New combinatorial principle on singular cardinals

Toshimichi Usuba

For an uncountable cardinal λ , we introduce a new combinatorial principle UB_{λ} to solve a problem about normal ideals over $\mathcal{P}_{\kappa}\lambda$.

The principle UB_{λ} is implied from a weak form of the square principle, however we see that UB_{λ} is consistent with almost all large cardinals and large cardinal properties. We also discuss other applications of UB_{λ}, for instance, UB_{\aleph_{ω}} refutes $\langle\aleph_{\omega+1},\aleph_{\omega}\rangle \twoheadrightarrow \langle\aleph_2,\aleph_1\rangle$.

 λ always denotes an infinite cardinal.

Let μ be a cardinal. An ideal I over the infinite set A is weakly μ -saturated if there are no μ -many pairwise disjoint I-positive subsets.

Fact 1 (Folklore). Let κ be a regular uncountable cardinal with $\kappa \leq \lambda$ and I a normal ideal over $\mathcal{P}_{\kappa}\lambda$. If $\mu \leq \lambda$ is a cardinal, then I is weakly μ -saturated \iff I is μ -saturated. If $\lambda^{<\kappa} = \lambda$ (e.g., GCH + cf $(\lambda) \geq \kappa$) every ideal over

 $\mathcal{P}_{\kappa}\lambda$ is trivially weakly λ^+ -saturated, but it might not be λ^+ -saturated. Hence

Weakly λ^+ -saturated $\iff \lambda^+$ -saturated.

On the other hand, if $cf(\lambda) < \kappa$ then every stationary subsets of $\mathcal{P}_{\kappa}\lambda$ has cardinality at least λ^+ , and λ^+ -many splitting is possible:

Fact 2 (Foreman–Magidor, Shioya). Suppose $cf(\lambda) < \kappa < \lambda$. Then $NS_{\kappa\lambda}$, the non-stationary ideal over $\mathcal{P}_{\kappa}\lambda$, is not weakly λ^+ -saturated.

Fact 3 (U.). Suppose $cf(\lambda) < \kappa$. Then the existence of a weakly λ^+ -saturated normal ideal over $\mathcal{P}_{\kappa}\lambda$ is a very strong property.

However, when $cf(\lambda) < \kappa$, we do not know that Weakly λ^+ -saturated $\iff \lambda^+$ -saturated.

Question 4. Suppose $cf(\lambda) < \kappa < \lambda$. Is every weakly λ^+ -saturated normal ideal over $\mathcal{P}_{\kappa}\lambda \ \lambda^+$ -saturated?

This question remains open. We will introduce a new combinatorial principle UB_{λ} and see that those saturation properties are equivalent under UB_{λ}.

Definition 5. Let $S \subseteq \mathcal{P}(\lambda)$. $UB_{\lambda}(S)$ (UB stands for Un-Branched or Unique Branch or Usuba's Branching property,...) is the assertion that there exists $f : {}^{<\omega}\lambda^+ \to \lambda^+$ such that for every $x, y \subseteq \lambda^+$, if x and y are closed under f, $x \cap \lambda = y \cap \lambda \in S$, $sup(x) \leq sup(y) \Longrightarrow x \subseteq y$.

 \iff For every large regular cardinal θ , a well-order Δ on $H(\theta)$, and $M, N \prec \langle H(\theta), \in, \Delta, \lambda, S \rangle$, if $M \cap \lambda = N \cap \lambda \in S$ and $\sup(M \cap \lambda^+) \leq \sup(N \cap \lambda^+)$ then $M \cap \lambda^+$ is an initial segment of $N \cap \lambda^+$. **Definition 5.** Let $S \subseteq \mathcal{P}(\lambda)$. $UB_{\lambda}(S)$ (UB stands for Un-Branched or Unique Branch or Usuba's Branching property,...) is the assertion that there exists $f : {}^{<\omega}\lambda^+ \to \lambda^+$ such that for every $x, y \subseteq \lambda^+$, if x and y are closed under f, $x \cap \lambda = y \cap \lambda \in S$, $sup(x) \leq sup(y) \Longrightarrow x \subseteq y$.

