Effective Descriptive Set Theory and Applications in Analysis

Vassilis Gregoriades

Bonn, $17^{\rm th}$ of May, 2010

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Examples: \mathbb{R} , ω^k , the *Baire space* $\mathcal{N} = \omega^{\omega}$, $(C(K), \|.\|_{\infty})$, K compact and separable Banach spaces. We will denote Polish spaces by \mathcal{X} , \mathcal{Y} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If $P \subseteq \mathcal{X}$ we will write P(x) instead of $x \in P$.

Examples: \mathbb{R} , ω^k , the *Baire space* $\mathcal{N} = \omega^{\omega}$, $(C(K), \|.\|_{\infty})$, K compact and separable Banach spaces. We will denote Polish spaces by \mathcal{X} , \mathcal{Y} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If $P \subseteq \mathcal{X}$ we will write P(x) instead of $x \in P$.

Borel sets \mathbf{B} .

Examples: \mathbb{R} , ω^k , the *Baire space* $\mathcal{N} = \omega^{\omega}$, $(C(K), \|.\|_{\infty})$, K compact and separable Banach spaces. We will denote Polish spaces by \mathcal{X} , \mathcal{Y} .

If $P \subseteq \mathcal{X}$ we will write P(x) instead of $x \in P$.

Borel sets **B**.

Analytic Sets. A set $P \subseteq \mathcal{X}$ is analytic or $\sum_{i=1}^{n-1} \mathbb{I}$ if there is a closed set $Q \subseteq \mathcal{X} \times \mathcal{N}$

 $P(x) \iff \exists \alpha \in \mathcal{N} \ Q(x, \alpha)$

Examples: \mathbb{R} , ω^k , the *Baire space* $\mathcal{N} = \omega^{\omega}$, $(C(K), \|.\|_{\infty})$, K compact and separable Banach spaces. We will denote Polish spaces by \mathcal{X} , \mathcal{Y} .

If $P \subseteq \mathcal{X}$ we will write P(x) instead of $x \in P$.

Borel sets **B**.

Analytic Sets. A set $P \subseteq \mathcal{X}$ is analytic or $\sum_{i=1}^{1} f$ if there is a closed set $Q \subseteq \mathcal{X} \times \mathcal{N}$

$$P(x) \iff \exists \alpha \in \mathcal{N} \ Q(x, \alpha)$$

Coanalytic sets. A set is *coanalytic* or $\prod_{i=1}^{n-1} \mathbb{I}_{1}$ if it is the complement of an analytic set.

$$\underline{\mathbf{\Delta}}_{\widetilde{\mathbf{\Delta}}}^1 = \underline{\mathbf{\Sigma}}_{\widetilde{\mathbf{\Delta}}}^1 \cap \mathbf{\Pi}_{\widetilde{\mathbf{\Delta}}}^1.$$

Examples: \mathbb{R} , ω^k , the *Baire space* $\mathcal{N} = \omega^{\omega}$, $(C(K), \|.\|_{\infty})$, K compact and separable Banach spaces. We will denote Polish spaces by \mathcal{X} , \mathcal{Y} .

If $P \subseteq \mathcal{X}$ we will write P(x) instead of $x \in P$.

Borel sets **B**.

Analytic Sets. A set $P \subseteq \mathcal{X}$ is analytic or $\sum_{i=1}^{n-1} \mathbb{I}$ if there is a closed set $Q \subseteq \mathcal{X} \times \mathcal{N}$

$$P(x) \iff \exists \alpha \in \mathcal{N} \ Q(x, \alpha)$$

Coanalytic sets. A set is *coanalytic* or $\prod_{i=1}^{n-1} \mathbb{I}_{1}^{1}$ if it is the complement of an analytic set.

$$\underline{\mathbf{\Delta}}_{1}^{1} = \underline{\mathbf{\Sigma}}_{1}^{1} \cap \underline{\mathbf{\Pi}}_{1}^{1}.$$

Suslin's Theorem.

$$\mathbf{B}_{\widetilde{\omega}} = \mathbf{\Delta}_{1}^{1}$$

Recursion Theory on ω^k .

One defines a *countable* family \mathcal{A} of functions defined on various spaces of the form ω^k which take values in ω , which consists of all "computable" functions. A function is *recursive* if it belongs to \mathcal{A} .

Recursion Theory on ω^k .

One defines a *countable* family \mathcal{A} of functions defined on various spaces of the form ω^k which take values in ω , which consists of all "computable" functions. A function is *recursive* if it belongs to \mathcal{A} . *Parametrization*. For every $\varepsilon \in \mathcal{N} = \omega^{\omega}$ one defines the *relativized* family $\mathcal{A}(\varepsilon)$ of ε -recursive functions. $\mathcal{A} \subseteq \mathcal{A}(\varepsilon)$, equality when the function $\varepsilon : \omega \to \omega$ is recursive.

Recursion Theory on ω^k .

One defines a *countable* family \mathcal{A} of functions defined on various spaces of the form ω^k which take values in ω , which consists of all "computable" functions. A function is *recursive* if it belongs to \mathcal{A} . *Parametrization.* For every $\varepsilon \in \mathcal{N} = \omega^{\omega}$ one defines the *relativized* family $\mathcal{A}(\varepsilon)$ of ε -recursive functions. $\mathcal{A} \subseteq \mathcal{A}(\varepsilon)$, equality when the function $\varepsilon : \omega \to \omega$ is recursive. A set $P \subseteq \omega^k$ is *recursive* when the characteristic function χ_p is recursive.

