Exercises for Models of Set Theory II

Let $U \subseteq \mathfrak{P}(\omega)$ be an ultrafilter. Define the Mathias forcing

 $\mathbb{M}_U = \{ (s, A) \mid s \in [\omega]^{<\omega}, \ A \in U, \ max(s) < min(A) \}.$

For $(s, A), (t, B) \in \mathbb{M}_U$ set $(s, A) \leq (t, B)$ iff $t \subseteq s, A \subseteq B$ and $s - t \subseteq B$. If $A, B \in [\omega]^{\omega}$ and $A \cap B$ as well as A - B are infinite, then A is said to be split by the set B.

17. Show that \mathbb{M}_U satisfies ccc.

Let G be \mathbb{M}_U -generic over V and $X_G = \bigcup \{s \mid \exists A \in U \ (s, A) \in G \}.$

18. Show that X_G is not split by any $B \in \mathfrak{P}(\omega) \cap V$.

A filter F on ω is said to be rapid if for every function $f: \omega \to \omega$ there exists $A \in F$ such that $|A \cap f(n)| \leq n$ for all $n \in \omega$.

19. Show that if U is rapid and f_G is the increasing enumeration of X_G , then f_G eventually dominates every $g: \omega \to \omega$ from V.

20. Show that if $cov(\mathcal{M}) = 2^{\aleph_0}$ then there exists a rapid filter.

Hint: Let $\langle f_{\alpha} \mid \alpha < 2^{\aleph_0} \rangle$ enumerate all $f : \omega \to \omega$. Construct by induction sets $X_{\alpha} \subseteq \omega$ such that $X_{\alpha} \cap X_{\xi}$ is infinite and $|X_{\alpha} \cap f_{\alpha}(n)| \leq n$ for all $n \in \omega$. If $\langle X_{\xi} \mid \xi < \alpha \rangle$ is already constructed, set $g_{\xi}(n) = min(X_{\xi} \cap [f_{\alpha}(n), f_{\alpha}(n+1)])$ and consider

$$G_{\xi} = \{ x \in \omega^{\omega} \mid n \in dom(g_{\xi}) \land x(n) = g_{\xi}(n) \text{ for infinitely many } n \}.$$

Every problem will be graded with 8 points.

Please hand in your solutions during the lecture at November 23, 2009.