Mathematisches Institut der Universität Bonn P. Koepke, B. Irrgang

Exercises for Models of Set Theory I

Let MA be the following statement: If \mathbb{P} is a forcing which satisfies the ccc and if $card(\mathfrak{D}) < 2^{\aleph_0}$, then there exists a filter G on \mathbb{P} such that $G \cap D \neq \emptyset$ for all $D \in \mathfrak{D}$ which are dense in \mathbb{P} .

29. Prove that CH implies MA.

30. Show that the above statement cannot hold if we replace $card(\mathfrak{D}) < 2^{\aleph_0}$ by $card(\mathfrak{D}) = 2^{\aleph_0}$.

31. Assume MA and $\aleph_1 < 2^{\aleph_0}$. Show that then there exist no Suslin trees. Hint: If (T, \leq) is a (normal) Suslin tree, then $\mathbb{P} = (T, \geq)$ is a ccc forcing that adds a branch through T.

Let \mathfrak{G} be a set of functions $f: \omega \to \omega$. Let

 $\mathbb{H} = \{ (s, E) \mid s \in \omega^{<\omega}, \ E \subseteq \mathfrak{G} \text{ finite} \}.$

For $(s, E), (t, F) \in \mathbb{H}$ set $(s, E) \leq (t, F)$ iff $t \subseteq s, F \subseteq E$ and s(k) > f(k) for all $f \in F$ and all $k \in dom(s) - dom(t)$.

Let $f, g: \omega \to \omega$. We say that f eventually dominates g if f(n) > g(n) for all but finitely many $n \in \omega$. A set \mathfrak{G} of functions is eventually dominated by f if f eventually dominates every $g \in \mathfrak{G}$.

32. Use \mathbb{H} to prove: MA implies that every family \mathfrak{G} of fewer that 2^{\aleph_0} functions from ω to ω is dominated by some $f: \omega \to \omega$.

Every problem will be graded with 8 points.

Please hand in your solutions during the lecture at June 29, 2009.