Higher Set Theory - Classical and Ordinal Computability

Exercise Sheet 5 due on Tuesday, 10 May 2011

11. Show, without using Kleene's T predicate, that for every partial recursive function $f: \omega^n \rightharpoonup \omega$ there is a primitive recursive relation R s.t.

 $f(x_0, x_1, \dots, x_{n-1}) \simeq \mu g(P(x_0, x_1, \dots, x_n, g)),$

i.e., that all unbounded μ -operators can be replaced by a single one.

(6 points)

- 12. As known from any introductory lecture in logic, a formal proof can be expressed by finite a sequence of words ("formulas") $\phi_0, \phi_1, \ldots, \phi_{n-1}$ over the alphabet of first-order logic L_1 , where ϕ_i is either an axiom from some axiom system Φ or is derived from some $\phi_{j_0}, \phi_{j_1}, \ldots, \phi_{j_{m-1}}$ $(j_0, j_1, \ldots, j_{m-1} < 1)$ by application of one of the finitely many deduction rules of first-order logic. Recall that Φ^{\models} , the set of true formulas in the axiom system Φ , is not decidable.
 - (a) Show, within reasonable bounds on attention to detail, that the predicate $\mathsf{Fml}(n)$ "n codes a well-formed formula of L_1 " is primitive recursive (*Hint: Something similar may have been shown in your Logic class*).
 - (b) Show that for a given axiom system Φ the predicate $\vdash^{\Phi}(k,l)$ on $\omega \times \omega$ that states "k codes a sentence (a formula without free variables) and l codes a proof of ϕ " is primitive recursive.
 - (c) Show that there is no recursive bound $F: \omega \to \omega$ s.t. $\forall k (\exists l \vdash^{\Phi}(k, l) \to \exists p \leq F(k) \vdash^{\Phi}(k, p))$. Standard coding codes more complex formulas by higher k and longer proofs by higher l, so this proves that there is no recursive bound on the length of a proof for a formula of given complexity. You never (computably) know how long it will take to work on an exercise, even if you work flawlessly!

(6 points)