Convexity numbers, cliques, and the Kubiś set The decomposition theorem Homogeneity numbers P_4 -free continuous colorings

2-dimensional convexity revisited

Stefan Geschke

October 4, 2010

Convexity numbers, cliques, and the Kubiś set The decomposition theorem Homogeneity numbers P_4 -free continuous colorings

Convexity numbers, cliques, and the Kubiś set

Let $S \subseteq \mathbb{R}^n$. The *convexity number* $\gamma(S)$ of S is the least size of of a family \mathcal{F} of convex sets such that $S = \bigcup \mathcal{F}$.

S is *countably convex* if $\gamma(S) \leq \aleph_0$ and otherwise *uncountably convex*.

A set $A \subseteq S$ is *defected* in S if the convex hull of A is not a subset of S.

A set $C \subseteq S$ is an *m-clique* of S if all *m*-element subsets of C are defected in S.

Remark

By Caratheodory's theorem, the convex structure of a set $S \subseteq \mathbb{R}^n$ is determined by the (n+1)-uniform defectedness hypergraph

$$G(S) = (S, \{A \in [S]^{n+1} : A \text{ is defected in } S\}).$$

The convexity number $\gamma(S)$ is the chromatic number of G(S). An (n+1)-clique in S is a clique in G(S).

The size of an infinite clique in G(S) is a lower bound of $\gamma(S)$.

Theorem (Folklore?)

If a closed set $S \subseteq \mathbb{R}^n$ has an uncountable m-clique for any $m \in \omega$, then it has a perfect (n+1)-clique.

Remark

If $S \subseteq \mathbb{R}^n$ is closed, then (the edge relation of) G(S) is open.

Since the Open Coloring Axiom holds for closed subsets of \mathbb{R} , every closed subset of \mathbb{R} is either countably convex or has a perfect 2-clique.

For all $\{x,y\} \in [\omega^{\omega}]^2$ let

$$\Delta(x,y) = \min\{n \in \omega : x(n) \neq y(n)\}\$$

and

$$c_{\min}(x, y) = \Delta(x, y) \mod 2.$$

Let $A \subseteq \mathbb{R}$ and let $f: A \to \mathbb{R}$ be a function. We say that $\{x,y\} \in [A]^2$ with x < y is in *configuration* \sqcap (respectively \sqcup) if for all $z \in (x,y)$, (z,f(z)) is either on or strictly above (below) the line segment joining (x,f(x)) and (y,f(y)).

Theorem (Kubiś)

There are a closed set $S \subseteq \mathbb{R}^2$, a topological embedding $e: 2^{\omega} \to \mathbb{R}$, and a differentiable function $f: e[2^{\omega}] \to \mathbb{R}$ with the following properties:

- 1. For all $\{x,y\} \in [2^{\omega}]^2$, $\{e(x),e(y)\}$ is of configuration \sqcap if $c_{\min}(x,y)=1$ and of configuration \sqcup otherwise.
- 2. $S \setminus f$ is countably convex.
- 3. For $x \in 2^{\omega}$ let g(x) = (e(x), f(e(x))). Then for all $A \subseteq 2^{\omega}$, the set g[A] is defected in S iff A is homogeneous with respect to c_{\min} .

The set S is uncountably convex and does not have an uncountable 3-clique.

Convexity numbers, cliques, and the Kubiś set The decomposition theorem Homogeneity numbers P_{4} -free continuous colorings

The Decomposition Theorem

Theorem (Kubiś)

Let $S \subseteq \mathbb{R}^2$ be closed, uncountably convex, and without a perfect 3-clique. Then there are a countably convex set $A \subseteq \mathbb{R}^2$ and a sequence $(B_n)_{n \in \omega}$ of G_{δ} -sets such that

$$S = A \cup \bigcup_{n \in \omega} B_n$$

and for each $n \in \omega$ there is a continuous coloring $c_n : [B_n]^2 \to 2$ such that $B \subseteq B_n$ is not defected in S iff B is homogeneous wrt c_n .

Here the sets B_n are affinely isomorphic to graphs of Lipschitz functions and the colorings are colorings by configuration.