 $P \in \overline{c}$ -recursive when χ_p is ε -recursive.

Suppose that \mathcal{X} is a Polish space, d is compatible distance function for \mathcal{X} and $(x_n)_{n \in \omega}$ is a sequence in \mathcal{X} . Define the relation P_{\leq} of ω^4 as follows $P_{\leq}(i, j, k, m) \iff d(x_i, x_j) < \frac{k}{m+1}$. Similarly we define the relation P_{\leq} .

Suppose that \mathcal{X} is a Polish space, d is compatible distance function for \mathcal{X} and $(x_n)_{n \in \omega}$ is a sequence in \mathcal{X} . Define the relation P_{\leq} of ω^4 as follows $P_{\leq}(i, j, k, m) \iff d(x_i, x_j) < \frac{k}{m+1}$. Similarly we define the relation P_{\leq} .

The sequence $(x_n)_{n \in \omega}$ is a *recursive presentation* of \mathcal{X} , if (1) it is a dense sequence and (2) the relations $P_{<}$ and $P_{<}$ are recursive.

Suppose that \mathcal{X} is a Polish space, d is compatible distance function for \mathcal{X} and $(x_n)_{n \in \omega}$ is a sequence in \mathcal{X} . Define the relation P_{\leq} of ω^4 as follows $P_{\leq}(i, j, k, m) \iff d(x_i, x_j) < \frac{k}{m+1}$. Similarly we define the relation P_{\leq} .

The sequence $(x_n)_{n \in \omega}$ is a *recursive presentation* of \mathcal{X} , if (1) it is a dense sequence and

(2) the relations $P_{<}$ and $P_{<}$ are recursive.

The spaces \mathbb{R} , \mathcal{N} and ω^k admit a recursive presentation i.e., they are *recursively presented*. Some other examples: $\mathbb{R} \times \omega$, $\mathbb{R} \times \mathcal{N}$. However not all Polish spaces are recursively presented.

(日) (同) (三) (三) (三) (○) (○)

Suppose that \mathcal{X} is a Polish space, d is compatible distance function for \mathcal{X} and $(x_n)_{n \in \omega}$ is a sequence in \mathcal{X} . Define the relation P_{\leq} of ω^4 as follows $P_{\leq}(i, j, k, m) \iff d(x_i, x_j) < \frac{k}{m+1}$. Similarly we define the relation P_{\leq} .

The sequence $(x_n)_{n\in\omega}$ is an ε -recursive presentation of \mathcal{X} , if (1) it is a dense sequence and

(2) the relations P_{\leq} and P_{\leq} are ε -recursive.

The spaces \mathbb{R} , \mathcal{N} and ω^k admit a recursive presentation i.e., they are *recursively presented*. Some other examples: $\mathbb{R} \times \omega$, $\mathbb{R} \times \mathcal{N}$. However not all Polish spaces are recursively presented.

(日) (同) (三) (三) (三) (○) (○)

Suppose that \mathcal{X} is a Polish space, d is compatible distance function for \mathcal{X} and $(x_n)_{n \in \omega}$ is a sequence in \mathcal{X} . Define the relation P_{\leq} of ω^4 as follows $P_{\leq}(i, j, k, m) \iff d(x_i, x_j) < \frac{k}{m+1}$. Similarly we define the relation P_{\leq} .

The sequence $(x_n)_{n\in\omega}$ is an ε -recursive presentation of \mathcal{X} , if (1) it is a dense sequence and

(2) the relations P_{\leq} and P_{\leq} are ε -recursive.

The spaces \mathbb{R} , \mathcal{N} and ω^k admit a recursive presentation i.e., they are *recursively presented*. Some other examples: $\mathbb{R} \times \omega$, $\mathbb{R} \times \mathcal{N}$. However not all Polish spaces are recursively presented.

Every Polish space admits an ε -recursive presentation for some suitable ε .

Suppose that \mathcal{X} is a Polish space, d is compatible distance function for \mathcal{X} and $(x_n)_{n \in \omega}$ is a sequence in \mathcal{X} . Define the relation P_{\leq} of ω^4 as follows $P_{\leq}(i, j, k, m) \iff d(x_i, x_j) < \frac{k}{m+1}$. Similarly we define the relation P_{\leq} .

The sequence $(x_n)_{n\in\omega}$ is an ε -recursive presentation of \mathcal{X} , if (1) it is a dense sequence and

(2) the relations P_{\leq} and P_{\leq} are ε -recursive.

The spaces \mathbb{R} , \mathcal{N} and ω^k admit a recursive presentation i.e., they are *recursively presented*. Some other examples: $\mathbb{R} \times \omega$, $\mathbb{R} \times \mathcal{N}$. However not all Polish spaces are recursively presented.

Every Polish space admits an ε -recursive presentation for some suitable ε .

Without loss of generality we will deal with recursively presented Polish spaces.

$N(\mathcal{X},s) =$ the ball with center $x_{(s)_0}$ and radius $\frac{(s)_1}{(s)_2+1}$.