Note 6. ① If $S = \{\lambda\}$, then $UB_{\lambda}(S)$ holds; There is $f : {}^{<\omega}\lambda^{+} \rightarrow \lambda^{+}$ such that for every f-closed $x \subseteq \lambda^{+}$, if $x \cap \lambda = \lambda$ then $x \in \lambda^{+}$.

② If $S \subseteq \mathcal{P}(\lambda)$ is non-stationary in $\mathcal{P}(\lambda)$, i.e., there exists $g : {}^{<\omega}\lambda \to \lambda$ such that there is no $x \in S$ which is closed under g, then $UB_{\lambda}(S)$ holds in the trivial sense.

Lemma 7. For $S \subseteq \mathcal{P}(\lambda)$, if S is stationary in $\mathcal{P}(\lambda)$, $\{\lambda\} \notin S$, and $|S| = \lambda$ then $UB_{\lambda}(S)$ fails.

If $2^{<\lambda} = \lambda$ and $cf(\lambda) > \omega$, then the set $S = \{x \subseteq \lambda : sup(x) < \lambda\}$

is stationary and has cardinality λ , hence $UB_{\lambda}(S)$ fails. On the other hand, every stationary subsets of

 $\{x \subsetneq \lambda : \sup(x) = \lambda\}$

has cardinality at least λ^+ .

Definition 8. $UB_{\lambda} \equiv UB_{\lambda}(\{x \subseteq \lambda : \sup(x) = \lambda\}).$

Lemma 9. Let κ be a regular uncountable cardinal with $cf(\lambda) < \kappa < \lambda$. Let I be a normal ideal over $\mathcal{P}_{\kappa}\lambda$. If I is weakly λ^+ -saturated, then I is λ^+ -saturated.

Proof. We see only a special case that $I = NS_{\kappa\lambda}|S$ for some stationary $S \subseteq \mathcal{P}_{\kappa}\lambda$. Notice that $\{x \in \mathcal{P}_{\kappa}\lambda : \sup(x) = \lambda\} \in I^*$.

Suppose that there is a family of stationary subsets $\mathcal{X} = \langle X_{\xi} : \xi < \lambda^+ \rangle$ of S such that $X_{\xi} \cap X_{\eta}$ is non-stationary for $\xi \neq \eta$. We want to choose a family of clubs $\langle C_{\xi} : \xi < \lambda^+ \rangle$ so that $(X_{\xi} \cap C_{\xi}) \cap (X_{\eta} \cap C_{\eta}) = \emptyset$.

Define $F : \mathcal{P}_{\kappa}\lambda \to \mathcal{P}(\lambda^+)$ as:

 $F(x) = \bigcup \{ M \cap \lambda^+ : M \prec \langle H(\theta), \in, \Delta, \lambda, I, \mathcal{X} \rangle, M \cap \lambda = x \}$

It is easy to see that for every $\xi < \lambda^+$, $\{x \in \mathcal{P}_{\kappa}\lambda : \xi \in F(x)\}$ contains a club.

Let $C_{\xi} = \{x \in \mathcal{P}_{\kappa}\lambda : \xi \in F(x)\} \in I^*$. Then $(X_{\xi} \cap C_{\xi}) \cap (X_{\eta} \cap C_{\eta}) = \emptyset$;

Suppose not and take $x \in (X_{\xi} \cap C_{\xi}) \cap (X_{\eta} \cap C_{\eta})$. Then there are $M, N \prec \langle H(\theta), \ldots \rangle$ such that $M \cap \lambda = N \cap \lambda = x$, $\xi \in M$ and $\eta \in N$. If $\sup(M \cap \lambda^+) \leq \sup(N \cap \lambda^+)$, then $M \cap \lambda^+ \subseteq N \cap \lambda^+$ by UB_{λ} .

