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Adding Integers
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0 1 1 0 1 �

− − − − − −
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Question
What structures have a nice encoding that make it simple to compute
operations just using local information?
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Automatic Structures

Definition (Khoussainov-Nerode)

A countable relational structure (M; R1, . . . ,Rk ) is called automatic if
there exists a finite alphabet Σ and a regular language D ⊆ Σ∗ and a
bijection f : D → M such that the relations f−1(R1), · · · , f−1(Rk ) are
regular.

We can also include languages with function symbols by
considering the graphs of the functions

What does it mean for f−1(Ri ) to be regular?

f−1(Ri ) ⊆ Ds ⊆ (Σ∗)s ↪→ ((Σ ∪ {�})s)∗
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Basic Properties

The first order theory of an automatic structure is decidable

The model checking problem is decidable
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Few Automatic Structures

If one allows rich algebraic structure in the language, then the only
automatic structures are the trivial ones:

(Khoussainov-Nies-Rubin-Stephan) every automatic Boolean
algebra is a finite product of copies of the algebra of all finite and
cofinite subsets of N

(KNRS) every automatic integral domain is finite

(Oliver-Thomas) a finitely generated group is automatic iff it is
has an abelian subgroup of finite index (abelian-by-finite)

(Nies-Thomas) every finitely generated subgroup of an
automatic group is abelian-by-finite
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Automatic Abelian Groups
Examples of automatic abelian groups:

Finite groups

Z
(Z/pZ)(ℵ0)

Z(p∞)

Z[1/m]

finite direct sums of those

finite extensions and automatic amalgamations, e.g.

〈p∞1 e1,p∞2 e2,q∞(e1 + e2)〉 ⊆ Q2

Non-examples

every group containing Z(ℵ0)

Z(p∞)(ℵ0)

Thus it is reasonable to look at abelian groups !
Lutz H. Strüngmann Abelian groups that (do not) have automatic presentations
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Automatic abelian groups
Suppose (G,+) is an automatic torsion-free abelian group. Let

D ⊆ Σ∗ regular

g : D → G bijection

g−1(+) is recognizable by an automaton with r states

=⇒ D≤n + D≤n ⊆ D≤n+r

Lemma
Let L1, L2 be languages over a finite alphabet and R ⊆ L1 × L2 be a
regular relation such that the sections Rx = {y ∈ L2 : (x , y) ∈ R} are
finite. Then for all (x , y) ∈ R, len(y) ≤ len(x) + k, where k is the
number of states of an automaton recognizing R and len(y) is the
length of y.
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Automatic abelian groups
Now the graph of the homomorphism Mm : G→ G defined by
Mm(x) = mx is also regular. Let

h(m) be the minimal number of states of an automaton
recognizing the graph of Mm

l0 = min{l ∈ N : 0 ∈ D≤l and |D≤l | ≥ 2}
An = D≤l0+nr for n = 0,1, · · ·

=⇒

1 0 ∈ A0 and |A0| ≥ 2 and G =
⋃

n∈ω An;

2 An + An ⊆ An+1 for n ∈ ω;
3 |An+1| ≤ C|An| for n ∈ ω;
4 m−1An ⊆ An+h(m) for n ∈ ω and m ∈ N.
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Automatic abelian groups

Why?....
m−1D≤n ⊆ D≤n+h(m)

and

Lemma
Let L ⊆ Σ∗ be a regular language. Then there exists a constant C
such that |L≤n+1| ≤ C|L≤n| for all n.
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Tsankov’s Theorem

Theorem (Todor Tsankov)

There does not exist a sequence 〈An : n ∈ ω〉 of finite subsets of Q
that satisfies the conditions

1 0 ∈ A0 and |A0| ≥ 2;

2 An + An ⊆ An+1 for n ∈ ω;

3 |An+1| ≤ C|An| for n ∈ ω;

4 m−1An ⊆ An+h(m) for n ∈ ω and m ∈ N.

Hence the additive group of rational numbers does not have an
automatic presentation.
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The Local Theorem

Theorem (Local Version)

Given a constant C1 and a function h : Π→ N there are integers
d ,K ∈ Z+ and a constant C = C(C1) ≥ C1 such that the following
hold for any sequence pd < · · · < p0 of primes with

pd > C(4dK )d and pi−1 > piCh(pi )ddCd4
for i = d ,d − 1, · · · ,1.

There is no sequence A0, · · · ,Ah(p0)+···+h(pd ) ⊆ Q of finite subsets of
Q such that

1 0 ∈ A0, |A0| ≥ 2

2 |An+1| ≤ C1|An| for n < h(p0) + · · ·+ h(pd )

3 An + An ⊆ An+1 for n < h(p0) + · · ·+ h(pd )

4 p−1
i An ⊆ An+h(pi ) for n + h(pi ) ≤ h(p0) + · · ·+ h(pd ) and

i = 0, . . . ,d.
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The Finite Theorem

Theorem (Finite Version)

Given a constant C1 and a function h : Π→ N there are integers
d ,K ∈ Z+ and a constant C = C(C1) ≥ C1 such that the following
hold for any sequence pd < · · · < p0 of primes with

pd > C(4dK )d and pi−1 > piCh(pi )ddCd4
for i = d ,d − 1, · · · ,1.

There is p∗ such that for any prime p ≥ p∗, there is no sequence
A0, · · · ,Ah(p0)+···+h(pd ) ⊆ Z/pZ of finite subsets of Z/pZ such that

1 0 ∈ A0, 2 ≤ |A0| ≤ C1

2 |An+1| ≤ C1|An| for n < h(p0) + · · ·+ h(pd )

3 An + An ⊆ An+1 for n < h(p0) + · · ·+ h(pd )

4 p−1
i An ⊆ An+h(pi ) for n + h(pi ) ≤ h(p0) + · · ·+ h(pd ) and

i = 0, . . . ,d.
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The Main Theorem

Proposition

For every automatic torsion-free abelian group G there is a free finite
rank subgroup H such that G/H is p-divisible by almost all primes p.

Theorem (Main Theorem)

Every automatic torsion-free abelian group is the extenson of a finite
rank free group by a direct sum of finitely many Z(p∞).
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