 $N(\mathcal{X}, s) =$ the ball with center $x_{(s)_0}$ and radius $\frac{(s)_1}{(s)_2+1}$. A set $P \subseteq \mathcal{X}$ is *semirecursive* if $P = \bigcup_{i \in \omega} N(\mathcal{X}, \alpha(i))$ where α is a recursive function from ω to ω .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $N(\mathcal{X}, s) =$ the ball with center $x_{(s)_0}$ and radius $\frac{(s)_1}{(s)_2+1}$.

A set $P \subseteq \mathcal{X}$ is *semirecursive* if $P = \bigcup_{i \in \omega} N(\mathcal{X}, \alpha(i))$ where α is a recursive function from ω to ω .

- $\Sigma_1^0 =$ all semirecursive sets \rightsquigarrow effective open sets.
- $\Pi^0_1 = the \ complements \ of \ semirecursive \ sets$
 - \rightsquigarrow effective closed sets.

 $N(\mathcal{X}, s) =$ the ball with center $x_{(s)_0}$ and radius $\frac{(s)_1}{(s)_2+1}$.

A set $P \subseteq \mathcal{X}$ is *semirecursive* if $P = \bigcup_{i \in \omega} N(\mathcal{X}, \alpha(i))$ where α is a recursive function from ω to ω .

- $\Sigma_1^0 =$ all semirecursive sets \rightsquigarrow effective open sets.
- $\Pi^0_1 = \text{the complements of semirecursive sets} \\ \rightsquigarrow \text{ effective closed sets.}$
- $$\begin{split} \Sigma_1^1 &= \text{projections of } \Pi_1^0 \text{ sets} \\ & \rightsquigarrow \text{ effective analytic sets.} \end{split}$$
- $$\label{eq:prod} \begin{split} \Pi^1_1 &= \text{the complements of } \Sigma^1_1 \text{ sets} \\ & \rightsquigarrow \text{ effective coanalytic sets.} \end{split}$$
- $\Delta_1^1 = \Sigma_1^1 \cap \Pi_1^1 =$ effective Borel sets (Kleene).

 $N(\mathcal{X}, s)$ = the ball with center $x_{(s)_0}$ and radius $\frac{(s)_1}{(s)_2+1}$.

A set $P \subseteq \mathcal{X}$ is *semirecursive* if $P = \bigcup_{i \in \omega} N(\mathcal{X}, \alpha(i))$ where α is a recursive function from ω to ω .

- $\Sigma_1^0 =$ all semirecursive sets \rightsquigarrow effective open sets.
- $\Pi^0_1 = \text{the complements of semirecursive sets} \\ \rightsquigarrow \text{ effective closed sets.}$
- $$\begin{split} \Sigma_1^1 &= \text{projections of } \Pi_1^0 \text{ sets} \\ &\rightsquigarrow \text{ effective analytic sets.} \end{split}$$
- $$\label{eq:prod} \begin{split} \Pi^1_1 &= \text{the complements of } \Sigma^1_1 \text{ sets} \\ & \rightsquigarrow \text{ effective coanalytic sets.} \end{split}$$

 $\Delta_1^1 = \Sigma_1^1 \cap \Pi_1^1 =$ effective Borel sets (Kleene).

Similarly one defines the *relativized* pointclasses with respect to some parameter ε which will be denoted by $\Delta_1^1(\varepsilon)$ for instance.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A function $f : \mathcal{X} \to \mathcal{Y}$ is Σ_1^0 -recursive if and only if the set $R^f \subseteq \mathcal{X} \times \omega$, $R^f(x,s) \iff f(x) \in N(\mathcal{Y},s)$, is Σ_1^0 .

A function $f : \mathcal{X} \to \mathcal{Y}$ is Δ_1^1 -recursive if and only if the set $R^f \subseteq \mathcal{X} \times \omega$, $R^f(x, s) \iff f(x) \in N(\mathcal{Y}, s)$, is Δ_1^1 .

A function $f : \mathcal{X} \to \mathcal{Y}$ is Δ_1^1 -recursive if and only if the set $R^f \subseteq \mathcal{X} \times \omega$, $R^f(x, s) \iff f(x) \in N(\mathcal{Y}, s)$, is Δ_1^1 .

A point $x \in \mathcal{X}$ is Δ_1^1 point if the relation $U \subseteq \omega$ which is defined by

$$U(s) \Longleftrightarrow x \in N(\mathcal{X}, s)$$

is Δ_1^1 .

We assign to every tree T on ω a Polish space $\mathcal{X}^{\,T}$ as follows

We assign to every tree T on ω a Polish space $\mathcal{X}^{\,T}$ as follows

 $\mathcal{X}^T = T \cup [T].$

We assign to every tree T on ω a Polish space $\mathcal{X}^{\,T}$ as follows

 $\mathcal{X}^T = T \cup [T].$

Every point of T is an isolated point of \mathcal{X}^T .

The tree T is dense in \mathcal{X}^T .

If T is a recursive tree then the Polish space \mathcal{X}^T is recursively presented.

We assign to every tree T on ω a Polish space $\mathcal{X}^{\,T}$ as follows

 $\mathcal{X}^T = T \cup [T].$

Every point of T is an isolated point of \mathcal{X}^T .

The tree T is dense in \mathcal{X}^T .

If T is a recursive tree then the Polish space \mathcal{X}^T is recursively presented.

Theorem (VG). Every recursively presented Polish space is Δ_1^1 isomorphic with a space of the form \mathcal{X}^T , for some recursive tree T.