We have $\xi, \eta \in N$, thus there is a club $D \in N$ in $\mathcal{P}_{\kappa}\lambda$ with $X_{\xi} \cap X_{\eta} \cap D = \emptyset$. $x = N \cap \lambda \in D$ because D is club, hence $x \notin X_{\xi} \cap X_{\eta}$. This is a contradiction.

Definition 10 (Cummings–Foreman–Magidor). ADS_{λ} is the assertion that there is a family $\{A_{\xi} : \xi < \lambda^+\}$ such that ① $A_{\xi} \subseteq \lambda$ is unbounded in λ and $|A_{\xi}| = cf(\lambda)$.

2 For every $\alpha < \lambda^+$, there exists $f : \alpha \to \lambda$ such that $\{A_{\xi} \setminus f(\xi) : \xi < \alpha\}$ is a pairwise disjoint family.

UB_λ is consistent with ZFC

- **Fact 11** (Shelah, Cummings–Foreman–Magidor). ① If λ is regular, then ADS_{λ} holds.
- 2 If λ is singular and \Box_{λ}^* holds, then ADS_{λ} holds. Hence it is consistent that ADS_{λ} holds for every λ .
- ③ If λ is a singular cardinal with $pp(\lambda) > \lambda^+$ (e.g., λ is a strong limit cardinal such that $cf(\lambda) = \omega$ and $2^{\lambda} > \lambda^+$), then ADS_{λ} holds.
- ④ If κ is λ -supercompact cardinal with $cf(\lambda) < \kappa < \lambda$, then ADS_{λ} fails.
- **5** If Martin's Maximum holds, then ADS_{λ} fails for every λ with $cf(\lambda) = \omega$.

Lemma 12. $ADS_{\lambda} \Rightarrow UB_{\lambda}$.

Proof. Choose $M, N \prec \langle H(\theta), \in, \Delta, \lambda \rangle$ such that $M \cap \lambda = N \cap \lambda$ and $\sup(M \cap \lambda) = \lambda$. We show that:

 $\sup(M \cap \lambda^+) \leq \sup(N \cap \lambda^+) \Rightarrow M \cap \lambda^+ \subseteq N \cap \lambda^+.$

Take $\alpha \in M \cap \lambda^+$ and $\beta \in N \cap \lambda^+$ with $\alpha < \beta$. Let $\{A_{\xi} : \xi < \lambda^+\}$ be an ADS_{λ} -family which lies in $N \cap M$. Then there is $f \in N$ such that $f : \beta \to \lambda$ and $\{A_{\xi} \setminus f(\xi) : \xi < \beta\}$ is pairwise disjoint.

Since $A_{\alpha} \in M$ is unbounded in λ and $\sup(M \cap \lambda) = \lambda$, we know $A_{\alpha} \cap M$ is also unbounded in λ .

Fix $\gamma \in (A_{\alpha} \cap M) \setminus f(\alpha)$. $\gamma \in N$ since $M \cap \lambda = N \cap \lambda$.

Then α is definable in N; α is a unique ordinal $\alpha' < \beta$ satisfying $\gamma \in A_{\alpha'} \setminus f(\alpha')$. Hence $\alpha \in N$. **Proposition 13.** Let $cf(\lambda) = \omega < \kappa < \lambda$ and suppose that

 κ is λ -supercompact. Then there exists a poset \mathbb{P} which satisfies the following:

- ① \mathbb{P} is σ -directed closed and satisfies the κ -c.c.
- 2 \mathbb{P} forces " $\kappa = \omega_2$ and UB_{λ} holds".

Outline of the proof

Notice that:

Lemma 14. If $cf(\lambda) = \omega$, the following are equivalent:

- 1 UB_{λ} .
- 2 There exists $f : {}^{<\omega}\lambda^+ \to \lambda^+$ such that for every $x, y \in [\lambda^+]^{\omega}$, if x and y are closed under f, $x \cap \lambda = y \cap \lambda$ and $sup(x) \leq sup(y)$ then $x \subseteq y$.

