Exercises for Models of Set Theory II

Let

$$\mathbb{H} = \{ (s, E) \mid s \in \omega^{<\omega}, \ E \subseteq \omega^{\omega} \text{ finite} \}.$$

For $(s, E), (t, F) \in \mathbb{H}$ set $(s, E) \leq (t, F)$ iff $t \subseteq s, F \subseteq E$ and s(k) > f(k) for all $f \in F$ and all $k \in dom(s) - dom(t)$.

Let $f, g: \omega \to \omega$. We say that f eventually dominates g if f(n) > g(n) for all but finitely many $n \in \omega$. A set \mathfrak{G} of functions is eventually dominated by f if f eventually dominates every $g \in \mathfrak{G}$.

Assume that GCH holds. Consider the iteration $\langle \mathbb{P}_{\alpha} \mid \alpha \leq \omega_2 \rangle$ given by $\langle \dot{\mathbb{Q}}_{\alpha} \mid \alpha < \omega_2 \rangle$ where $\mathbb{P}_{\alpha} \Vdash \dot{\mathbb{Q}}_{\alpha} = \mathbb{H}$ for all $\alpha < \omega_2$.

13. Prove that \mathbb{P}_{ω_2} satisfies ccc.

14. Let G be \mathbb{P}_{ω_2} -generic and $f \in V[G]$ be a function $f : \omega \to \omega$. Show that $f \in V[G_\alpha]$ for some $\alpha < \omega_2$.

Hint: Consider a nice name for f.

15. Show that $\mathbb{P}_{\omega_2} \Vdash 2^{\aleph_0} = \omega_2$.

16. Show $\mathbb{P}_{\omega_2} \Vdash$ (Every family \mathfrak{G} of fewer that 2^{\aleph_0} functions from ω to ω is dominated by some $f : \omega \to \omega$).

Hint: Consider a nice name for a family \mathfrak{G} of size $\leq \omega_1$ and prove a statement like in exercise 14.

Every problem will be graded with 8 points.

Please hand in your solutions during the lecture at November 16, 2009.