Mathematisches Institut der Universität Bonn P. Koepke, B. Irrgang Winter 09/10 December 21, 2009 Exercise Sheet 10

Exercises for Models of Set Theory II

37. Show:

- (a) $\mathfrak{d} = min\{card(F) \mid F \subseteq \omega^{\omega}, \forall g \in \omega^{\omega} \exists f \in F \forall n \in \omega \ g(n) \leq f(n)\}$
- (b) $\mathfrak{b} \neq min\{card(F) \mid F \subseteq \omega^{\omega}, \forall g \in \omega^{\omega} \exists f \in F \forall n \in \omega \ f(n) \nleq g(n)\}.$

Let \mathcal{K} be the σ -complete ideal generated by the compact subsets of ω^{ω} . 38. Prove $add(\mathcal{K}) = non(\mathcal{K}) = \mathfrak{b}$.

39. Prove $cov(\mathcal{K}) = cof(\mathcal{K}) = \mathfrak{d}$.

40. Show that $\mathbb{R} \cap L$ is either null or not Lebesgue measurable if there exists a real which is not in L (the constructible universe).

Hint: Consider $S = [0, 1] \cap L$ and $S_n = \{x + \frac{a}{n} \mid x \in S\}$ where $a \in \mathbb{R} - L$.

Every problem will be graded with 8 points.

Please hand in your solutions during the lecture at January 11, 2010.

MERRY CHRISTMAS AND A HAPPY NEW YEAR