We assign to every tree T on ω a Polish space $\mathcal{X}^{\,T}$ as follows

 $\mathcal{X}^T = T \cup [T].$

Every point of T is an isolated point of \mathcal{X}^T .

The tree T is dense in \mathcal{X}^T .

If T is a recursive tree then the Polish space \mathcal{X}^T is recursively presented.

Theorem (VG). Every recursively presented Polish space is Δ_1^1 isomorphic with a space of the form \mathcal{X}^T , for some recursive tree T. Effective Theory on Polish spaces has been developed with the following preassumption: every recursively presented Polish space which is not of the form ω^k is perfect i.e., there are no isolated points. But on the other hand all previous notions are given in general.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The corresponding effective result is that every *perfect* recursively presented Polish space is Δ_1^1 isomorphic with \mathcal{N} .

The corresponding effective result is that every *perfect* recursively presented Polish space is Δ_1^1 isomorphic with \mathcal{N} .

Another central result is that the set of Δ_1^1 points of a *perfect* Polish space \mathcal{X} is a Π_1^1 set but it is not Δ_1^1 .

The corresponding effective result is that every *perfect* recursively presented Polish space is Δ_1^1 isomorphic with \mathcal{N} .

Another central result is that the set of Δ_1^1 points of a *perfect* Polish space \mathcal{X} is a Π_1^1 set but it is not Δ_1^1 .

Theorem (VG). Let T be a recursive tree such that the body [T] does not contain Δ_1^1 members, (such a tree exists from a theorem of Kleene).

The corresponding effective result is that every *perfect* recursively presented Polish space is Δ_1^1 isomorphic with \mathcal{N} .

Another central result is that the set of Δ_1^1 points of a *perfect* Polish space \mathcal{X} is a Π_1^1 set but it is not Δ_1^1 .

Theorem (VG). Let T be a recursive tree such that the body [T] does not contain Δ_1^1 members, (such a tree exists from a theorem of Kleene). Then

(1) The space \mathcal{X}^T is not Δ^1_1 isomorphic with the Baire space \mathcal{N} .

(2) The set of Δ_1^1 points of \mathcal{X}^T is Σ_1^0 i.e., semirecursive.

We assign to every tree T on ω a Polish space $\mathcal{X}^{\,T}$ as follows

 $\mathcal{X}^T = T \cup [T].$

Every point of T is an isolated point of \mathcal{X}^T .

The tree T is dense in \mathcal{X}^T .

If T is a recursive tree then the Polish space \mathcal{X}^T is recursively presented.

Theorem (VG). Every recursively presented Polish space is Δ_1^1 isomorphic with a space of the form \mathcal{X}^T , for some recursive tree T. Effective Theory on Polish spaces has been developed with the following preassumption: every recursively presented Polish space which is not of the form ω^k is perfect i.e., there are no isolated points. But on the other hand all previous notions are given in general.

The corresponding effective result is that every *perfect* recursively presented Polish space is Δ_1^1 isomorphic with \mathcal{N} .

Another central result is that the set of Δ_1^1 points of a *perfect* Polish space \mathcal{X} is a Π_1^1 set but it is not Δ_1^1 .

Theorem (VG). Let T be a recursive tree such that the body [T] does not contain Δ_1^1 members, (such a tree exists from a theorem of Kleene). Then

(1) The space \mathcal{X}^T is not Δ^1_1 isomorphic with the Baire space \mathcal{N} .

(2) The set of Δ_1^1 points of \mathcal{X}^T is Σ_1^0 i.e., semirecursive.

Theorem (VG). Let \mathcal{X} be an uncountable recursively presented Polish space. The following are equivalent.

(1) The set of Δ_1^1 points of \mathcal{X} is Δ_1^1 .

(2) The space \mathcal{X} is Δ_1^1 isomorphic with a space of the form \mathcal{X}^T , where T is a recursive tree on ω for which the set [T] does not contain Δ_1^1 members.

Theorem (VG). Let \mathcal{X} be an uncountable recursively presented Polish space. The following are equivalent.

(1) The set of Δ_1^1 points of \mathcal{X} is Δ_1^1 .

(2) The space \mathcal{X} is Δ_1^1 isomorphic with a space of the form \mathcal{X}^T , where T is a recursive tree on ω for which the set [T] does not contain Δ_1^1 members.

Corollary (VG). $\Sigma_1^1 \neq \Pi_1^1$.

Some Questions.

Let \mathcal{X}, \mathcal{Y} be two recursively presented Polish spaces. Define $\mathcal{X} \preccurlyeq \mathcal{Y}$ if there is a Δ_1^1 injection $\pi : \mathcal{X} \to \mathcal{Y}$. Define also $\mathcal{X} \approx \mathcal{Y}$ if there is a Δ_1^1 isomorphism $\pi : \mathcal{X} \to \mathcal{Y}$.

$$\mathcal{X} \approx \mathcal{Y} \iff \mathcal{X} \preccurlyeq \mathcal{Y} \And \mathcal{Y} \preccurlyeq \mathcal{X}.$$

Some Questions.

