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A topological space X is a Polish space if X is separable and

metrizable by a complete distance function.

Examples: R, !k , the Baire space N = !!, (C (K ); ‖:‖∞), K
compact and separable Banach spaces. We will denote Polish

spaces by X , Y.
If P ⊆ X we will write P(x ) instead of x ∈ P .

Borel sets B˜ .
Analytic Sets. A set P ⊆ X is analytic or Σ˜ 1

1
if there is a closed

set Q ⊆ X ×N

P(x )⇐⇒ ∃� ∈ N Q(x ; �)

Coanalytic sets. A set is coanalytic or Π˜ 1

1
if it is the complement

of an analytic set.

∆˜ 1

1
= Σ˜ 1

1
∩Π˜ 1

1
.

Suslin's Theorem.

B˜ = ∆˜ 1

1
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Recursion Theory on !k .

One de�nes a countable family A of functions de�ned on various

spaces of the form !k which take values in !, which consists of all

\computable" functions. A function is recursive if it belongs to A.

Parametrization. For every " ∈ N = !! one de�nes the

relativized family A(") of "-recursive functions.

A ⊆ A("), equality when the function " : ! → ! is recursive.

A set P ⊆ !k is recursive when the characteristic function �p is

recursive.

P "-recursive when �p is "-recursive.
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E�ective Theory.

Suppose that X is a Polish space, d is compatible distance function

for X and (xn)n∈! is a sequence in X . De�ne the relation P< of

!4 as follows P<(i ; j ; k ;m)⇐⇒ d(xi ; xj ) <
k

m+1
. Similarly we

de�ne the relation P≤.

The sequence (xn)n∈! is a recursive presentation of X , if
(1) it is a dense sequence and

(2) the relations P< and P≤ are recursive.

The spaces R, N and !k admit a recursive presentation i.e., they

are recursively presented. Some other examples: R× !, R×N .

However not all Polish spaces are recursively presented.

Every Polish space admits an "-recursive presentation for some

suitable ".

Without loss of generality we will deal with recursively presented

Polish spaces.
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N (X ; s) = the ball with center x(s)0 and radius (s)1
(s)2+1

.

A set P ⊆ X is semirecursive if P =
⋃
i∈! N (X ; �(i)) where � is

a recursive function from ! to !.

Σ0

1
= all semirecursive sets

 e�ective open sets.

Π0

1
= the complements of semirecursive sets

 e�ective closed sets.

Σ1

1
= projections of Π0

1
sets

 e�ective analytic sets.

Π1

1
= the complements of Σ1

1
sets

 e�ective coanalytic sets.

∆1

1
= Σ1

1
∩ Π1

1
= e�ective Borel sets (Kleene).

Similarly one de�nes the relativized pointclasses with respect to

some parameter " which will be denoted by ∆1

1
(") for instance.
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A function f : X → Y is continuous if and only if the set

Rf ⊆ X × !, Rf (x ; s)⇐⇒ f (x ) ∈ N (Y; s) is open.

A function f : X → Y is Σ0

1
-recursive if and only if the set

Rf ⊆ X × !, Rf (x ; s)⇐⇒ f (x ) ∈ N (Y; s), is Σ0

1
.

A point x ∈ X is ∆1

1
point if the relation U ⊆ ! which is de�ned by

U (s)⇐⇒ x ∈ N (X ; s)

is ∆1

1
.
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A basic construction.

We assign to every tree Ô on ! a Polish space XT as follows

XT = T ∪ [T ]:

Every point of T is an isolated point of XT .

The tree Ô is dense in XT .

If Ô is a recursive tree then the Polish space XT is recursively

presented.

Theorem (VG). Every recursively presented Polish space is ∆1

1

isomorphic with a space of the form XT , for some recursive tree Ô.

E�ective Theory on Polish spaces has been developed with the

following preassumption: every recursively presented Polish space

which is not of the form !k is perfect i.e., there are no isolated

points. But on the other hand all previous notions are given in

general.
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It is well known that every uncountable Polish space is Borel

isomorphic with the Baire space N .

The corresponding e�ective result is that every perfect recursively

presented Polish space is ∆1

1
isomorphic with N .

Another central result is that the set of ∆1

1
points of a perfect

Polish space X is a Π1

1
set but it is not ∆1

1
.

Theorem (VG). Let T be a recursive tree such that the body [T ]
does not contain ∆1

1
members, (such a tree exists from a theorem

of Kleene). Then

(1) The space XT is not ∆1

1
isomorphic with the Baire space N .

(2) The set of ∆1

1
points of XT is Σ0

1
i.e., semirecursive.
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Theorem (VG). Let X be an uncountable recursively presented

Polish space. The following are equivalent.

(1) The set of ∆1

1
points of X is ∆1

1
.

(2) The space X is ∆1

1
isomorphic with a space of the form XT ,

where T is a recursive tree on ! for which the set [T ] does not
contain ∆1

1
members.

Corollary (VG). Σ1

1
6= Π1

1
.

Theorem (Bourgain-Fremlin-Talagrand). Let X be a Polish space

and (fn)n∈! be a sequence of Borel-measurable functions from X
to R which satis�es (1) the sequence (fn)n∈! is pointwise bounded

and (2) every cluster point of (fn)n∈! in
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Some Questions.

Let X , Y be two recursively presented Polish spaces. De�ne

X 4 Y if there is a ∆1

1
injection � : X → Y.

De�ne also X ≈ Y if there is a ∆1

1
isomorphism � : X → Y.

X ≈ Y ⇐⇒ X 4 Y & Y 4 X :

For every recursively presented Polish space X we have that

! 4 X 4 N :

Of course if X is uncountable then ! ≺ X , in particular ! ≺ N .

