Mathematisches Institut der Universität Bonn P. Koepke, B. Irrgang Winter 09/10 October 14, 2009 Exercise Sheet 1

Exercises for Models of Set Theory II

1. Let M be a ground model where $2^{\omega} = 2^{\omega_1} = \omega_2$ holds. Let

$$\mathbb{P} = \{ p : n \to \omega_1 \mid n \in \omega \}^M$$

and for $p, q \in \mathbb{P}$ set $p \leq q$ iff $p \supseteq q$. Let G be M-generic for \mathbb{P} . Show that CH holds in M[G].

2. Let ϕ be the statement that whenever \mathbb{P} is an ω_1 -closed ω_2 -cc forcing and \mathcal{D} is a family of $\langle 2^{\omega_1}$ dense sets in \mathbb{P} there is a \mathcal{D} -generic filter on \mathbb{P} . Show that $\neg CH \lor 2^{\omega_1} = \omega_2$ implies ϕ .

3. Let $\mathbb{P} = \{p : \eta \to \omega_2 \mid \eta \in \omega_1\}$. Show that there exists a set \mathcal{D} of ω_2 in \mathbb{P} dense sets for which there is no \mathcal{D} -generic filter.

4. Assume MA_{κ} . Let \mathcal{F} be a family of κ Lebesgue measurable subsets of \mathbb{R} . Show that $\bigcup \mathcal{F}$ is Lebesgue measurable and $\lambda(\bigcup \mathcal{F}) = \lambda(\bigcup \mathcal{F}')$ for some countable $\mathcal{F}' \subseteq \mathcal{F}$.

Every problem will be graded with 8 points.

Please hand in your solutions during the lecture at October 21, 2009.