Ordinalzahlfunktionen und Scales I

Cecilia Bohler

19. Mai 2009

Sei A eine unendliche Menge und sei I ein Ideal auf A.

Definition 1 Für Ordinalzahlfunktionen f und g auf A seien

$$\begin{split} f &=_I g \Leftrightarrow \{a \in A : f(a) \neq g(A)\} \in I, \\ f &\leq_I g \Leftrightarrow \{a \in A : f(a) > g(a)\} \in I, \\ f &<_I g \Leftrightarrow \{a \in A : f(a) \geq g(a)\} \in I. \end{split}$$

Bemerkung 1 Die Relationen \leq_I und $<_I$ sind partielle Ordnungen (von Äquivalenzklassen).

Wenn I das nichstationäre Ideal auf einer regulären überabzählbaren Kardinalzahl κ ist, dann ist der Rang einer Ordinalzahlfunktion f auf κ die (Galvin-Hajnal-) Norm ||f||.

Definition 2 Sei S eine Menge von Ordinalzahlfunktionen auf A. Dann ist g eine obere Schranke von S, wenn $f \leq_I g$ für alle $f \in S$. g ist kleinste obere Schranke von S, wenn g obere Schranke ist und $g \leq_I h$ für alle oberen Schranken h gilt.

Lemma 1 Sei κ reguläre überabzählbare Kardinalzahl und I_{NS} das Ideal der nichtstationären Mengen. Dann gibt es Ordinalzahlfunktionen f_{η} , $\eta < \kappa^+$ auf κ , so dass gilt:

- (i) $f_0(\alpha) = 0$ für alle $\alpha < \kappa$
- (ii) $f_{n+1}(\alpha) = f_n(\alpha) + 1$ für alle $\alpha < \kappa$
- (iii) für η Limesordinalzahl ist f_{η} die kleinste obere Schranke von $\{f_{\xi}: \xi < \eta\}$ in $\leq_{I_{NS}}$

Die Funktionen sind eindeutig bis auf $=_{I_{NS}}$ und für jede stationäre Menge $S \subset \kappa$ ist $||f_{\eta}||_{S} = \eta$.

Beweis. Sei $\langle \xi_{\nu} : \nu < \operatorname{cf} \eta \rangle$ eine Folge mit Limes η . Falls cf $\eta < \kappa$ sei $f_{\eta}(\alpha) = \sup\{f_{\xi_{\nu}}(\alpha) : \nu < \operatorname{cf} \eta\}$. Falls cf $\eta = \kappa$ sei $f_{\eta}(\alpha) = \sup\{f_{\xi_{\nu}}(\alpha) : \nu < \alpha\}$ für jede Limesordinalzahl α , genannt der diagonale Limes von f_{ξ} , $\xi < \eta$.

Definition 3 Sei (P,<) eine partiell geordnete Menge, $A \subset P$. Dann ist A konfinal in (P,<), wenn für alle $p \in P$ ein $a \in A$ existiert, so dass $p \leq a$. Die Konfinalität von (P,<) ist die minimale Größe einer konfinalen Menge. Die wahre Konfinalität von (P,<) ist die kleinste Kardinalität einer konfinalen Kette, sofern sie existiert.

Sei wieder A eine unendliche Menge, I ein Ideal auf A und $\{\gamma_a:a\in A\}$ eine Menge von Ordinalzahlen.

Definition 4 Ein Scale in $\prod_{a \in A} \gamma_a$ ist eine $<_I$ -wachsende transfinite Folge $\langle f_\alpha : \alpha < \lambda \rangle$ von Funktionen in $\prod_{a \in A} \gamma_a$, die konfinal sind in $\prod_{a \in A} \gamma_a$ mit der partiellen Ordnung $<_I$.

Bemerkung 2 Wenn es in $\prod_{a \in A} \gamma_a$ ein λ -Scale, ein Scale der Länge λ , gibt mit λ reguläre Kardinalzahl, dann hat es die wahre Konfinalität λ und ist λ -gerichtet.

Definition 5 Sei (P, <) eine partiell geordnete Menge. Dann ist g eine exakte obere Schranke der Teilmenge S, wenn S konfinal ist in der Menge $\{f \in P : f < g\}$.

Theorem 1 (Shelah) Sei κ eine starke Limeskardinalzahl mit Konfinalität ω . Es existiert eine wachsende Folge $\langle \lambda_n : n < \omega \rangle$ von regulären Kardinalzahlen mit Limes κ , so dass die wahre Konfinalität von $\prod_{n<\omega} \lambda_n$, modulo dem Ideal der endlichen Mengen, gleich ist mit κ^+ .

Beweis. Sei I das Ideal der endlichen Mengen. Wir konstruieren die λ_n 's und ein κ^+ -Scale in $\prod_{n<\omega}\lambda_n$ in der partiellen Ordnung $<_I$.

Zunächst wählen wir eine beliebige wachsende Folge $\langle \kappa_n : n < \omega \rangle$ von regulären Kardinalzahlen mit Limes κ . Da jede Teilmenge von $\prod_{n<\omega} \kappa_n$ der Größe κ eine obere Schranke in $(\prod_{n<\omega} \kappa_n, <_I)$ besitzt, können wir induktiv eine $<_I$ -wachsende κ^+ -Folge $F = \langle f_\xi : \xi < \kappa^+ \rangle$ von Funktionen in $\prod_{n<\omega} \kappa_n$ konstruieren.

Lemma 2 Es gibt eine Funktion $g: \omega \to \kappa$, die eine obere Schranke von F in $<_I$ und zusätzlich \leq_I -minimal unter solchen oberen Schranken ist.