Lemma (Transitivity)

Let $C \subseteq \mathbb{R}$, let $f: C \to \mathbb{R}$ be a function such that every two-element set $\{x,y\} \subseteq C$ has a configuration, and let $c: [C]^2 \to \{\sqcup,\sqcap\}$ be the coloring that assigns to each pair its configuration.

a) Let
$$x_1, x_2, x_3 \in C$$
 be such that $x_1 < x_2 < x_3$. If $c_K(x_1, x_2) = c_K(x_2, x_3) = \Box$, then $c_K(x_1, x_3) = \Box$. If $c_K(x_1, x_2) = c_K(x_2, x_3) = \Box$, then $c_K(x_1, x_3) = \Box$.

b) Let
$$x_1, x_2, x_3, x_4 \in C$$
 be such that $x_1 < x_2 < x_3 < x_4$. If $c_K(x_1, x_3) = c_K(x_2, x_4) = \sqcap$, then $c_K(x_1, x_4) = \sqcap$. If $c_K(x_1, x_3) = c_K(x_2, x_4) = \sqcup$, then $c_K(x_1, x_4) = \sqcup$.

A graph G = (V, E) is P_4 -free if it does not contain an induced copy of the path of length 3 on 4 vertices.

Theorem

Let $C \subseteq \mathbb{R}$, let $f: C \to \mathbb{R}$ be a function such that every two-element set $\{x,y\} \subseteq C$ has a configuration. Let G be the graph on the set C of vertices where $\{x,y\}$ is an edge iff $\{x,y\}$ is in configuration \square . Then G is P_4 -free.

In particular, G is perfect (in the graph-theoretic sense).

Convexity numbers, cliques, and the Kubiś set The decomposition theorem Homogeneity numbers P_{4} -free continuous colorings

Homogeneity numbers

Let X be a Polish space and let $c:[X]^2 \to 2$ be a continuous coloring. The *homogeneity number* $\mathfrak{hm}(c)$ is the least size of a family of homogeneous subsets of X that covers all of X.

The coloring c is uncountably homogeneous if $\mathfrak{hm}(c) > \aleph_0$.

Lemma (G., Kojman)

A continuous coloring $c:[X]^2\to 2$ on a Polish space X is uncountably homogeneous iff there is a topological embedding $e:2^\omega\to X$ such that for all $\{x,y\}\in [X]^2$,

$$c_{\min}(x, y) = c(e(x), e(y)).$$

In particular, the homogeneity number $\mathfrak{hm} = \mathfrak{hm}(c_{min})$ is minimal among all uncountable homogeneity numbers of continuous colorings on Polish spaces.

Theorem

- a) $\mathfrak{hm}^+ \geq 2^{\aleph_0}$
- b) hm is an upper bound for all cardinal invariants in Cichoń's diagram.
- c) There is a continuous coloring $c_{\text{max}}: [2^{\omega}]^2 \to 2$ whose homogeneity number is maximal among all homogeneity numbers of continuous colorings on Polish spaces.
- d) It is consistent that $\mathfrak{hm}(c_{\text{max}}) < 2^{\aleph_0}$ (G., Schipperus).
- e) It is consistent that $\mathfrak{hm} < \mathfrak{hm}(c_{\mathsf{max}})$ (G., Goldstern, Kojman).

Remark

In the model of $\mathfrak{hm} < \mathfrak{hm}(c_{\text{max}})$, the perfect continuous colorings have homogeneity numbers equal to \mathfrak{hm} .

By the Decomposition Theorem every uncountably convex, closed set $S \subseteq \mathbb{R}^2$ without a perfect 3-clique has $\gamma(S) = \mathfrak{hm}(c)$ for some P_4 -free continuous coloring on a Polish space.

Corollary

It is consistent that $\gamma(S) < \mathfrak{hm}(c_{\mathsf{max}})$ holds for every closed set $S \subseteq \mathbb{R}^2$ without a perfect 3-clique.

Convexity numbers, cliques, and the Kubiś set The decomposition theorem Homogeneity numbers P4-free continuous colorings

*P*₄-free continuous colorings

Theorem (Seinsche)

The class of finite P_4 -free graphs is the smallest class of graphs that contains the graph on a single vertex and is closed under complementation and disjoint union.

Corollary

A finite graph G is P_4 -free iff it embeds into $G_{\min} = (2^{\omega}, c_{\min}^{-1}(1))$.

Theorem

Let $c:[X]^2 \to 2$ be a continuous coloring on a Polish space. If c is P_4 -free, then X is the union of not more than \mathfrak{hm} sets $A \subseteq X$ such that $c \upharpoonright [A]^2$ embeds into c_{\min} .

Corollary

If $c: [X]^2 \to 2$ is an uncountably homogeneous, P_4 -free, continuous coloring on a Polish space, then $\mathfrak{hm}(c) = \mathfrak{hm}$.

Corollary

If $S \subseteq \mathbb{R}^2$ is closed, uncountably convex, and does not contain a perfect 3-clique, then $\gamma(S) = \mathfrak{hm}$.

Convexity numbers, cliques, and the Kubiś set The decomposition theorem Homogeneity numbers P4-free continuous colorings

Thank you!