Let $C = \{M \cap \lambda^+ : M \prec \langle H(\theta), \ldots \rangle\}, T = \{X \in C : \omega_1 \subseteq X, |X| < \kappa\}.$

Let \mathbb{P} is the set of all pair $\langle f, p \rangle$ such that:

- ① $f: d(f) \times d(f) \to \omega_1$ for some $d(f) \in [\lambda^+]^{\omega}$.
- 2 p is a function with dom $(p) \in [T]^{\omega}$.
- ③ For every $X \in dom(p)$,
 - p(X) is a \subseteq -increasing continuous sequence $\langle a_{\xi} : \xi \leq \alpha \rangle$ of $[d(f) \cap X]^{\omega} \cap C$ with length $\alpha < \omega_1$.
 - **2** For every $x \in [d(f) \cap X]^{\omega} \cap C$, if x is closed under fand $x \cap \lambda = a_{\xi} \cap \lambda$ for some $\xi \leq \alpha$ then $x \subseteq a_{\xi}$ (actually x is an initial segment of a_{ξ}).

 \mathbb{P} is σ -directed closed, satisfies the κ -c.c., and forces $\kappa = \omega_2$.

Let G be (V, \mathbb{P}) -generic. ① $F = \{f : \exists p \langle f, p \rangle \in G\}.$ ② For $X \in T$, $C_X = \bigcup \{p(X) : \exists f \langle f, p \rangle \in G, X \in \text{dom}(p), x \text{ is } F\text{-closed}\}.$

Then

2 C_X is a club in $[X]^{\omega}$ and for every $x \in [X]^{\omega} \cap C$, if x is closed under F, $x \cap \lambda = y \cap \lambda$ for some $y \in C_X$ then $x \subseteq y$.

Let $S = \{a \in [\lambda]^{\omega} : \text{there are } x_a, y_a \in C \cap [\lambda^+]^{\omega} \text{ such that } x_a \text{ and } y_a \text{ are closed under } F, x_a \cap \lambda = y_a \cap \lambda = a, \sup(x_a) \leq \sup(y_a) \text{ but } x_a \notin y_a \}.$

It is sufficient to show that S is non-stationary. Suppose to contrary that S is stationary. Since κ is λ -supercompact in V, a kind of stationary reflection principle of $[\lambda]^{\omega}$ holds;

There is $X \in T$ such that $S \cap [X \cap \lambda]^{\omega}$ is stationary in $[X \cap \lambda]^{\omega}$, and $a \in S \cap [X \cap \lambda]^{\omega} \Rightarrow x_a, y_a \subseteq X$.

Since S is stationary in $[X \cap \lambda]^{\omega}$ and C_X is a club in $[X]^{\omega}$, there is $a \in C_X$ such that $a \cap \lambda \in S$. Hence there are F-closed incomparable $x_a, y_a \in [X]^{\omega} \cap C$ such that $x_a \cap \lambda = y_a \cap \lambda = a$.. However this contradicts the choice of C_X . **Lemma 15.** Let $cf(\lambda) = \omega < \kappa < \lambda$ and suppose κ is λ -supercompact. Then $UB_{\lambda}(\{x \subseteq \lambda : x \cap \kappa \in \kappa\})$ holds.

Proof. By the previous proposition, there exists a poset \mathbb{P} such that \mathbb{P} satisfies the κ -c.c. and \mathbb{P} forces UB_{λ}.

Let \dot{f} be a name of a function witnessing UB_{λ} in the generic extension. By the κ -c.c. of \mathbb{P} , for each $s \in {}^{<\omega}\lambda^+$ there is $a_s \in [\lambda^+]^{<\kappa}$ such that $\Vdash \dot{f}(s) \subseteq a_s$. Then choose $g : {}^{<\omega}\lambda^+ \to \lambda^+$ so that for every g-closed $x \subseteq \lambda^+$ with $x \cap \kappa \in \kappa, \forall s \in {}^{<\omega}x (a_s \subseteq x)$.

