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Problem 13. The set Fn(X, 2) of finite partial functions from X to 2 is

partially ordered by reverse inclusion, i.e. p ≤ q iff p ⊇ q. Show:

(1) If G ⊆ Fn(X, 2) is a filter, then fG :=
⋃

G is a function.

(2) For all x ∈ X the set Dx := {p ∈ Fn(X, 2) : x ∈ dom(p)} is dense

in Fn(X, 2).

(3) If G ⊆ Fn(X, 2) is a {Dx : x ∈ X}-generic filter, then dom(fG) = X.

(4) For every function f : X → 2 the set Gf := {p ∈ Fn(X, 2) : p ⊆ f}
is a {Dx : x ∈ X}-generic filter.

(1) Suppose (x, i), (x, j) ∈
⋃

G with i 6= j. Let p, q ∈ G with (x, i) ∈ p and

(y, j) ∈ q. Then there is a function r (in G) with p ∪ q ⊆ r, contradiction.

(2) Given p ∈ Fn(X, 2) with x /∈ dom(p), let q = p ∪ {(x, 0)}, then q ∈ Dx.

(3) By (1) and (2).

(4) Gf is a filter since it is downwards closed and any p, q ∈ Gf are compat-

ible. Clearly G ∩Dx 6= ∅.

Problem 14. Let (A,≤A) and (B,≤B) be countably infinite, dense linear

orders without endpoints. (Recall that a linear order is dense if strictly

between any two elements there is another element of the linear order.)

Show that (A,≤A) and (B,≤B) are isomorphic.

Hint: Use the Rasiowa-Sikorski Theorem. Consider the partial P of iso-

morphisms between finite subsets of A and B, ordered by reverse inclusion.

Find a countable family D of dense subsets of P such that for every D-generic

filter G ⊆ P the function
⋃

G is an isomorphism from A to B. It might help

to take another look at the previous problem.

Let D be the set of Da := {p : A → B : p is a finite partial isomorphism

with a ∈ dom(p)} and Db := {p : A→ B : p is a finite partial isomorphism

with b ∈ range(p)}.
To see that Da is dense, suppose p : A → B is a partial isomorphism with

a /∈ dom(p). Let dom(p) = {ai : i < n} with a0 < a1 < ... < an−1 and k ≤ n

with a0 < ... < ak−1 < a < ak < ... < an−1. We can choose some b ∈ B

with p(ak−1) < b < p(ak) by density of B (if k = 0 choose b < p(a0) and



if k = n − 1 choose b > p(ak−1), possible since B has no end points). Let

q = p ∪ {(a, b)} ∈ Da.

Density of Db is similar.

Problem 15. Suppose P is a partial order and X ⊆ P. Use Zorn’s Lemma

to show that every antichain A with A ⊆ X is contained in an antichain

B ⊆ X which is maximal with the property B ⊆ X. Show that every

condition p ∈ X is compatible with some condition q ∈ B.

Let S be the set of antichains B in P with A ⊆ B ⊆ X. Every chain in S

has an upper bound (its union), so there is a maximal element B by Zorn’s

Lemma. If some p ∈ X is incompatible with all q ∈ B, then B is not

maximal.

Problem 16. Suppose P is a partial order and A is an antichain in P. A

set D ⊆ P is predense if the set {p ∈ P : ∃q ∈ D(p ≤ q)} is dense. Show:

(1) A is a maximal antichain iff A is predense.

(2) Suppose D is dense and A ⊆ D is maximal among all antichains

B ⊆ D, then A is a maximal antichain.

(1) Suppose A is a maximal antichain. If A is not predense, it can be

extended to a strictly larger antichain, contradiction.

Suppose A is predense. If A is not a maximal antichain, there is p ∈ P with

p ⊥ q for all q ∈ A. Let D := {p ∈ P : ∃q ∈ A(p ≤ q)} (this is dense). Let

r ≤ p with r ∈ D and q ∈ A with r ≤ q. Then p||q, contradiction.

(2) If A is a maximal antichain (and hence predense by (1)), D is predense.

Suppose D is predense and A is not a maximal antichain, i.e. there is p ∈ P
which is incompatible with every q ∈ A. Let r ∈ D with r ≤ p (since D is

dense). There is q ∈ A with q||r since A is maximal with A ⊆ D. So p||q,

contradiction.