Beweis. Sei $g_0 = \langle \kappa_n : n < \omega \rangle$. Wir wollen eine maximal transfinite \leq_I -fallende Folge $\langle g_{\nu} \rangle_{\nu}$ von oberen Schranken von F konstruieren. Es genügt dann zu zeigen, dass die Länge der Folge $\langle g_{\nu} \rangle_{\nu}$ keine Limesordinalzahl ist, denn dann ist die letzte Funktion \leq_I -minimal.

Sei also ϑ eine Limesordinalzahl und sei $\langle g_{\nu} : \nu < \vartheta \rangle$ eine \leq_I -fallende Folge von oberen Schranken von F. Wir wollen eine Funktion g finden, so dass $g >_I f_{\xi}$ für alle $\xi < \kappa^+$ und $g \leq_I g_{\nu}$ für alle $\nu < \vartheta$.

Zunächst zeigen wir die Behauptung $|\vartheta| \leq 2^{\aleph_0}$: Wir nehmen an, dass $|\vartheta| \geq (2^{\aleph_0})^+$ und wählen die Partition $G : [\vartheta]^2 \to \omega$, wie folgt definiert (für $\alpha < \beta$):

$$G(\alpha, \beta) = \text{das kleinste } n, \text{ so dass } g_{\alpha}(n) > g_{\beta}(n)$$

Nach dem Satz von Erdös-Rado existiert eine unendliche Menge von Ordinalzahlen $\alpha_0 < \alpha_1 < ...$, so dass für manche $n, g_{\alpha_0}(n) > g_{\alpha_1}(n) > g_{\alpha_2}(n) > ...$, also Widerspruch.

Sei nun $A=\bigcup_{\nu<\vartheta}\,\mathrm{ran}(g_{\nu})$ und sei $S=A^{\omega}.$ Mit $|\vartheta|<2^{\aleph_0}$ folgt $|S|\leq |\vartheta^{\omega}|\leq 2^{\aleph_0\cdot\aleph_0}=2^{\aleph_0}.$

Für jedes $g \in S$, so dass g keine obere Schranke von F ist, sei ξ_g so dass $f_{\xi_g} \not<_I g$. Da $|S| \le 2^{\aleph_0}$, existiert ein $\eta < \kappa^+$ größer als alle ξ_g . Sei nun

$$g(n) = \text{das kleinste } \gamma \in A, \text{ so dass } \gamma > f_{\eta}(n).$$

Die Funktion g ist eine obere Schranke von F: Angenommen nicht, also $f_{\xi_g} \not<_I g$. Es gilt aber $f_{\xi_g} <_I f_{\eta} <_I g$, also Widerspruch.

Zuletzt muss nur noch gezeigt werden, dass $g \leq_I g_{\nu}$ für alle $\nu < \vartheta$. Wenn $\nu < \vartheta$, dann $g_{\nu}(n) > f_{\eta}(n)$ für alle bis auf endlich viele n und da $g_{\nu}(n) \in A$ gilt $g_{\nu} \geq_I g$.

Weiter im Beweis des Theorems von Shelah. Sei g die Funktion gegeben durch das vorherige Lemma. Wir behaupten, dass g eine exakte obere Schranke von F ist: Angenommen nicht, dann sei $f <_I g$ mit $f \not \leq f_\xi$ für alle ξ . Für jedes $\xi < \kappa^+$, sei A_ξ die unendliche Menge aller n, für die $f(n) > f_\xi(n)$. Da $2^{\aleph_0} < \kappa$ existiert eine unendliche Menge A, so dass für κ^+ -viele ξ $f(n) > f_\xi(n)$ für alle $n \in A$ gilt. Es folgt, dass $f_{|A} >_I f_{\xi|A}$ für alle $\xi < \kappa^+$ und damit ist die Funktion $g' = f_{|A} \cup g_{|(\omega - A)} \leq_I g$ eine obere Schranke von F, aber $g' \neq g$, also Widerspruch.

Falls g schon eine wachsende Folge ist mit Limes κ und jedes g(n) eine reguläre Kardinalzahl ist, setze $\lambda_n = g(n)$ und wir sind fertig. Im allgemeinen jedoch sind alle bis auf endlich viele g(n) Limesordinalzahlen. O.B.d.A. seien alle g(n) Limesordinalzahlen. Für jedes n sei Y_n eine abgeschlossene unbeschränkte Teilmenge von g(n), mit der Kardinalität einer reguläre Kardinalzahl γ_n ist. Es muss gelten $\sup_n \gamma_n = \kappa$, da sonst $|\prod_n Y_n| < \kappa$ und somit beschränkt ist durch ein f_{ε} .

Also sei $\langle \lambda_n : n < \omega \rangle = \langle \gamma_{k_n} : n < \omega \rangle$ eine wachsende Teilfolge von $\langle \gamma_n \rangle_n$. Für jedes $f \in F$, sei h_f die Funktion definiert durch:

$$h_f(n) = \text{das kleinste } \alpha \in Y_{k_n}, \text{ so dass } \alpha \geq f(k_n).$$

und sei $H = \{h_f : f \in F\}$. Für jedes $f \in \prod_n Y_n$ existiert dann ein $h \in H$, so dass $f <_I h$. Also $|H| = \kappa^+$, da jede kleinere Menge von Funktionen beschränkt ist durch ein $f_{\mathcal{E}}$.

Also können wir in H eine \leq_I -wachsende transfinfite Folge $\langle h_{\xi} : \xi < \kappa^+ \rangle$ finden, so dass es für jedes $f \in \prod_n Y_n$ ein ξ gibt mit $f <_I h_{\xi}$. Übertragen wir nun $\prod_n Y_n$ auf $\prod_n \lambda_n$ erhalten wir eine Folge $\langle h_{\xi} : \xi < \kappa^+ \rangle$ mit den gewünschten Eigenschaften.