Exercises for Models of Set Theory II

33. Show that $\mathfrak{b} \leq cf(\mathfrak{d})$.

34. Assume that $F \subseteq \omega^{\omega}$ is an unbounded family which consists of increasing functions. Then for every function $g \in \omega^{\omega}$ and every infinite set $X \subseteq \omega$,

 $\exists f \in F \; \exists^{\infty} n \in X \; g(n) < f(n).$

35. \mathfrak{d} is equal to the smallest cardinal κ such that there exist families $F \subseteq \omega^{\omega}$ and $G \subseteq [\omega]^{\omega}$, both of size $\leq \kappa$ such that

$$\forall g \in \omega^{\omega} \; \exists f \in F \; \exists X \in G \; \forall^{\infty} n \in X \; g(n) < f(n).$$

For $X, Y \subseteq \omega$ write $X \subseteq^* Y$ iff X - Y is finite and Y - X is infinite. A sequence $\langle X_{\alpha} \mid \alpha < \kappa \rangle$ in $[\omega]^{\omega}$ is called a tower if $X_{\alpha} \subseteq^* X_{\beta}$ for all $\alpha < \beta < \kappa$ and there is no $X \in [\omega]^{\omega}$ such that $X_{\alpha} \subseteq^* X$ for all $\alpha < \kappa$. Set

 $\mathfrak{t} = min\{card(T) \mid T \text{ is a tower}\}.$

36. Show that $\omega < \mathfrak{t} \leq \mathfrak{b}$.

Every problem will be graded with 8 points.

Please hand in your solutions during the lecture at December 21, 2009.