Let \mathcal{X}, \mathcal{Y} be two recursively presented Polish spaces. Define $\mathcal{X} \preccurlyeq \mathcal{Y}$ if there is a Δ_1^1 injection $\pi : \mathcal{X} \to \mathcal{Y}$. Define also $\mathcal{X} \approx \mathcal{Y}$ if there is a Δ_1^1 isomorphism $\pi : \mathcal{X} \to \mathcal{Y}$.

$$\mathcal{X} \approx \mathcal{Y} \iff \mathcal{X} \preccurlyeq \mathcal{Y} \And \mathcal{Y} \preccurlyeq \mathcal{X}.$$

For every recursively presented Polish space $\mathcal X$ we have that

$$\omega \preccurlyeq \mathcal{X} \preccurlyeq \mathcal{N}.$$

Of course if \mathcal{X} is uncountable then $\omega \prec \mathcal{X}$, in particular $\omega \prec \mathcal{N}$.

Some Questions.

Let \mathcal{X}, \mathcal{Y} be two recursively presented Polish spaces. Define $\mathcal{X} \preccurlyeq \mathcal{Y}$ if there is a Δ_1^1 injection $\pi : \mathcal{X} \to \mathcal{Y}$. Define also $\mathcal{X} \approx \mathcal{Y}$ if there is a Δ_1^1 isomorphism $\pi : \mathcal{X} \to \mathcal{Y}$.

$$\mathcal{X} \approx \mathcal{Y} \iff \mathcal{X} \preccurlyeq \mathcal{Y} \And \mathcal{Y} \preccurlyeq \mathcal{X}.$$

For every recursively presented Polish space $\mathcal X$ we have that

$$\omega \preccurlyeq \mathcal{X} \preccurlyeq \mathcal{N}.$$

Of course if \mathcal{X} is uncountable then $\omega \prec \mathcal{X}$, in particular $\omega \prec \mathcal{N}$. Fix a recursive tree T such that the body [T] does not contain any Δ_1^1 members. Then we have the following

$$\omega \prec \mathcal{X}^T \prec \mathcal{N}.$$

Every recursively presented Polish space \mathcal{X} is Δ_1^1 isomorphic to a space of the form \mathcal{X}^T for some recursive tree on ω .

If $T = \omega^{<\omega}$ then $\mathcal{X}^T \approx \mathcal{N}$.

Every recursively presented Polish space \mathcal{X} is Δ_1^1 isomorphic to a space of the form \mathcal{X}^T for some recursive tree on ω . If $T = \omega^{<\omega}$ then $\mathcal{X}^T \approx \mathcal{N}$.

Question no1. Define

$$T_1 \sim T_2 \iff \mathcal{X}^{T_1} \approx \mathcal{X}^{T_2}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Can we express the equivalence relation \sim in terms of the *combinatorial* and the *effective* properties of the trees T_1, T_2 ?

Every recursively presented Polish space \mathcal{X} is Δ_1^1 isomorphic to a space of the form \mathcal{X}^T for some recursive tree on ω . If $T = \omega^{<\omega}$ then $\mathcal{X}^T \approx \mathcal{N}$.

Question no1. Define

 $T_1 \sim T_2 \iff \mathcal{X}^{T_1} \approx \mathcal{X}^{T_2}.$

Can we express the equivalence relation \sim in terms of the *combinatorial* and the *effective* properties of the trees T_1, T_2 ? *Question no2.* Let T be a recursive tree whose body [T] does not contain any Δ_1^1 members. Is there some uncountable \mathcal{X} which is not up to \approx one of $\mathcal{X}^T, \mathcal{N}$?

Every recursively presented Polish space \mathcal{X} is Δ_1^1 isomorphic to a space of the form \mathcal{X}^T for some recursive tree on ω . If $T = \omega^{<\omega}$ then $\mathcal{X}^T \approx \mathcal{N}$.

Question no1. Define

 $T_1 \sim T_2 \iff \mathcal{X}^{T_1} \approx \mathcal{X}^{T_2}.$

Can we express the equivalence relation \sim in terms of the *combinatorial* and the *effective* properties of the trees T_1, T_2 ? *Question no2.* Let T be a recursive tree whose body [T] does not contain any Δ_1^1 members. Is there some uncountable \mathcal{X} which is not up to \approx one of $\mathcal{X}^T, \mathcal{N}$?

Question no5. Is the relation \preccurlyeq linear?

Theorem (Bourgain-Fremlin-Talagrand). Let \mathcal{X} be a Polish space and $(f_n)_{n\in\omega}$ be a sequence of Borel-measurable functions from \mathcal{X} to \mathbb{R} which satisfies (1) the sequence $(f_n)_{n\in\omega}$ is pointwise bounded and (2) every cluster point of $(f_n)_{n\in\omega}$ in $\mathbb{R}^{\mathcal{X}}$ with the product topology is a Borel-measurable function. Then there is a subsequence $(f_n)_{n\in L}$ which is pointwise convergent.

Theorem (Bourgain-Fremlin-Talagrand). Let \mathcal{X} be a Polish space and $(f_n)_{n\in\omega}$ be a sequence of Borel-measurable functions from \mathcal{X} to \mathbb{R} which satisfies (1) the sequence $(f_n)_{n\in\omega}$ is pointwise bounded and (2) every cluster point of $(f_n)_{n\in\omega}$ in $\mathbb{R}^{\mathcal{X}}$ with the product topology is a Borel-measurable function. Then there is a subsequence $(f_n)_{n\in L}$ which is pointwise convergent.

