Mathematisches Institut der Universität Bonn P. Koepke, B. Irrgang Winter 09/10 November 30, 2009 Exercise Sheet 7

Exercises for Models of Set Theory II

Some notation: $\forall^{\infty} n$ means for all but finitely many $n \in \omega$, and $\exists^{\infty} n$ means for infinitely many $n \in \omega$.

25. Let $F \subseteq \omega^{\omega}$ of size κ be such that

 $\forall g \in \omega^{\omega} \exists f \in F \forall^{\infty} n \ f(n) \neq g(n).$

Show that ω^{ω} is the union of κ meager sets.

26. Assume that $F \subseteq \omega^{\omega}$ is not meager. Show that

$$\forall g \in \omega^{\omega} \exists f \in F \exists^{\infty} n \ f(n) = g(n).$$

A set A of reals has strong measure 0 if for every sequence $a_0 \ge a_1 \ge \ldots \ge a_n \ge \ldots$ of positive reals there exists a sequence of open intervals I_n such that length $(I_n) \le a_n$ and $A \subseteq \bigcup \{I_n \mid n \in \omega\}$.

27. Show that the Cantor set does not have strong measure 0.

28. Show that if $A \subseteq \mathbb{R}$ contains a perfect subset, then it does not have strong measure 0.

Every problem will be graded with 8 points.

Please hand in your solutions during the lecture at December 7, 2009.