Exercises for

Models of Set Theory II

- 5. Let \mathbb{P} and \mathbb{Q} be forcings. Show that $\mathbb{P} \times \mathbb{Q}$ and $\mathbb{P} * \check{\mathbb{Q}}$ are isomorphic.
- 6. Let \mathbb{P} and \mathbb{Q} be ccc forcings. Show that $\mathbb{P} \times \mathbb{Q}$ satisfies ccc if and only if $1_{\mathbb{P}} \Vdash (\check{\mathbb{Q}} \text{ is ccc})$.
- 7. Let (T, \leq) be a Suslin tree and \mathbb{C}_{κ} be the forcing that adjoins κ Cohen reals. Let G be \mathbb{C}_{κ} -generic. Show that T is a Suslin tree in V[G].

Hint: Consider the forcing $\mathbb{P} = (T, \geq)$ and use exercise 6 to show that \mathbb{P} has ccc in V[G].

8. Assume GCH. Recall that for every regular cardinal $\kappa \geq \omega$ there exists a family $\langle f_{\alpha} \mid \alpha < \kappa^{+} \rangle$ of almost disjoint functions $f_{\alpha} : \kappa \to \kappa$. Let $X \subseteq \kappa^{+}$. Define a cardinality preserving forcing \mathbb{P} which adds a function $f : \kappa \to \kappa$ such that

 $\alpha \in X$ iff f and f_{α} are almost disjoint.

Every problem will be graded with 8 points.

Please hand in your solutions during the lecture at November 2, 2009.