### The Chang Ideal

Sean Cox Institut für Mathematische Logik und Grundlagenforschung Universität Münster wwwmath.uni-muenster.de/logik/Personen/Cox

> Bonn April 19, 2010

## Ideal Fun

"Ideals combine the 2 best things in set theory-forcing and elementary embeddings." —(PhD student in Münster)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# Outline of Talk

1. Nonstationary ideal and generic ultrapowers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 2. Chang's Conjecture
- 3. Chang Ideal
- 4. Consistency strength
  - 2 very different kinds of results
    - 4.1 Core model theory
    - 4.2 Foreman's results



The club filter on  $\omega_1$  is the collection of  $Z \subset \omega_1$  such that Z contains a club.

- countably closed
- normal

The nonstationary ideal on  $\omega_1$  (denoted  $NS_{\omega_1}$ ) is the dual of the club filter.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

#### Generic ultrapower

Let  $I := NS_{\omega_1}$ .

- Define a partial order on  $P(\omega_1)$  by:  $A \subseteq_I B$  iff  $A B \in I$ .
- Consider the poset ({stationary subsets of  $\omega_1$ },  $\subseteq_I$ ).
- If G ⊂ ({stationary subsets of ω<sub>1</sub>}, ⊆<sub>I</sub>) is generic, then it is an ultrafilter over V. (i.e. G is ultrafilter on P<sup>V</sup>(ω<sub>1</sub>))
  - So (from point of view of V[G]) there is the ultrapower map V →<sub>G</sub> ult(V, G) and Los Theorem.

Genericity of G implies that it inherits nice properties of I:

▶ G is countably complete w.r.t. V; i.e. if  $\langle z_n | n \in \omega \rangle$  is element of V and every  $z_n \in G$ , then  $\bigcap_{n \in \omega} z_n \in G$ .

► G is normal w.r.t. V.

CAUTION: do not let "countably complete" mislead you; the poset is definitely NOT a countably complete poset.

That forcing is equivalent to forcing with a certain boolean algebra  $(P(\omega_1)/I - \{[\emptyset]_I\}, \leq_I)$  whose elements are equivalence classes.

- Sums in the boolean algebra correspond to diagonal unions
- Ideal is called saturated iff this boolean algebra is complete

Interesting facts:

- ult(V, G) always has a wellfounded initial segment which is isomorphic to ω<sub>2</sub>; this is due to normality of I.
- $cr(j) = \omega_1^V$
- ► I is called precipitous iff for every generic G, ult(V, G) is wellfounded. (note this is really a statement within V about the poset.)

# General NS ideal (Shelah)

Fix a set **S** and let  $A = \bigcup \mathbf{S}$ . (typical situation:  $A = H_{\theta}$ , **S** is some collection of  $X \in H_{\theta}$  such that  $X \prec H_{\theta}$ )

- The strong club filter (on S) is the filter generated by collections of the form C<sub>A</sub> := {X ∈ S|X ≺ A} where A is some structure in a countable language on A.
- A set T ⊂ S is called (weakly) stationary iff it intersects every set in the strongly club filter
  - i.e. for every structure A = (H<sub>θ</sub>, ∈, ...) there is an X ∈ T such that X ≺ A.

General NS ideal, cont.

#### EXAMPLE:

#### EXAMPLE???:

• 
$$\mathbf{S} := [H_{\theta}]^{\omega_1}$$

•  $T := \{X \in \mathbf{S} | | X \cap \omega_1 | = \omega\}$ . Is T (weakly) stationary?

We'll return to this last example later

### General NS ideal, cont.

The collection of nonstationary subsets of **S** is denoted  $NS \upharpoonright S$ .

For simplicity: only will consider **S** such that  $\bigcup \mathbf{S} = H_{\theta}$  (e.g.  $S = [H_{\theta}]^{\omega}$ ).

If **S** is itself weakly stationary then  $NS \upharpoonright \mathbf{S}$  is:

- countably complete (sometimes more)
- normal
  - i.e. for every regressive F : S → V there is a weakly stationary set on which F is constant.

# General NS ideal: generic ultrapower

Let  $I := NS \upharpoonright \mathbf{S}$  and force with  $P(\mathbf{S})/I$ .

yields rich generic ultrapowers if the underlying set is rich (e.g. if ∪ S = H<sub>θ</sub>).

