Exercises for Models of Set Theory II

Let $\langle I_n \mid n \in \omega \rangle$ be a (recursive) enumeration of the open intervals with rational endpoints. Let $\Gamma : \omega \times \omega \to \omega$ be the canonical bijection. We want to code every Borel set by a number $c \in \omega^{\omega}$:

For $c \in \omega^{\omega}$ let $u(c), v_i(c) \in \omega^{\omega}$ be defined by: If d = u(c), then d(n) = c(n+1)for all $n \in \omega$; if $d = v_i(c)$, then $d(n) = c(\Gamma(i, n) + 1)$ for all $n \in \omega$. For $0 < \alpha < \omega_1$, we define sets Σ_{α} and $\Pi_{\alpha} \subseteq \omega^{\omega}$ as follows:

$$c \in \Sigma_{1} \quad \text{if} \quad c(0) > 1$$

$$c \in \Pi_{\alpha} - \bigcup \{ \Sigma_{\beta} \cup \Pi_{\beta} \mid \beta < \alpha \} \quad \text{if} \quad c(0) = 0 \text{ and } u(c) \in \Sigma_{\alpha}$$

$$c \in \Sigma_{\alpha} - \bigcup \{ \Sigma_{\beta} \cup \Pi_{\beta} \mid \beta < \alpha \} \quad (\alpha > 1) \quad \text{if}$$

$$c(0) = 1$$
 and $v_i(c) \in \bigcup \{ \Sigma_\beta \cup \Pi_\beta \mid \beta < \alpha \}$ for all $i \in \omega$.

A $c \in \omega^{\omega}$ is called a Borel code if there exists $\alpha < \omega_1$ such that $c \in \Sigma_{\alpha}$. For every Borel code we can define recursively a Borel set A_c as follows:

if $c \in \Sigma_1$ then $A_c = \bigcup \{I_n \mid c(n) = 1\}$ if $c \in \Pi_\alpha$ and c(0) = 0 then $A_c = \mathbb{R} - A_{u(c)}$ if $c \in \Sigma_\alpha$ and c(0) = 1 then $A_c = \bigcup \{A_{v_i(c)} \mid i \in \omega\}$.

49. Show that there exists for every Borel set B a Borel code $c \in \omega^{\omega}$ such that $B = A_c$.

50. Let M be a ground model and c, d be in M Borel codes. Let M[G] be a generic extension of M. Show that $A_c \subseteq A_d$ holds in M if and only if it holds in M[G].

51. (continuation of 50) Show that $A_c = \emptyset$ holds in M iff it holds in M[G].

52. (continuation of 50) Show that $A_c = \mathbb{R} - A_d$ holds in M iff it holds in M[G].

Every problem will be graded with 8 points.

Please hand in your solutions during the lecture at February 1, 2010.