The Chang Ideal

Sean Cox
Institut für Mathematische Logik und Grundlagenforschung
Universität Münster
wwwmath.uni-muenster.de/logik/Personen/Cox

Bonn
April 19, 2010

Ideal Fun

"Ideals combine the 2 best things in set theory-forcing and elementary embeddings." -(PhD student in Münster)

Outline of Talk

1. Nonstationary ideal and generic ultrapowers
2. Chang's Conjecture
3. Chang Ideal
4. Consistency strength

- 2 very different kinds of results
4.1 Core model theory
4.2 Foreman's results

The club filter on ω_{1} is the collection of $Z \subset \omega_{1}$ such that Z contains a club.

- countably closed
- normal

The nonstationary ideal on ω_{1} (denoted $N S_{\omega_{1}}$)is the dual of the club filter.

Generic ultrapower

$$
\text { Let } I:=N S_{\omega_{1}} \text {. }
$$

- Define a partial order on $P\left(\omega_{1}\right)$ by: $A \subseteq$, B iff $A-B \in I$.
- Consider the poset (\{stationary subsets of $\left.\omega_{1}\right\}, \subseteq_{I}$).
- If $G \subset\left(\left\{\right.\right.$ stationary subsets of $\left.\left.\omega_{1}\right\}, \subseteq_{1}\right)$ is generic, then it is an ultrafilter over V. (i.e. G is ultrafilter on $P^{V}\left(\omega_{1}\right)$)
- So (from point of view of $V[G]$) there is the ultrapower map $V \rightarrow_{G} u l t(V, G)$ and Los Theorem.

Generic ultrapower, cont.

Genericity of G implies that it inherits nice properties of I :

- G is countably complete w.r.t. V; i.e. if $\left\langle z_{n} \mid n \in \omega\right\rangle$ is element of V and every $z_{n} \in G$, then $\bigcap_{n \in \omega} z_{n} \in G$.
- G is normal w.r.t. V.

CAUTION: do not let "countably complete" mislead you; the poset is definitely NOT a countably complete poset.

Generic ultrapower, cont.

That forcing is equivalent to forcing with a certain boolean algebra $\left(P\left(\omega_{1}\right) / I-\left\{[\emptyset]_{I}\right\}, \leq_{I}\right)$ whose elements are equivalence classes.

- Sums in the boolean algebra correspond to diagonal unions
- Ideal is called saturated iff this boolean algebra is complete

Generic ultrapower, cont.

Interesting facts:

- ult (V, G) always has a wellfounded initial segment which is isomorphic to ω_{2}; this is due to normality of I.
- $\operatorname{cr}(j)=\omega_{1}^{V}$
- I is called precipitous iff for every generic $G, u l t(V, G)$ is wellfounded. (note this is really a statement within V about the poset.)

General NS ideal (Shelah)

Fix a set \mathbf{S} and let $A=\bigcup \mathbf{S}$. (typical situtation: $A=H_{\theta}, \mathbf{S}$ is some collection of $X \in H_{\theta}$ such that $X \prec H_{\theta}$)

- The strong club filter (on \mathbf{S}) is the filter generated by collections of the form $C_{\mathcal{A}}:=\{X \in \mathbf{S} \mid X \prec \mathcal{A}\}$ where \mathcal{A} is some structure in a countable language on A.
- A set $T \subset \mathbf{S}$ is called (weakly) stationary iff it intersects every set in the strongly club filter
- i.e. for every structure $\mathcal{A}=\left(H_{\theta}, \in, \ldots\right)$ there is an $X \in T$ such that $X \prec \mathcal{A}$.

General NS ideal, cont.

- EXAMPLE:
- $\mathbf{S}:=\left[H_{\theta}\right]^{\omega_{1}}$
- $T:=\left\{X \in \mathbf{S} \mid X \cap \omega_{2} \in \omega_{2} \cap \operatorname{cof}(\omega)\right\}$
- EXAMPLE???:
- S $:=\left[H_{\theta}\right]^{\omega_{1}}$
- $T:=\left\{X \in \mathbf{S}| | X \cap \omega_{1} \mid=\omega\right\}$. Is T (weakly) stationary?

We'll return to this last example later

General NS ideal, cont.

The collection of nonstationary subsets of \mathbf{S} is denoted $N S \upharpoonright \mathbf{S}$.

For simplicity: only will consider \mathbf{S} such that $\bigcup \mathbf{S}=H_{\theta}$ (e.g. $\left.S=\left[H_{\theta}\right]^{\omega}\right)$.

If \mathbf{S} is itself weakly stationary then $N S \upharpoonright \mathbf{S}$ is:

- countably complete (sometimes more)
- normal
- i.e. for every regressive $F: \mathbf{S} \rightarrow V$ there is a weakly stationary set on which F is constant.