It is easy to see that g witnesses $UB_{\lambda}(\{x \subseteq \lambda : x \cap \kappa \in \kappa\})$.

Corollary 16. Let $cf(\lambda) < \kappa < \lambda$ and suppose κ is λ -supercompact. Then $UB_{\lambda}(\{x \subseteq \lambda : x \cap \kappa \in \kappa\})$ holds.

Corollary 17. Let $cf(\lambda) < \kappa < \lambda$ and suppose κ is λ -supercompact. Let $Col(\omega, < \kappa)$ be the standard poset which collapse $\kappa = \omega_1$. Then UB_{λ} holds in $V^{Col(\omega, <\kappa)}$.

Proof. Let $f: {}^{<\omega}\lambda^+ \to \lambda^+$ be a function witnessing $UB_{\lambda}(\{x \subseteq \lambda : x \cap \kappa \in \kappa\})$. Then, because $\kappa = \omega_1$ in $V^{Col(\omega, <\kappa)}$, it is easy to see that f witnesses UB_{λ} holds in $V^{Col(\omega, <\kappa)}$.

Corollary 18. Let κ be supercompact. In $V^{\text{Col}(\omega, <\kappa)}$, UB_{λ} holds for every singular cardinal λ with $cf(\lambda) = \omega$.

Proposition 19. Relative to a certain large cardinal assumption, it is consistent that

" $ZFC + \exists supercompact cardinal + UB_{\lambda}$ holds for every singular cardinal λ with $cf(\lambda) = \omega$."

Proof. Suppose there are two supercompact cardinals $\kappa_0 < \kappa_1$. In $V^{\text{Col}(\omega, <\kappa_0)}$, UB_{λ} holds for every singular cardinal λ with cf(λ) = ω , and κ_1 remains a supercompact cardinal.

This argument shows that UB_{λ} is consistent with *almost all* large cardinals; e.g.,

- ① λ is a limit of supercompact cardinals with $cf(\lambda) = \omega$ + UB_{λ} holds.
- ② ∃superhuge cardinal + UB_{λ} holds for every λ with cf(λ) = ω ,
- ③ There exists a non-trivial elementary embedding j : $V_{\lambda+1} \to V_{\lambda+1}$ and UB_λ holds, etc.

Proposition 20. Let κ be supercompact. Then in $V^{\text{Col}(\omega_1, <\kappa)}$, UB_{λ} holds for every λ with cf(λ) = ω_1 .

Corollary 21. Let $\kappa_0 < \kappa_1$ be supercompact. Then in $V^{\text{Col}(\omega, <\kappa_0) \times \text{Col}(\kappa_0, <\kappa_1)}$, UB_{λ} holds for every λ with $cf(\lambda) \leq \omega_1$.

Consistency of UB $_{\lambda}$ with large cardinal prop-

erties

Proposition 22. Relative to a certain large cardinal assumption, it is consistent that

" $ZFC + Martin's maximum + UB_{\aleph_{\omega}}$ "

Proposition 23. Relative to a certain large cardinal assumption, it is consistent that

 $"ZFC + \langle \aleph_{\omega+1}, \aleph_{\omega} \rangle \twoheadrightarrow \langle \aleph_1, \aleph_0 \rangle + \mathsf{UB}_{\aleph_{\omega}}."$

Note 24. The consistency of

$$\langle \aleph_{\omega+1}, \aleph_{\omega} \rangle \twoheadrightarrow \langle \aleph_1, \aleph_0 \rangle$$

is known (Levinski–Magidor–Shelah), but the consistency of

$$\langle \aleph_{\omega+1}, \aleph_{\omega} \rangle \twoheadrightarrow \langle \aleph_2, \aleph_1 \rangle$$

is still open.

Fact 25 (Folklore). Let κ be a regular uncountable cardinal with $\kappa \leq \lambda$. Let I be a normal ideal over $\mathcal{P}_{\kappa}\lambda$.