Theorem (Debs). Let \mathcal{X} be a recursively presented Polish space and $(f_n)_{n \in \omega}$ be a sequence of continuous functions from \mathcal{X} to \mathbb{R} which satisfies conditions (1) and (2) above and in addition (3) the sequence $(f_n)_{n \in \omega}$ is $\Delta_1^1(\alpha)$ -recursive.

Theorem (Bourgain-Fremlin-Talagrand). Let \mathcal{X} be a Polish space and $(f_n)_{n\in\omega}$ be a sequence of Borel-measurable functions from \mathcal{X} to \mathbb{R} which satisfies (1) the sequence $(f_n)_{n\in\omega}$ is pointwise bounded and (2) every cluster point of $(f_n)_{n\in\omega}$ in $\mathbb{R}^{\mathcal{X}}$ with the product topology is a Borel-measurable function. Then there is a subsequence $(f_n)_{n\in L}$ which is pointwise convergent.

Theorem (Debs). Let \mathcal{X} be a recursively presented Polish space and $(f_n)_{n \in \omega}$ be a sequence of continuous functions from \mathcal{X} to \mathbb{R} which satisfies conditions (1) and (2) above and in addition (3) the sequence $(f_n)_{n \in \omega}$ is $\Delta_1^1(\alpha)$ -recursive. Then there is an infinite $L \subseteq \omega$ which is in $\Delta_1^1(\alpha)$ such that the subsequence $(f_n)_{n \in L}$ is pointwise convergent.

From this it follows that if $(f_n)_{n \in \omega}$ is a sequence of Borel-measurable functions from $(\mathcal{X}, \mathcal{T})$ to \mathbb{R} then there exists a Polish topology \mathcal{T}' which extends \mathcal{T} , has the same Borel sets with \mathcal{T} and every function f_n is \mathcal{T}' -continuous.

Theorem (Bourgain-Fremlin-Talagrand). Let \mathcal{X} be a Polish space and $(f_n)_{n\in\omega}$ be a sequence of Borel-measurable functions from \mathcal{X} to \mathbb{R} which satisfies (1) the sequence $(f_n)_{n\in\omega}$ is pointwise bounded and (2) every cluster point of $(f_n)_{n\in\omega}$ in $\mathbb{R}^{\mathcal{X}}$ with the product topology is a Borel-measurable function. Then there is a subsequence $(f_n)_{n\in L}$ which is pointwise convergent.

Theorem (Debs). Let \mathcal{X} be a recursively presented Polish space and $(f_n)_{n \in \omega}$ be a sequence of continuous functions from \mathcal{X} to \mathbb{R} which satisfies conditions (1) and (2) above and in addition (3) the sequence $(f_n)_{n \in \omega}$ is $\Delta_1^1(\alpha)$ -recursive. Then there is an infinite $L \subseteq \omega$ which is in $\Delta_1^1(\alpha)$ such that the subsequence $(f_n)_{n \in L}$ is pointwise convergent. Theorem (Debs, 2009). Suppose \mathcal{X} is a recursively presented Polish space and $(f_n)_{n\in\omega}$ is a sequence of functions from \mathcal{X} to \mathbb{R} which is $\Delta_1^1(\alpha)$ -recursive (and so it consists of Borel-measurable functions) with the following properties:

(1) the sequence $(f_n)_{n \in \omega}$ is pointwise bounded,

(2) every cluster point of $(f_n)_{n \in \omega}$ in $\mathbb{R}^{\mathcal{X}}$ with the product topology is a Borel-measurable function.

Then there is an infinite $L \subseteq \omega$ which is in $\Delta_1^1(\alpha)$ such that the subsequence $(f_n)_{n \in L}$ is pointwise convergent.

From this it follows that if $(f_n)_{n \in \omega}$ is a sequence of Borel-measurable functions from $(\mathcal{X}, \mathcal{T})$ to \mathbb{R} then there exists a Polish topology \mathcal{T}' which extends \mathcal{T} , has the same Borel sets with \mathcal{T} and every function f_n is \mathcal{T}' -continuous.

From this it follows that if $(f_n)_{n \in \omega}$ is a sequence of Borel-measurable functions from $(\mathcal{X}, \mathcal{T})$ to \mathbb{R} then there exists a Polish topology \mathcal{T}' which extends \mathcal{T} , has the same Borel sets with \mathcal{T} and every function f_n is \mathcal{T}' -continuous.

Theorem (VG). Let $(\mathcal{X}, \mathcal{T})$ be a recursively presented Polish space and A be a Δ_1^1 subset of \mathcal{X} . Then there is a Polish topology \mathcal{T}_A which extends \mathcal{T} such that:

(1) the Polish space $(\mathcal{X}, \mathcal{T}_A)$ is ε -recursively presented for some parameter ε ,

From this it follows that if $(f_n)_{n \in \omega}$ is a sequence of Borel-measurable functions from $(\mathcal{X}, \mathcal{T})$ to \mathbb{R} then there exists a Polish topology \mathcal{T}' which extends \mathcal{T} , has the same Borel sets with \mathcal{T} and every function f_n is \mathcal{T}' -continuous.