General NS ideal: generic ultrapower

Let $I:=N S \upharpoonright \mathbf{S}$ and force with $P(\mathbf{S}) / I$.

- yields rich generic ultrapowers if the underlying set is rich (e.g. if $\bigcup \mathbf{S}=H_{\theta}$).
- Let $j: V \rightarrow G$ ult (V, G)
- ult (V, G) is always wellfounded past θ !

Generic ultrapower, cont.

- $j \upharpoonright H_{\theta}^{V}$ is always an element of $u l t(V, G)$!
- This is due to normality of I; you can show that $\left([i d]_{G}, \in_{G}\right)$ is isomorphic to $\left(H_{\theta}^{V}, \in\right)$ via the transitive collapse of $[i d]_{G}$ as seen by $u l t(V, G)$.
- Each $\nu \leq \theta$ in the generic ultrapower is represented by $X \mapsto \operatorname{otp}(X \cap \nu)$.

Generic ultrapower, cont.

However, typically the image of the critical point of j lands in an illfounded part.

Chang's Conjecture

Definition

Chang's Conjecture, written $\left(\omega_{2}, \omega_{1}\right) \rightarrow\left(\omega_{1}, \omega\right)$ is the statement that for every structure $\mathcal{A}=\left(\omega_{2},\left(f_{n}\right)_{n \in \omega}\right)$ there is an $X \prec \mathcal{A}$ with $|X|=\omega_{1}$ and $\left|X \cap \omega_{1}\right|=\omega$.

- Generalization of Löwenheim-Skolem Theorem
- equivalent to requiring the structures to be on H_{θ} (some $\left.\theta \geq \omega_{2}\right)$.
- Obvious generalizations to other cardinals

The Chang Ideal

Assume Chang's Conjecture holds. Fix large θ and let $\mathbf{S}:=\left\{X \prec H_{\theta} \mid X\right.$ is a Chang structure $\}$.

The Chang Ideal is $N S \upharpoonright \mathbf{S}$.

Generic ultrapower by a Chang Ideal

Let I be the Chang ideal (at some large H_{θ}) and G generic for the corresponding p.o.

The image of the critical point is always in the wellfounded part of a Chang generic ultrapower.

- in fact $j\left(\omega_{1}^{V}\right)$ is always ω_{2}^{V}.

Consistency Strength of Chang's Conjecture

$\left(\omega_{2}, \omega_{1}\right) \rightarrow\left(\omega_{1}, \omega\right)$ equiconsistent with ω_{1}-Erdös cardinal (Silver; Donder)

Consistency Strength of Chang's Conjecture, cont.

[show how to get 0 -sharp] [Condensation Lemma for L is key]

What about $\left(\omega_{3}, \omega_{2}\right) \rightarrow\left(\omega_{2}, \omega_{1}\right)$?

UPPER BOUNDS: Consistent relative to huge cardinals (Laver; Kunen)

LOWER BOUNDS:

- (C.) Implies there is inner model with repeat measures (builds on earlier work of Koepke, Vickers,...)
- (Schindler) Assuming CH, model of $o(\kappa)=\kappa^{+\omega}$.

Aside: saturated ideals

We say $N S_{\omega_{1}}$ is saturated iff all antichains in $P\left(\omega_{1}\right) / N S$ have size $<\omega_{2}$.

- equiconsistent with Woodin cardinal (Steel; Shelah)

Precipitousness of Chang ideal

Recently, Schindler showed that the consistency power of a saturated ideal comes merely from its precipitousness and the fact that $\Vdash j_{\dot{G}}\left(\omega_{1}^{V}\right)=\omega_{2}^{V}$.

- $\Vdash_{\text {Changideal }} j_{\dot{G}}\left(\omega_{1}^{V}\right)=\omega_{2}^{V}$
- So if Chang ideal is precipitous, then by Schindler's result there is inner model with Woodin.
- This is optimal, b / c if there is a Woodin cardinal then there is a forcing which makes Chang Ideal precipitous (F-M-S)

Results of Foreman

Chang Ideal Condensation (CIC): "Chang's Conjecture holds and there are many structures for which the Chang ideal condenses nicely"

Theorem
(Foreman). $\operatorname{CON}(Z F C+2$-huge $) \Longrightarrow \operatorname{CON}(C I C) \Longrightarrow$ $\operatorname{CON}(Z F C+1$-huge $)$.

Results of Foreman, cont.

Foreman's arguments involve his notion of a decisive ideal. (decisiveness is defined in terms of generic elementary embeddings).

Main research goal

How are ideals related to large cardinals in inner models?

This question has a long history with good results; but far from solved.

Possibly more detail?

- covering arguments for $\left(\omega_{3}, \omega_{2}\right) \rightarrow\left(\omega_{2}, \omega_{1}\right)$.