- ① If I is λ^+ -saturated, then I is precipitous.
- 2 If I is λ^+ -preserving and $2^{\lambda^{<\kappa}} = \lambda^+$, then I is precipitous.

Where an ideal I is μ -preserving if the standard generic ultrapower poset \mathbb{P}_I associated with I forces that " μ remains a cardinal."

Fact 25 (Folklore). Let κ be a regular uncountable cardinal with $\kappa \leq \lambda$. Let I be a normal ideal over $\mathcal{P}_{\kappa}\lambda$.

- ① If I is λ^+ -saturated, then I is precipitous.
- 2 If I is λ^+ -preserving and $2^{\lambda^{<\kappa}} = \lambda^+$, then I is precipitous.

Proposition 26 (UB_{λ}). Suppose cf(λ) < κ < λ . Let I be a normal ideal over $\mathcal{P}_{\kappa}\lambda$.

- ① If I is λ^{++} -saturated, then I is precipitous.
- ② If I is λ^{++} -preserving and $2^{\lambda^{<\kappa}} = \lambda^{++}$, then I is precipitous.

Fact 27 (Folklore). Suppose $cf(\lambda) < \kappa < \lambda$. Let U be a normal ultrafilter over $\mathcal{P}_{\kappa}\lambda$. If M is a ultrapower of V by U, then $j``\lambda^+ \in M$.

Proposition 28 (UB_{λ}). Suppose cf(λ) < κ < λ . Let *I* be a normal precipitous ideal over $\mathcal{P}_{\kappa}\lambda$. If *M* is a generic ultrapower of *V* by a (*V*, \mathbb{P}_I)-generic filter, then j " $\lambda^+ \in M$.

Proposition 29 (UB_{λ}) . Suppose $cf(\lambda) < \kappa < \lambda$. Let *I* be a normal ideal over $\mathcal{P}_{\kappa}\lambda$. Then the following are equivalent:

- ① I is λ^+ -saturated.
- 2 I is weakly λ^+ -saturated.
- ③ Every normal ideal J extending I is precipitous.
- ④ Every normal ideal J extending I is λ^+ -preserving.

A cardinal λ is Jonsson if $\{x \subsetneq \lambda : |x| = \lambda\}$ is stationary in $\mathcal{P}(\lambda)$.

Fact 30 (Foreman). Suppose λ is Jonsson. Then there is no σ -complete λ^+ -saturated ideal over $[\lambda]^{\lambda}$.

Proposition 31. Suppose λ is Jonsson. Then there is no weakly λ^+ -saturated normal ideal over $[\lambda]^{\lambda}$.

Proposition 31. Suppose λ is Jonsson. Then there is no weakly λ^+ -saturated normal ideal over $[\lambda]^{\lambda}$.

Proof. Suppose to contrary that there is a weakly λ^+ -saturated normal ideal I over $[\lambda]^{\lambda}$.

If UB_{λ} holds, then *I* is in fact λ^+ -saturated, this contradicts with Foreman's theorem.

Suppose UB_{λ} fails, then λ is a singular cardinal with $pp(\lambda) = \lambda^+$. In this case, using Shelah's pcf-theory, we can derive a contradiction directly.

Proposition 32 (UB_{λ}) . Suppose λ is singular. Let S be the set $\{x \subseteq \lambda^+ : |x \cap \lambda| < |x|, |x \cap \lambda| \text{ is regular } > cf(\lambda) \text{ and } sup(x) = \lambda\}$. Then S is non-stationary in $\mathcal{P}(\lambda^+)$.

Note 33. For $n < \omega$, $\langle \aleph_{\omega+1}, \aleph_{\omega} \rangle \twoheadrightarrow \langle \aleph_{n+1}, \aleph_n \rangle$ holds \iff $\{x \subseteq \aleph_{\omega+1} : \aleph_n = |x \cap \aleph_{\omega}| < |x|, \sup(x) = \aleph_{\omega}\}$ is stationary in $\mathcal{P}(\aleph_{\omega+1})$.