• Let 
$$j: V \rightarrow_G ult(V, G)$$

• ult(V, G) is always wellfounded past  $\theta$ !

#### Generic ultrapower, cont.

- $j \upharpoonright H_{\theta}^{V}$  is always an element of ult(V, G)!
  - This is due to normality of *I*; you can show that ([*id*]<sub>G</sub>, ∈<sub>G</sub>) is isomorphic to (H<sup>V</sup><sub>θ</sub>, ∈) via the transitive collapse of [*id*]<sub>G</sub> as seen by ult(V, G).

• Each  $\nu \leq \theta$  in the generic ultrapower is represented by  $X \mapsto otp(X \cap \nu)$ .

Generic ultrapower, cont.

However, typically the *image* of the critical point of j lands in an illfounded part.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# Chang's Conjecture

#### Definition

Chang's Conjecture, written  $(\omega_2, \omega_1) \twoheadrightarrow (\omega_1, \omega)$  is the statement that for every structure  $\mathcal{A} = (\omega_2, (f_n)_{n \in \omega})$  there is an  $X \prec \mathcal{A}$  with  $|X| = \omega_1$  and  $|X \cap \omega_1| = \omega$ .

- Generalization of Löwenheim-Skolem Theorem
- equivalent to requiring the structures to be on  $H_{\theta}$  (some  $\theta \geq \omega_2$ ).

Obvious generalizations to other cardinals

### The Chang Ideal

Assume Chang's Conjecture holds. Fix large  $\theta$  and let  $\mathbf{S} := \{X \prec H_{\theta} | X \text{ is a Chang structure}\}.$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Chang Ideal is  $NS \upharpoonright S$ .

Let I be the Chang ideal (at some large  $H_{\theta}$ ) and G generic for the corresponding p.o.

The image of the critical point is *always* in the wellfounded part of a Chang generic ultrapower.

• in fact  $j(\omega_1^V)$  is always  $\omega_2^V$ .

# Consistency Strength of Chang's Conjecture

 $(\omega_2, \omega_1) \twoheadrightarrow (\omega_1, \omega)$  equiconsistent with  $\omega_1$ -Erdös cardinal (Silver; Donder)

Consistency Strength of Chang's Conjecture, cont.

[show how to get 0-sharp] [Condensation Lemma for L is key]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

What about  $(\omega_3, \omega_2) \twoheadrightarrow (\omega_2, \omega_1)$ ?

UPPER BOUNDS: Consistent relative to huge cardinals (Laver; Kunen)

LOWER BOUNDS:

 (C.) Implies there is inner model with repeat measures (builds on earlier work of Koepke, Vickers,...)

• (Schindler) Assuming CH, model of  $o(\kappa) = \kappa^{+\omega}$ .

We say  $NS_{\omega_1}$  is saturated iff all antichains in  $P(\omega_1)/NS$  have size  $<\omega_2$ .

equiconsistent with Woodin cardinal (Steel; Shelah)

## Precipitousness of Chang ideal

Recently, Schindler showed that the consistency power of a saturated ideal comes merely from its precipitousness and the fact that  $\Vdash j_{\dot{G}}(\omega_1^V) = \omega_2^V$ .

$$\blacktriangleright \Vdash_{Changideal} j_{\dot{G}}(\omega_1^V) = \omega_2^V$$

- So if Chang ideal is *precipitous*, then by Schindler's result there is inner model with Woodin.
- This is optimal, b/c if there is a Woodin cardinal then there is a forcing which makes Chang Ideal precipitous (F-M-S)

Chang Ideal Condensation (CIC): "Chang's Conjecture holds and there are many structures for which the Chang ideal condenses nicely"

#### Theorem

(Foreman). CON(ZFC + 2-huge)  $\implies CON(CIC) \implies CON(ZFC + 1$ -huge).

# Results of Foreman, cont.

Foreman's arguments involve his notion of a *decisive* ideal. (decisiveness is defined in terms of generic elementary embeddings).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

How are ideals related to large cardinals in inner models?

This question has a long history with good results; but far from solved.

(ロ)、(型)、(E)、(E)、 E) の(の)

Possibly more detail?

• covering arguments for  $(\omega_3, \omega_2) \twoheadrightarrow (\omega_2, \omega_1)$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?