Theorem (VG). Let $(\mathcal{X}, \mathcal{T})$ be a recursively presented Polish space and A be a Δ_1^1 subset of \mathcal{X} . Then there is a Polish topology \mathcal{T}_A which extends \mathcal{T} such that:

(1) the Polish space $(\mathcal{X}, \mathcal{T}_A)$ is ε -recursively presented for some parameter ε ,

(2) the set A is $\Sigma_1^0(\varepsilon)$ and $\Pi_1^0(\varepsilon)$ subset of $(\mathcal{X}, \mathcal{T}_A)$

From this it follows that if $(f_n)_{n \in \omega}$ is a sequence of Borel-measurable functions from $(\mathcal{X}, \mathcal{T})$ to \mathbb{R} then there exists a Polish topology \mathcal{T}' which extends \mathcal{T} , has the same Borel sets with \mathcal{T} and every function f_n is \mathcal{T}' -continuous.

Theorem (VG). Let $(\mathcal{X}, \mathcal{T})$ be a recursively presented Polish space and A be a Δ_1^1 subset of \mathcal{X} . Then there is a Polish topology \mathcal{T}_A which extends \mathcal{T} such that:

(1) the Polish space $(\mathcal{X}, \mathcal{T}_A)$ is ε -recursively presented for some parameter ε ,

(2) the set A is $\Sigma_1^0(\varepsilon)$ and $\Pi_1^0(\varepsilon)$ subset of $(\mathcal{X}, \mathcal{T}_A)$ and (3) a set $B \subseteq \mathcal{X}$ is a $\Delta_1^1(\varepsilon, \alpha)$ subset of $(\mathcal{X}, \mathcal{T})$ if and only if B is a $\Delta_1^1(\varepsilon, \alpha)$ subset of $(\mathcal{X}, \mathcal{T}_A)$.

Theorem (VG). Suppose \mathcal{X} is a recursively presented Polish space and $(f_n)_{n\in\omega}$ is a sequence of functions from \mathcal{X} to \mathbb{R} which is $\Delta_1^1(\alpha)$ -recursive (and so it consists of Borel-measurable functions) with the following properties:

(1) the sequence $(f_n)_{n\in\omega}$ is pointwise bounded,

(2) every cluster point of $(f_n)_{n \in \omega}$ in $\mathbb{R}^{\mathcal{X}}$ with the product topology is a Borel-measurable function.

Then there is an $\varepsilon \in \mathcal{N}$ and $L \in \Delta_1^1(\varepsilon, \alpha)$ such that the subsequence $(f_n)_{n \in L}$ is pointwise convergent

Theorem (VG). Suppose \mathcal{X} is a recursively presented Polish space and $(f_n)_{n\in\omega}$ is a sequence of functions from \mathcal{X} to \mathbb{R} which is $\Delta_1^1(\alpha)$ -recursive (and so it consists of Borel-measurable functions) with the following properties:

(1) the sequence $(f_n)_{n\in\omega}$ is pointwise bounded,

(2) every cluster point of $(f_n)_{n \in \omega}$ in $\mathbb{R}^{\mathcal{X}}$ with the product topology is a Borel-measurable function.

Then there is an $\varepsilon \in \mathcal{N}$ and $L \in \Delta_1^1(\varepsilon, \alpha)$ such that the subsequence $(f_n)_{n \in L}$ is pointwise convergent and moreover ε is the characteristic function of a Σ_1^1 subset of ω .

Theorem (Debs, 2009). Suppose \mathcal{X} is a recursively presented Polish space and $(f_n)_{n\in\omega}$ is a sequence of functions from \mathcal{X} to \mathbb{R} which is $\Delta^1_1(\alpha)$ -recursive (and so it consists of Borel-measurable functions) with the following properties:

(1) the sequence $(f_n)_{n\in\omega}$ is pointwise bounded,

(2) every cluster point of $(f_n)_{n \in \omega}$ in $\mathbb{R}^{\mathcal{X}}$ with the product topology is a Borel-measurable function.

Then there is an infinite $L \subseteq \omega$ which is in $\Delta_1^1(\alpha)$ such that the subsequence $(f_n)_{n \in L}$ is pointwise convergent.

From this it follows that if $(f_n)_{n \in \omega}$ is a sequence of Borel-measurable functions from $(\mathcal{X}, \mathcal{T})$ to \mathbb{R} then there exists a Polish topology \mathcal{T}' which extends \mathcal{T} , has the same Borel sets with \mathcal{T} and every function f_n is \mathcal{T}' -continuous.

Theorem (VG). Let $(\mathcal{X}, \mathcal{T})$ be a recursively presented Polish space and A be a Δ_1^1 subset of \mathcal{X} . Then there is a Polish topology \mathcal{T}_A which extends \mathcal{T} such that:

(1) the Polish space $(\mathcal{X}, \mathcal{T}_A)$ is ε -recursively presented for some parameter ε ,

(2) the set A is $\Sigma_1^0(\varepsilon)$ and $\Pi_1^0(\varepsilon)$ subset of $(\mathcal{X}, \mathcal{T}_A)$ and (3) a set $B \subseteq \mathcal{X}$ is a $\Delta_1^1(\varepsilon, \alpha)$ subset of $(\mathcal{X}, \mathcal{T})$ if and only if B is a $\Delta_1^1(\varepsilon, \alpha)$ subset of $(\mathcal{X}, \mathcal{T}_A)$.

Results in Banach space Theory.

Results in Banach space Theory.

