Mathematisches Institut der Universität Bonn P. Koepke, B. Irrgang

Exercises for Models of Set Theory I

33. Let M be a ground model and $\mathbb{P}, \mathbb{Q} \in M$ be forcings. A map $\pi : \mathbb{P} \to \mathbb{Q}$ is called dense embedding if

(i) $\forall p, q \in \mathbb{P} \ (p \le q \to \pi(p) \le \pi(q))$

(ii) $\forall p, q \in \mathbb{P} \ (p, q \text{ incompatible} \to \pi(p), \pi(q) \text{ incompatible})$

(iii) $\pi[\mathbb{P}]$ is dense in \mathbb{Q} .

Let $\pi : \mathbb{P} \to \mathbb{Q}, \pi \in M$ be a dense embedding and G be M-generic on \mathbb{P} . Show that $\{q \in \mathbb{Q} \mid \exists p \in G \ \pi(p) \leq q\}$ is M-generic on \mathbb{Q} . Moreover, prove conversely that $\pi^{-1}[H]$ is M-generic on \mathbb{P} if H is M-generic on \mathbb{Q} . That is, \mathbb{P} and \mathbb{Q} yield the same generic extensions.

34. Let $\mathbb{P} = \{p : n \to \omega \mid n \in \omega\}$ ordered by the reversed subset relation and \mathbb{Q} be any countable forcing such that $\forall q \in \mathbb{Q} \exists q_1, q_2 \leq q \ (q_1 \perp q_2)$. Show that there exists a dense embedding $\pi : \mathbb{P} \to \mathbb{Q}$.

35. Show that $\forall p, q \in \mathbb{P} \ (p \leq q \iff p \Vdash \check{q} \in \dot{G})$ if \mathbb{P} iff

 $\forall p, q \in \mathbb{P} \ (p \not\leq q \ \rightarrow \ \exists r \leq p \ (r \bot q)).$

36. Let M be a ground model. Show that there exists $\mathbb{P} \in M$ such that $\omega_1^M < \omega_1^{M[G]}$.

Hint: Consider the finite functions $f \in M$ with $dom(f) \subseteq \omega$ and $rng(f) \subseteq \omega_1^M$.

Every problem will be graded with 8 points.

Please hand in your solutions during the lecture at July 6, 2009.