In particular, $UB_{\aleph_{\omega}} \Rightarrow \langle \aleph_{\omega+1}, \aleph_{\omega} \rangle \not\Rightarrow \langle \aleph_{n+2}, \aleph_{n+1} \rangle$ for every $n < \omega$. **Proposition 32** (UB_{λ}) . Suppose λ is singular. Let S be the set $\{x \subseteq \lambda^+ : |x \cap \lambda| < |x|, |x \cap \lambda| \text{ is regular } > cf(\lambda) \text{ and } sup(x) = \lambda\}$. Then S is non-stationary in $\mathcal{P}(\lambda^+)$.

Proof. Suppose to contrary that S is stationary. Then there is $M \prec \langle H(\theta), \ldots \rangle$ such that $|M \cap \lambda| < |M \cap \lambda^+|$, $|M \cap \lambda|$ is regular > cf(λ), and sup $(M \cap \lambda) = \lambda$. Let $\mu = |M \cap \lambda|$.

Take a \subseteq -increasing continuous sequence $\langle a_{\xi} : \xi < \mu \rangle$ so that $|a_{\xi}| < \mu$, sup $a_{\xi} = \lambda$, and $M \cap \lambda = \bigcup_{\xi < \mu} a_{\xi}$.

For $\xi < \mu$, let $A_{\xi} = \{ \alpha \in M \cap \lambda^{+} : SK(a_{\xi} \cup \{\alpha\}) \cap \lambda = a_{\xi} \}.$ Since μ is regular, $M \cap \lambda^{+} = \bigcup_{\xi < \mu} A_{\xi}.$ $\left| M \cap \lambda^{+} \right| > \mu$, hence we can find $\xi^{*} < \mu$ such that $|A_{\xi^{*}}| > \mu$

 μ .

For $\alpha \in A_{\xi^*}$, let M_{α} the Skolem hull of $a_{\xi^*} \cup \{\alpha\}$ under $\langle H(\theta), \ldots \rangle$. By UB_{λ}, $\langle M_{\alpha} : \alpha \in A_{\xi^*} \rangle$ forms a chain with respect to \subseteq . Thus, $N = \bigcup_{\alpha \in A_{\xi^*}} M_{\alpha}$ is an elementary submodel of $\langle H(\theta), \ldots \rangle$. Then $N \cap \lambda = a_{\xi^*}$ and $\left| N \cap \lambda^+ \right| \leq |N \cap \lambda|^+ = |a_{\xi^*}|^+ \leq \mu$. However $\left| N \cap \lambda^+ \right| > \mu$ because $A_{\xi^*} \subseteq N \cap \lambda^+$, this is a contradiction.

Proposition 33. Let M, N be transitive models of ZFC with $M \subseteq N$. Let $\lambda \in M$ be such that

 $M \models ``\lambda$ is a singular cardinal."

If $(\mathsf{UB}_{\lambda})^M$ holds and

$$N\models ``|\lambda|^N$$
 is regular $> \mathsf{cf}^M(\lambda)$,"

then $(\lambda^+)^M \neq (\lambda^+)^N$.

Note 34. In particular, if there are $M \subseteq N$ such that $\aleph_{\omega+1}^M = \aleph_2^N$, then $\bigcup_{\aleph_{\omega}^M}$ fails in M. However the existence of such models is unknown.

Note 35. If $\langle \aleph_{\omega+1}, \aleph_{\omega} \rangle \twoheadrightarrow \langle \aleph_2, \aleph_1 \rangle$ holds and Woodin cardinal exists, then there exist such models.

Question

For a singular λ , is the failure of UB_{λ} consistent?

Note 36. If $cf(\lambda) = \omega$, then UB_{λ} is indestructible by forcing which preserves λ and λ^+ ;

Lemma 37. Suppose $cf(\lambda) = \omega$ or λ is regular. If UB_{λ} holds then $\Vdash_{\mathbb{P}}$ " UB_{λ} holds" for every poset \mathbb{P} which forces " λ and $(\lambda^+)^V$ are cardinals".