Abelian groups that (do not) have automatic presentations

Lutz H. Strüngmann

Department of Mathematics University of Duisburg-Essen, Campus Essen

Bonn, 21th of June 2010

Automatic Abelian Groups

Lutz H. Strüngmann Abelian groups that (do not) have automatic presentations

Adding Integers

Question

What structures have a nice encoding that make it simple to compute operations just using local information?

イロト イポト イヨト イヨト

ъ

Adding Integers

Question

What structures have a nice encoding that make it simple to compute operations just using local information?

イロト イポト イヨト イヨト

ъ

Automatic Structures

Definition (Khoussainov-Nerode)

A countable relational structure $(M; R_1, ..., R_k)$ is called **automatic** if there exists a finite alphabet Σ and a regular language $D \subseteq \Sigma^*$ and a bijection $f : D \to M$ such that the relations $f^{-1}(R_1), \cdots, f^{-1}(R_k)$ are regular.

- We can also include languages with function symbols by considering the graphs of the functions
- What does it mean for $f^{-1}(R_i)$ to be regular?

 $f^{-1}(R_i) \subseteq D^s \subseteq (\Sigma^*)^s \hookrightarrow ((\Sigma \cup \{\diamond\})^s)^*$

Automatic Structures

Definition (Khoussainov-Nerode)

A countable relational structure $(M; R_1, ..., R_k)$ is called **automatic** if there exists a finite alphabet Σ and a regular language $D \subseteq \Sigma^*$ and a bijection $f : D \to M$ such that the relations $f^{-1}(R_1), \cdots, f^{-1}(R_k)$ are regular.

- We can also include languages with function symbols by considering the graphs of the functions
- What does it mean for $f^{-1}(R_i)$ to be regular?

$$f^{-1}(R_i) \subseteq D^s \subseteq (\Sigma^*)^s \hookrightarrow ((\Sigma \cup \{\diamond\})^s)^*$$

Basic Properties

- The first order theory of an automatic structure is decidable
- The model checking problem is decidable

Few Automatic Structures

If one allows rich algebraic structure in the language, then the only automatic structures are the trivial ones:

- (Khoussainov-Nies-Rubin-Stephan) every automatic Boolean algebra is a finite product of copies of the algebra of all finite and cofinite subsets of $\mathbb N$
- (KNRS) every automatic integral domain is finite
- (Oliver-Thomas) a finitely generated group is automatic iff it is has an abelian subgroup of finite index (abelian-by-finite)
- (Nies-Thomas) every finitely generated subgroup of an automatic group is abelian-by-finite

Automatic Abelian Groups

Examples of automatic abelian groups:

- Finite groups
- Z
- $(\mathbb{Z}/p\mathbb{Z})^{(\aleph_0)}$
- ℤ(p[∞])
- ℤ[1/*m*]
- finite direct sums of those
- finite extensions and automatic amalgamations, e.g.

$$\langle \pmb{p}_1^\infty \pmb{e}_1, \pmb{p}_2^\infty \pmb{e}_2, \pmb{q}^\infty (\pmb{e}_1 + \pmb{e}_2) \rangle \subseteq \mathbb{Q}^2$$

Non-examples

- every group containing $\mathbb{Z}^{(\aleph_0)}$

Automatic Abelian Groups

Examples of automatic abelian groups:

- Finite groups
- Z
- $(\mathbb{Z}/p\mathbb{Z})^{(\aleph_0)}$
- ℤ(p[∞])
- ℤ[1/*m*]
- finite direct sums of those
- finite extensions and automatic amalgamations, e.g.

$$\langle \pmb{p}_1^\infty \pmb{e}_1, \pmb{p}_2^\infty \pmb{e}_2, \pmb{q}^\infty (\pmb{e}_1 + \pmb{e}_2) \rangle \subseteq \mathbb{Q}^2$$

