorphism with $a \notin dom(p)$. Let $dom(p) = \{a_i : i < n\}$ with $a_0 < a_1 < \ldots < a_{n-1}$ and $k \le n$ with $a_0 < \ldots < a_{k-1} < a < a_k < \ldots < a_{n-1}$. We can choose some $b \in B$ with $p(a_{k-1}) < b < p(a_k)$ by density of B (if k = 0 choose $b < p(a_0)$ and

if k = n - 1 choose $b > p(a_{k-1})$, possible since B has no end points). Let $q = p \cup \{(a, b)\} \in D_a$. Density of D^b is similar.

Problem 15. Suppose \mathbb{P} is a partial order and $X \subseteq \mathbb{P}$. Use Zorn's Lemma to show that every antichain A with $A \subseteq X$ is contained in an antichain $B \subseteq X$ which is maximal with the property $B \subseteq X$. Show that every condition $p \in X$ is compatible with some condition $q \in B$.

Let S be the set of antichains B in \mathbb{P} with $A \subseteq B \subseteq X$. Every chain in S has an upper bound (its union), so there is a maximal element B by Zorn's Lemma. If some $p \in X$ is incompatible with all $q \in B$, then B is not maximal.

Problem 16. Suppose \mathbb{P} is a partial order and A is an antichain in \mathbb{P} . A set $D \subseteq \mathbb{P}$ is *predense* if the set $\{p \in \mathbb{P} : \exists q \in D(p \leq q)\}$ is dense. Show:

- (1) A is a maximal antichain iff A is predense.
- (2) Suppose D is dense and $A \subseteq D$ is maximal among all antichains $B \subseteq D$, then A is a maximal antichain.

(1) Suppose A is a maximal antichain. If A is not predense, it can be extended to a strictly larger antichain, contradiction.

Suppose A is predense. If A is not a maximal antichain, there is $p \in \mathbb{P}$ with $p \perp q$ for all $q \in A$. Let $D := \{p \in \mathbb{P} : \exists q \in A (p \leq q)\}$ (this is dense). Let $r \leq p$ with $r \in D$ and $q \in A$ with $r \leq q$. Then $p \mid \mid q$, contradiction.

(2) If A is a maximal antichain (and hence predense by (1)), D is predense. Suppose D is predense and A is not a maximal antichain, i.e. there is $p \in \mathbb{P}$ which is incompatible with every $q \in A$. Let $r \in D$ with $r \leq p$ (since D is dense). There is $q \in A$ with q || r since A is maximal with $A \subseteq D$. So p || q, contradiction.