Übungen zur Mengenlehre

- 1. (a) Zeigen Sie: Sind $(x, <_x)$, $(y, <_y)$ wohlgeordnete Mengen, so ist ihr lexikographisches Produkt $(x \times y, <_{lex})$ ebenfalls wohlgeordnet.
- (b) Zeigen Sie: Sind α und β Ordinalzahlen, so ist $\alpha + \beta$ der Ordnungstyp der Summe und $\alpha*\beta$ der Ordnungstyp des lexikographischen Produktes von (α, \in) und (β, \in) .
- 2. (a) Gilt für Ordinalzahlen α , β und γ stets $(\alpha + \beta) * \gamma = \alpha * \gamma + \beta * \gamma$?
- (b) Beweisen Sie: Jedes Ordinalzahl β ist auf genau eine Weise in der Form $\beta = \omega^2 * \alpha + \omega * m + n$ darstellbar, wobei α Ordinalzahl ist und m, n natürliche Zahlen sind.
- 3. Beweisen Sie, dass für jede fundierte Relation R auf einer Menge A, jede endliche Folge \vec{v} von Elementen von A und jede \in -Formel $\phi(x, \vec{v})$ gilt: $\forall x \in A(\forall y(yRx \to \phi(y, \vec{v})) \to \phi(x, \vec{v})) \to \forall x \in A\phi(x, \vec{v}).$
- 4. Sei Un' das Axiom: Es existiert eine nichtleere Menge X, so dass für jedes $x \in X$ auch $x \cup \{x\} \in X$ gilt. Eine solche Menge heisst schwach induktiv. Zeigen Sie (ohne Benutzung von Un), dass aus Un' bereits Un folgt. (Tipp: Beweisen Sie zunächst, dass es für ein solches X eine Injektion $e: \mathbb{N} \to X$ mit $e(n') = e(n) \cup \{e(n)\}$ gibt.)

Jede Aufgabe wird mit 8 Punkten bewertet.

Abgabe: am 15. 11. 2010 in der Vorlesung