Non-examples

- every group containing $\mathbb{Z}^{(\aleph_0)}$
- $\mathbb{Z}(p^{\infty})^{(\aleph_0)}$

Automatic abelian groups

Suppose (G, +) is an automatic torsion-free abelian group. Let

- $D \subseteq \Sigma^*$ regular
- $g: D \rightarrow G$ bijection
- $g^{-1}(+)$ is recognizable by an automaton with *r* states

$\implies D^{\leq n} + D^{\leq n} \subseteq D^{\leq n+r}$

emma

Let L_1 , L_2 be languages over a finite alphabet and $R \subseteq L_1 \times L_2$ be a regular relation such that the sections $R_x = \{y \in L_2 : (x, y) \in R\}$ are finite. Then for all $(x, y) \in R$, $len(y) \leq len(x) + k$, where k is the number of states of an automaton recognizing R and len(y) is the length of y.

Automatic abelian groups

Suppose (G, +) is an automatic torsion-free abelian group. Let

- $D \subseteq \Sigma^*$ regular
- $g: D \rightarrow G$ bijection
- $g^{-1}(+)$ is recognizable by an automaton with *r* states

$$\implies D^{\leq n} + D^{\leq n} \subseteq D^{\leq n+r}$$

emma

Let L_1 , L_2 be languages over a finite alphabet and $R \subseteq L_1 \times L_2$ be a regular relation such that the sections $R_x = \{y \in L_2 : (x, y) \in R\}$ are finite. Then for all $(x, y) \in R$, $len(y) \leq len(x) + k$, where k is the number of states of an automaton recognizing R and len(y) is the length of y.

Automatic abelian groups

Suppose (G, +) is an automatic torsion-free abelian group. Let

- $D \subseteq \Sigma^*$ regular
- $g: D \rightarrow G$ bijection
- $g^{-1}(+)$ is recognizable by an automaton with *r* states

$$\implies D^{\leq n} + D^{\leq n} \subseteq D^{\leq n+r}$$

Lemma

Let L_1 , L_2 be languages over a finite alphabet and $R \subseteq L_1 \times L_2$ be a regular relation such that the sections $R_x = \{y \in L_2 : (x, y) \in R\}$ are finite. Then for all $(x, y) \in R$, $len(y) \leq len(x) + k$, where k is the number of states of an automaton recognizing R and len(y) is the length of y.

Automatic abelian groups

Now the graph of the homomorphism $M_m : G \to G$ defined by $M_m(x) = mx$ is also regular. Let

h(*m*) be the minimal number of states of an automaton recognizing the graph of *M_m*

•
$$I_0 = min\{I \in \mathbb{N} : 0 \in D^{\leq I} \text{ and } |D^{\leq I}| \geq 2\}$$

•
$$A_n = D^{\leq l_0 + nr}$$
 for $n = 0, 1, \cdots$

1)
$$0 \in A_0$$
 and $|A_0| \ge 2$ and $G = \bigcup_{n \in \omega} A_n$;

$$a_n + A_n \subseteq A_{n+1} \text{ for } n \in \omega;$$

$$|A_{n+1}| \leq C |A_n| \text{ for } n \in \omega;$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Automatic abelian groups

Now the graph of the homomorphism $M_m : G \to G$ defined by $M_m(x) = mx$ is also regular. Let

h(*m*) be the minimal number of states of an automaton recognizing the graph of *M_m*

•
$$I_0 = min\{I \in \mathbb{N} : 0 \in D^{\leq I} \text{ and } |D^{\leq I}| \geq 2\}$$

•
$$A_n = D^{\leq l_0 + nr}$$
 for $n = 0, 1, \cdots$

•
$$0 \in A_0$$
 and $|A_0| \ge 2$ and $G = \bigcup_{n \in \omega} A_n$;

2
$$A_n + A_n \subseteq A_{n+1}$$
 for $n \in \omega$;

$$|A_{n+1}| \le C |A_n| \text{ for } n \in \omega;$$

< 回 > < 回 > < 回

Automatic abelian groups

Why?....

