DESCRIPTIVE SET THEORY AT UNCOUNTABLE CARDINALS: Δ_1^1 -SUBSETS OF κ ## PHILIPP MORITZ LÜCKE ABSTRACT. Let κ be an uncountable regular cardinal with $\kappa = \kappa^{<\kappa}$. A subset of $({}^{\kappa}\kappa)^n$ is a Σ^1_1 -subset if it is the projection $\rho[T]$ of all cofinal branches through a κ -tree T on κ^{n+1} . We define Σ^1_k -, Π^1_k - and Δ^1_k -subsets of $({}^{\kappa}\kappa)^n$ as usual. Given an arbitrary subset A of ${}^\kappa\kappa$, I showed that there is a $<\kappa$ -closed forcing $\mathbb P$ that satisfies the κ^+ -chain condition and forces A to be a Δ^1_1 -subset of ${}^\kappa\kappa$ in every $\mathbb P$ -generic extension of V. This result allows us to construct a forcing with the above properties that forces the existence of a well-ordering of ${}^\kappa\kappa$ whose graph is a Δ^1_2 -subset of ${}^\kappa\kappa \times {}^\kappa\kappa$. If we also assume $2^\kappa = \kappa^+$, then we can produce a generic well-ordering of ${}^\kappa\kappa$ whose graph is a Δ^1_1 -subset of ${}^\kappa\kappa \times {}^\kappa\kappa$. In my talk, I want to present the central ideas behind the proofs of these results, focusing on coding subsets of κ by κ -Kurepa trees in forcing extensions and the strong absoluteness properties of this coding.