Mathematisches Institut der Universität Bonn P. Koepke, B. Irrgang

Exercises for Models of Set Theory I

41.(Continuation of exercise 40) Consider the forcing \mathbb{P} in some ground model M. Let G be M-generic on \mathbb{P} and $T = \bigcup \{p \mid p \in G\}$. Show that T is a Suslin tree in M[G].

Hint: To show that T has no uncountable antichain, let $p \Vdash (\langle x_{\eta} \mid \eta \in \omega_1 \rangle$ enumerates an antichain in T). For every $\eta \in \omega_1$ pick $p_{\eta} \leq p$ and $\alpha_{\eta} \in \omega_1$ such that $p_{\eta} \Vdash x_{\eta} = \check{\alpha}_{\eta}$. Then there exist $\eta \neq \gamma$ and $q \leq p_{\eta}, p_{\gamma}$ such that $q \Vdash \check{\alpha}_{\eta} \leq_T \check{\alpha}_{\gamma}$. Contradiction.

Let $M \models GCH$ be a ground model. Let $\kappa > \omega$ be regular in M and $\mathbb{P} = Fn(\kappa \times \omega, 2, \omega)^M$ be the forcing which adds κ Cohen reals. Let G be M-generic on \mathbb{P} . For $\gamma < \kappa$ let $\mathbb{P}_{\gamma} = Fn(\gamma \times \omega, 2, \omega)^M$ and $G_{\gamma} = \{p \in \mathbb{P}_{\gamma} \mid p \in G\}$. Let $\mathbb{Q} = (\omega, \leq_{\mathbb{Q}})$ be a countable forcing in M[G].

42. Show that there exists a $\gamma < \kappa$ and a \mathbb{P}_{γ} -name \dot{x} such that $\dot{x}^{G_{\gamma}} = \mathbb{Q}$.

43. Show that if \mathfrak{D} is in M[G] a family of $< \kappa$ many in \mathbb{Q} dense sets then there exists a $\gamma < \kappa$ and a \mathbb{P}_{γ} -name \dot{y} such that $\dot{y}^{G_{\gamma}} = \mathfrak{D}$.

44. Show that MA holds in M[G] for countable forcings, i.e. if \mathbb{Q} is a countable forcing in M[G] and \mathfrak{D} is in M[G] a family of $< \kappa$ many in \mathbb{Q} dense sets then there exists in M[G] a filter H on \mathbb{Q} such that $D \cap H \neq \emptyset$ for all $D \in \mathfrak{D}$. Hint: Exercise 34 and product lemma.

Every problem will be graded with 8 points.

Please hand in your solutions during the lecture at July 20, 2009.