2. Problem set for "Models of set theory I", Summer 2011

Stefan Geschke, Philipp Schlicht, Anne Fernengel, Allard van Veen

Problem 5. Let M be a transitive set. Show that (M, \in) satisfies the Axiom of Extensionality. Find a set M such that (M, \in) does not satisfy the Axiom of Extensionality.

Problem 6. Show that \aleph_1 is regular and \aleph_{ω} is singular.

Hint: If A is cofinal in \aleph_1 , then $\aleph_1 = \bigcup A$ (why?). If $A \subseteq \aleph_1$ is countable, what is the size of $\bigcup A$? For the singularity of \aleph_{ω} use the fact that the union (supremum) of a set of cardinals is again a cardinal.

Problem 7. Let S be a (set-like) well-founded relation. Prove that there is a unique function $r_S : V \to Ord$ (the rank function for S) such that $r_S(y) = \sup_{(x,y)\in S}(r_S(x) + 1)$ for all $y \in V$. Prove that $r_{\in}(x)$ is the least ordinal α with $x \in V_{\alpha+1}$ (V_{α} is defined in Theorem 3.1).

Problem 8. Work in ZF without the Axiom of Foundation. An ordinal is a transitive set well-ordered (rather than just linearly ordered) by \in . Let $\varphi(\alpha)$ be the formula which states that V_{α} exists, i.e. α is an ordinal and there is a sequence $(W_{\beta} : \beta \leq \alpha)$ with

- i. $W_0 = \emptyset$,
- ii. $W_{\beta+1} = \mathcal{P}(W_{\beta})$ for all $\beta < \alpha$, and
- iii. $W_{\gamma} = \bigcup_{\beta < \gamma} W_{\beta}$ for all limit ordinals $\gamma \leq \alpha$.

Let $\psi(x, \alpha)$ be the formula which states that $x \in V_{\alpha}$, i.e. α is an ordinal and there is a sequence $(W_{\beta} : \beta \leq \alpha)$ as above with $x \in W_{\alpha}$. Suppose M is a transitive class and let V_{α}^{M} for $\alpha \in Ord^{M}$ denote the set of $x \in M$ with $\psi^{M}(x, \alpha)$. Prove that $V_{\alpha} \cap M \in M$ implies $V_{\alpha+1} \cap M = \mathcal{P}^{M}(V_{\alpha} \cap M)$. Prove that $\varphi^{M}(\alpha)$ implies $V_{\alpha} \cap M = V_{\alpha}^{M}$.

Please hand in your solutions on 20 April before the lecture.