Theorem (VG). Let X be a separable Banach space. Then the set $P = \{ (y_i)_{i \in \omega} \in X^{\omega} \mid \text{the sequence } (y_i)_{i \in \omega} \text{ is weakly convergent} \}$ is a coanalytic subset of X^{ω} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Results in Banach space Theory.

Theorem (VG). Let X be a separable Banach space. Then the set
P = { (y_i)_{i∈ω} ∈ X^ω / the sequence (y_i)_{i∈ω} is weakly convergent}
is a coanalytic subset of X^ω.
Let Q be a coanalytic subset of X^ω × X. Then the set
P_Q = { (y_i)_{i∈ω} ∈ X^ω / the sequence (y_i)_{i∈ω} is weakly convergent to some y and Q((y_i)_{i∈ω}, y) }

is a coanalytic subset of X^{ω} .

Theorem (Erdös-Magidor). Let X be a Banach space and $(e_i)_{i \in \omega}$ be a bounded sequence in X. Then there is a subsequence $(e_{k_i})_{i \in \omega}$ such that: either (I) every subsequence of $(e_{k_i})_{i \in \omega}$ is Cesàro summable with respect to the norm and all being summed to the same limit; or (II) no subsequence of $(e_{k_i})_{i \in \omega}$ is Cesàro summable.

Theorem (Erdös-Magidor). Let X be a Banach space and $(e_i)_{i \in \omega}$ be a bounded sequence in X. Then there is a subsequence $(e_{k_i})_{i \in \omega}$ such that: either (I) every subsequence of $(e_{k_i})_{i \in \omega}$ is Cesàro summable with respect to the norm and all being summed to the same limit; or (II) no subsequence of $(e_{k_i})_{i \in \omega}$ is Cesàro summable. Theorem (VG). Let X be a Banach space, $(e_i)_{i \in \omega}$ be a bounded sequence in X and let $Q \subseteq X^{\omega} \times X$ be a coanalytic set. Then there is a subsequence $(e_i)_{i \in L}$ of $(e_i)_{i \in \omega}$ for which: either (1) there is some $e \in X$ such that every subsequence $(e_i)_{i \in H}$ of $(e_i)_{i \in L}$ is weakly Cesàro summable to e and $Q((e_i)_{i \in H}, e)$; or (II) for every subsequence $(e_i)_{i \in H}$ of $(e_i)_{i \in L}$ and every $e \in X$ with $Q((e_i)_{i \in H}, e)$ the sequence $(e_i)_{i \in H}$ is not weakly Cesàro summable to e.

Example. Let $(f_n)_{n \in \omega}$ be a bounded sequence of differentiable functions. Then there is a subsequence $(f_n)_{n \in L}$ such that: either (I) there is a differentiable function f such that for every $H \subseteq L$ the sequences $(f_n)_{n \in H}$ and $(f'_n)_{n \in H}$ are pointwise Cesàro summable to f and f' respectively; or (II) for every differentiable function f and every $H \subseteq L$ if $(f_n)_{n \in H}$ is pointwise Cesàro summable to f then then $(f'_n)_{n \in H}$ is not pointwise Cesàro summable to f'.

Example. Let $(f_n)_{n \in \omega}$ be a bounded sequence of differentiable functions. Then there is a subsequence $(f_n)_{n \in L}$ such that: either (I) there is a differentiable function f such that for every $H \subseteq L$ the sequences $(f_n)_{n \in H}$ and $(f'_n)_{n \in H}$ are pointwise Cesàro summable to f and f' respectively; or (II) for every differentiable function f and every $H \subseteq L$ if $(f_n)_{n \in H}$ is pointwise Cesàro summable to f then then $(f'_n)_{n \in H}$ is not pointwise Cesàro summable to f'. Theorem (VG). Let X be a Banach space and $(e_i)_{i\in\omega}$ a bounded sequence in X for which every subsequence $(e_i)_{i \in L}$ has a further subsequence $(e_i)_{i \in H}$ which is weakly Cesàro summable. Then (1) every subsequence of $(e_i)_{i \in \omega}$ has a weakly convergent subsequence

Example. Let $(f_n)_{n \in \omega}$ be a bounded sequence of differentiable functions. Then there is a subsequence $(f_n)_{n \in L}$ such that: either (I) there is a differentiable function f such that for every $H \subseteq L$ the sequences $(f_n)_{n \in H}$ and $(f'_n)_{n \in H}$ are pointwise Cesàro summable to f and f' respectively; or (II) for every differentiable function f and every $H \subseteq L$ if $(f_n)_{n \in H}$ is pointwise Cesàro summable to f then then $(f'_n)_{n \in H}$ is not pointwise Cesàro summable to f'. Theorem (VG). Let X be a Banach space and $(e_i)_{i\in\omega}$ a bounded sequence in X for which every subsequence $(e_i)_{i \in L}$ has a further subsequence $(e_i)_{i \in H}$ which is weakly Cesàro summable. Then (1) every subsequence of $(e_i)_{i \in \omega}$ has a weakly convergent subsequence and

(2) there is a Borel-measurable function $f : [\mathbb{N}]^{\omega} \to [\mathbb{N}]^{\omega}$ such that for all subsequences $(e_i)_{i \in L}$ the sequence $(e_i)_{i \in f(L)}$ is a weakly convergent subsequence of $(e_i)_{i \in L}$.

Danke schön!