Fix a recursive tree T such that the body [T ] does not contain any

∆1

1
members. Then we have the following

! ≺ XT ≺ N :
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Every recursively presented Polish space X is ∆1

1
isomorphic to a

space of the form XT for some recursive tree on !.

If T = !<! then XT ≈ N .

Question no1. De�ne

T1 ∼ T2 ⇐⇒ XT1 ≈ XT2 :

Can we express the equivalence relation ∼ in terms of the

combinatorial and the e�ective properties of the trees T1;T2?

Question no2. Let T be a recursive tree whose body [T ] does not
contain any ∆1

1
members. Is there some uncountable X which is

not up to ≈ one of XT ; N ?

Question no5. Is the relation 4 linear?
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Connections with General Topology.

Theorem (Bourgain-Fremlin-Talagrand). Let X be a Polish space

and (fn)n∈! be a sequence of Borel-measurable functions from X
to R which satis�es (1) the sequence (fn)n∈! is pointwise bounded

and (2) every cluster point of (fn)n∈! in RX with the product

topology is a Borel-measurable function. Then there is a

subsequence (fn)n∈L which is pointwise convergent.

Theorem (Debs). Let X be a recursively presented Polish space

and (fn)n∈! be a sequence of continuous functions from X to R
which satis�es conditions (1) and (2) above and in addition (3) the

sequence (fn)n∈! is ∆1

1
(�)-recursive. Then there is an in�nite

L ⊆ ! which is in ∆1

1
(�) such that the subsequence (fn)n∈L is

pointwise convergent.
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Theorem (Extension of the Topology). Suppose (X ; T ) is a Polish

space and A is a Borel subset of X . Then there is a Polish

topology TA which extends T , the set A is TA-clopen and the

topologies TA and T have the same Borel sets.

From this it follows that if (fn)n∈! is a sequence of

Borel-measurable functions from (X ; T ) to R then there exists a

Polish topology T ′ which extends T , has the same Borel sets with

T and every function fn is T ′-continuous.
Theorem (VG). Let (X ; T ) be a recursively presented Polish space

and A be a ∆1

1
subset of X . Then there is a Polish topology TA

which extends T such that:

(1) the Polish space (X ; TA) is "-recursively presented for some

parameter ",
(2) the set A is Σ0

1
(") and Π0

1
(") subset of (X ; TA) and

(3) a set B ⊆ X is a ∆1

1
("; �) subset of (X ; T ) if and only if B is a

∆1

1
("; �) subset of (X ; TA).
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A Weaker version of Debs' Theorem.

Theorem (VG). weaker Suppose X is a recursively presented

Polish space and (fn)n∈! is a sequence of functions from X to R
which is ∆1

1
(�)-recursive (and so it consists of Borel-measurable

functions) with the following properties:

(1) the sequence (fn)n∈! is pointwise bounded,

(2) every cluster point of (fn)n∈! in RX with the product topology

is a Borel-measurable function.

Then there is an " ∈ N and L ∈ ∆1

1
("; �) such that the

subsequence (fn)n∈L is pointwise convergent and moreover " is the

characteristic function of a Σ1

1
subset of !.
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Results in Banach space Theory.

Theorem (VG). Let X be a separable Banach space. Then the set

P = { (yi)i∈! ∈ X ! = the sequence (yi)i∈! is weakly convergent}

is a coanalytic subset of X !.

Let Q be a coanalytic subset of X ! × X . Then the set

PQ = { (yi)i∈! ∈ X ! = the sequence (yi)i∈! is weakly convergent

to some y and Q((yi)i∈!; y) }

is a coanalytic subset of X !.
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Theorem (Erd�os-Magidor). Let X be a Banach space and (ei)i∈!
be a bounded sequence in X . Then there is a subsequence (eki )i∈!
such that: either (É) every subsequence of (eki )i∈! is Ces�aro

summable with respect to the norm and all being summed to the

same limit; or (ÉÉ) no subsequence of (eki )i∈! is Ces�aro summable.

Theorem (VG). Let X be a Banach space, (ei)i∈! be a bounded

sequence in X and let Q ⊆ X ! × X be a coanalytic set. Then

there is a subsequence (ei)i∈L of (ei)i∈! for which: either

(I) there is some e ∈ X such that every subsequence (ei)i∈H of

(ei)i∈L is weakly Ces�aro summable to e and Q((ei)i∈H ; e); or
(II) for every subsequence (ei)i∈H of (ei)i∈L and every e ∈ X with

Q((ei)i∈H ; e) the sequence (ei)i∈H is not weakly Ces�aro summable

to e.
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Example. Let (fn)n∈! be a bounded sequence of di�erentiable

functions. Then there is a subsequence (fn)n∈L such that: either

(I) there is a di�erentiable function f such that for every H ⊆ L the

sequences (fn)n∈H and (f ′n)n∈H are pointwise Ces�aro summable to

f and f ′ respectively; or (ÉÉ) for every di�erentiable function f and

every H ⊆ L if (fn)n∈H is pointwise Ces�aro summable to f then

then (f ′n)n∈H is not pointwise Ces�aro summable to f ′.

Theorem (VG). Let X be a Banach space and (ei)i∈! a bounded

sequence in X for which every subsequence (ei)i∈L has a further

subsequence (ei)i∈H which is weakly Ces�aro summable. Then

(1) every subsequence of (ei)i∈! has a weakly convergent

subsequence and

(2) there is a Borel-measurable function f : [N]! → [N]! such that

for all subsequences (ei)i∈L the sequence (ei)i∈f (L) is a weakly

convergent subsequence of (ei)i∈L.
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