Mathematisches Institut der Universität Bonn P. Koepke, B. Irrgang

Exercises for Models of Set Theory II

41. Show that there exists a sequence $\langle f_{\alpha} \mid \alpha \in \omega_1 \rangle$ such that:

(1) For every $\alpha < \omega_1, f_\alpha : \alpha \to \omega$ is injective.

(2) For all $\alpha < \beta < \omega_1$, $f_{\alpha}(\eta) = f_{\beta}(\eta)$ holds for all but finitely many $\eta < \alpha$.

(3) For all $\alpha < \omega_1, \omega \setminus rng(f_\alpha)$ is infinite.

Hint: Define the sequence recursively.

42.(continuation of exercise 41) Show that the set $\{f_{\alpha} \upharpoonright \beta \mid \alpha, \beta \in \omega_1\}$ ordered by inclusion is an Aronszajn tree T.

43. Let \mathbb{P} be a countable forcing and G be \mathbb{P} -generic over V. Show that for every (in V[G]) uncountable $X \subseteq \omega_1, X \in V[G]$, there exists an (in V) uncountable set $Y \subseteq X, Y \in V$.

44.(continuation of exercise 42) For every $r: \omega \to \omega$ consider

$$T_r = \{ r \circ (f_\alpha \upharpoonright \beta) \mid \alpha, \beta \in \omega_1 \}.$$

Let G be Cohen-generic over V and $r := \bigcup G$. Show that T_r is a Suslin tree in V[G].

Hint: Assume that $\{r \circ (f_{\alpha(\beta)} \upharpoonright \beta) \mid \beta \in A\}$ is an uncountable antichain in T_r . By exercise 43, there exists an uncountable $W \subseteq A, W \in V$ such that $\{r \circ (f_{\alpha(\beta)} \upharpoonright \beta) \mid \beta \in W\}$ is an uncountable antichain. Let $g_{\beta} := f_{\alpha(\beta)} \upharpoonright \beta$. Let p be a Cohen condition. Apply the Δ -system lemma to the sets $\{\xi < \beta \mid g_{\beta}(\xi) < dom(p)\}$ to show that for $\beta_1, \beta_2 \in W$ there exists $q \leq p$ with $q \Vdash (\check{r} \circ \check{g}_{\beta_1} \text{ and } \check{r} \circ \check{g}_{\beta_2} \text{ are compatible functions}).$

Every problem will be graded with 8 points.

Please hand in your solutions during the lecture at January 18, 2010.