Mathematisches Institut der Universität Bonn P. Koepke, B. Irrgang

Exercises for Models of Set Theory I

A model is a structure (M, E) where $E \subseteq M \times M$. The axiom of Existence $\exists x \ \forall y \ \neg y \in x$

states that there exists an empty set.

5. (a) Prove that every model of *Existence*, *Extensionality*, *Pairing* and *Union* is infinite.

(b) Define a model for *Extensionality*, *Pairing*, *Union* and the negation of *Existence*.

6. Let $(M, \epsilon) \models ZF$. Let $F : M \to M$ be bijective such that there exists a formula φ and $x_1, \ldots, x_n \in M$ with $F = \{(x, y) \in M \times M \mid (M, \epsilon) \models \varphi[x, y, x_1, \ldots, x_n]\}$. For all $x, y \in M$ define $x \epsilon' y$ by $x \epsilon F(y)$. Prove that $(M, \epsilon') \models Extensionality, Pairing, Union, Powerset.$

7. (Continuation of problem 6) Show that:

(a) $(M, \epsilon') \models Replacement, Infinity$

(b) F can be chosen in such a way that $(M, \epsilon') \models \neg Foundation$.

This shows together with exercise 4 that Foundation is independent of ZF.

8. Prove: For every formula $\varphi(x_1, \ldots, x_n)$, there exists a closed unbounded class $C_{\varphi} \subseteq Ord$ such that for each $\alpha \in C_{\varphi}$ and all $x_1, \ldots, x_n \in V_{\alpha}$

 $\varphi^{V_{\alpha}}(x_1,\ldots,x_n) \leftrightarrow \varphi(x_1,\ldots,x_n).$

Every problem will be graded with 8 points.

Please hand in your solutions during the lecture at May 6, 2009.