 $m^{-1}D^{\leq n} \subseteq D^{\leq n+h(m)}$

and

Lemma

Let $L \subseteq \Sigma^*$ be a regular language. Then there exists a constant *C* such that $|L^{\leq n+1}| \leq C|L^{\leq n}|$ for all *n*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Tsankov's Theorem

Theorem (Todor Tsankov)

There does not exist a sequence $\langle A_n : n \in \omega \rangle$ of finite subsets of \mathbb{Q} that satisfies the conditions

() $0 \in A_0$ and $|A_0| \ge 2$;

2)
$$A_n + A_n \subseteq A_{n+1}$$
 for $n \in \omega$;

3
$$|A_{n+1}| \leq C|A_n|$$
 for $n \in \omega$;

•
$$m^{-1}A_n \subseteq A_{n+h(m)}$$
 for $n \in \omega$ and $m \in \mathbb{N}$.

Hence the additive group of rational numbers does not have an automatic presentation.

イロト イポト イヨト イヨト

3

The Local Theorem

Theorem (Local Version)

Given a constant C_1 and a function $h : \Pi \to \mathbb{N}$ there are integers $d, K \in \mathbb{Z}^+$ and a constant $C = C(C_1) \ge C_1$ such that the following hold for any sequence $p_d < \cdots < p_0$ of primes with

$$p_d > C(4dK)^d$$
 and $p_{i-1} > p_i C^{h(p_i)d} d^{Cd^4}$ for $i = d, d-1, \cdots, 1$.

There is no sequence $A_0, \cdots, A_{h(p_0)+\dots+h(p_d)} \subseteq \mathbb{Q}$ of finite subsets of \mathbb{Q} such that

The Finite Theorem

Theorem (Finite Version)

Given a constant C_1 and a function $h : \Pi \to \mathbb{N}$ there are integers $d, K \in \mathbb{Z}^+$ and a constant $C = C(C_1) \ge C_1$ such that the following hold for any sequence $p_d < \cdots < p_0$ of primes with

$$p_d > C(4dK)^d$$
 and $p_{i-1} > p_i C^{h(p_i)d} d^{Cd^4}$ for $i = d, d-1, \cdots, 1$.

There is p^* such that for any prime $p \ge p^*$, there is no sequence $A_0, \dots, A_{h(p_0)+\dots+h(p_d)} \subseteq \mathbb{Z}/p\mathbb{Z}$ of finite subsets of $\mathbb{Z}/p\mathbb{Z}$ such that

① 0 ∈
$$A_0$$
, 2 ≤ $|A_0|$ ≤ C_1

2
$$|A_{n+1}| \le C_1 |A_n|$$
 for $n < h(p_0) + \cdots + h(p_d)$

3
$$A_n + A_n \subseteq A_{n+1}$$
 for $n < h(p_0) + \cdots + h(p_d)$

④
$$p_i^{-1}A_n \subseteq A_{n+h(p_i)}$$
 for $n + h(p_i) \le h(p_0) + \dots + h(p_d)$ and
i = 0, . . . , *d*.

The Main Theorem

Proposition

For every automatic torsion-free abelian group *G* there is a free finite rank subgroup *H* such that G/H is *p*-divisible by almost all primes *p*.

Theorem (Main Theorem)

Every automatic torsion-free abelian group is the extenson of a finite rank free group by a direct sum of finitely many $\mathbb{Z}(p^{\infty})$.

The Main Theorem

Proposition

For every automatic torsion-free abelian group *G* there is a free finite rank subgroup *H* such that G/H is *p*-divisible by almost all primes *p*.

Theorem (Main Theorem)

Every automatic torsion-free abelian group is the extenson of a finite rank free group by a direct sum of finitely many $\mathbb{Z}(p^{\infty})$.