3. Problem set for "Models of set theory I", Summer 2011

Stefan Geschke, Philipp Schlicht, Anne Fernengel, Allard van Veen

In the exercise courses, you could prove Exercise 4.7: The Mostowski collapse $\mu:(C, \in) \rightarrow(D, \in)$ is the identity on transitive classes $T \subseteq C$. Induction: $\mu(a)=\{\mu(b): b \in C, b \in a\}=a$ for $a \in T$.

Problem 9. Suppose M is a transitive class such that for every set $x \subseteq M$ there is a set $y \in M$ with $x \subseteq y$ and (M, \in) satisfies the Separation Axiom for Δ_{0} formulas. Prove that

1. L satisfies the assumptions on M,
2. if $x \in M$, then $\bigcup x \in M$, and
3. if $x \in M$, then there is some $y \in M$ with $(M, \in) \vDash$ ' y is the power set of x^{6}.
4. Let $\alpha=\sup \{\rho(z)+1: z \in x\}$ where ρ is the L-rank, so $x \subseteq L_{\alpha}$. For Δ_{0} separation, suppose $a \in L_{\alpha}$, so $a \subseteq L_{\alpha+1}$. Since Δ_{0} formulas are absolute between transitive classes, the subset of a defined by some Δ_{0} formula φ is an element of $L_{\alpha+2}$.
5. Since M is transitive, $\bigcup x \subseteq M$. Find a superset y and apply Δ_{0} separation.
6. Let $y=\mathcal{P}(x) \cap M$. Find a superset $z \in M$ of y and apply Δ_{0} separation to show $y \in M$.

Problem 10. Suppose $M=\left(X, R_{i}, f_{i}: i \in \omega\right)$ is a structure on a set $X \supseteq \aleph_{1}$ in a countable language. A set $C \subseteq \aleph_{1}$ is closed in \aleph_{1} if $\alpha \in C$ for all $\alpha<\aleph_{1}$ with $C \cap \alpha$ unbounded in α. Prove that there is a closed unbounded (club) subset $C \subseteq \aleph_{1}$ such that for every $\alpha \in C$ there is a substructure $N=\left(\bar{X}, \bar{R}_{i}, \bar{f}_{i}: i \in \omega\right) \prec M$ with $X \cap \aleph_{1}=\alpha$.

Hint: Use Skolem hulls (closure under Skolem functions, see the proof of Theorem 4.4) to construct a sequence ($X_{\alpha}: \alpha<\aleph_{1}$) such that each $\left(X_{\alpha}, R_{i} \upharpoonright X_{\alpha}, f_{i} \upharpoonright X_{\alpha}: i \in \omega\right)$ is a countable elementary substructure of M and
i. $X_{\alpha} \subseteq X_{\beta}$ for all $\alpha<\beta<\aleph_{1}$,
ii. $X_{\gamma}=\bigcup_{\beta<\gamma} X_{\beta}$ for all limit ordinals $\gamma<\aleph_{1}$,
iii. $X_{\alpha} \cap \aleph_{1} \in \aleph_{1}$ for each $\alpha<\aleph_{1}$,
and the set of $X_{\alpha} \cap \aleph_{1}$ forms a club subset of \aleph_{1}.

In the successor step, let $X_{\alpha}^{0}=X_{\alpha}, X_{\alpha}^{n+1}=\operatorname{sk}\left(X_{\alpha}^{n} \cup \sup \left(X_{\alpha}^{n} \cap \aleph_{1}\right) \cup\right.$ $\left.\left\{\sup \left(X_{\alpha}^{n} \cap \aleph_{1}\right)\right\}\right)$, and $X_{\alpha+1}=\bigcup_{n \in \omega} X_{\alpha}^{n}$. Take unions at limits. All X_{α} will be countable. Check the required properties (trivial).

Problem 11. Let \sqsubset be a well-ordering of a set X.

1. For all $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in X$ let $\bar{a}=\left(a_{1}, \ldots, a_{n}\right) \sqsubset^{n} \bar{b}=\left(b_{1}, \ldots, b_{n}\right)$ iff $\bar{a} \neq \bar{b}$ and $a_{i} \sqsubset b_{i}$ for the minimal i with $a_{i} \neq b_{i}$. Prove that \sqsubset^{n} is a well-ordering of X^{n}.
2. For all $\bar{a}, \bar{b} \in X^{<\omega}=\bigcup_{n \in \omega} X^{n}$ let $\bar{a} \sqsubset^{<\omega} \bar{b}$ if either \bar{a} is a shorter finite sequence than \bar{b} or for some $n \in \omega, \bar{a}, \bar{b} \in X^{n}$ and $\bar{a} \sqsubset^{n} \bar{b}$. Prove that $\check{\square}^{<\omega}$ is a well-ordering of $X^{<\omega}$.
3. Suppose $Y \subseteq X^{n}$. Find $\left(a_{1}, \ldots, a_{n-1}\right) \in Y \sqsubset^{n-1}$-minimal such that there is $a_{n} \in X$ with $\left(a_{1}, \ldots, a_{n}\right) \in Y$, then choose $a_{n} \sqsubset$-minimal with $\left(a_{1}, \ldots, a_{n}\right) \in Y$. Check that this is \sqsubset^{n}-minimal.
4. Find a tuple in Y of minimal length m and a \sqsubset^{m}-minimal $\left(a_{1}, \ldots, a_{m}\right) \in Y$. Check that this is $\square^{<\omega}$-minimal.

Problem 12. Suppose $V=L$ and $\alpha<\aleph_{1}$. Give an explicit example of a subset a of ω such that $a \in L_{\aleph_{1}}-L_{\alpha}$.
Hint: See Exercise 5.15 in the lecture notes. You may use that the Reflection Principle holds for ($L_{\alpha}: \alpha<\aleph_{1}$) (this is true since \aleph_{1} has uncountable confinality). Note that $L_{\aleph_{1}}$ satisfies ZF without the Power set Axiom by Lemma 5.12. You may use that there is a finite fragment ZF^{*} of ZF without the Power set Axiom which implies the following version of Theorem 4.5 (Mostowski collapse): If E is a binary relation on a set X and (X, E) is extensional and well-founded, then there are a unique transitive set Y and a unique isomorphism $\mu:(X, E) \rightarrow(Y, \in)$.

There is $\beta<\aleph_{1}$ with $\beta \geq \alpha$ and $\beta \geq \omega+2$ so that L_{β} satisfies ZF^{*} by the Reflection Principle for ($L_{\delta}: \delta<\aleph_{1}$) (choose the least such β if you like). L_{β} is countable in L by Lemma 5.6. The image of \in under a bijection $f: \omega \rightarrow L_{\beta}$ in L (the \triangleleft-least such f if you like) is a subset of $\omega \times \omega$, its image under a (simple) bijection $g: \omega \times \omega \rightarrow \omega$ in $L_{\omega+2}$ is a set $A \subseteq \omega$. Suppose $A \in L_{\beta}$. In L_{β}, we can form the Mostowski collapse $\mu:\left(\omega, g^{-1}[A]\right) \rightarrow(X, \in)$. Since μ and f are isomorphisms in $L, \mu=f$ by
the uniqueness of the Mostowski collapse (in L) and hence $X=L_{\beta}$. Then $X=L_{\beta}$ is a set in L_{β}, so $L_{\beta} \in L_{\beta}$. Contradiction. Hence $A \notin L_{\beta}$.

Please hand in your solutions on 27 April before the lecture.

