Mathematisches Institut der Universität Bonn P. Koepke, B. Irrgang

Exercises for Models of Set Theory I

1. Let $H_{\kappa} = \{x \mid card(TC(x)) < \kappa\}$. Prove that $\varphi^{H_{\kappa}}$ holds for all φ of ZFC minus the power set axiom if κ is a regular uncountable cardinal.

2. Let $M = \{x \mid \varphi(x, a_1, \dots, a_n)\}$ and W be classes. Define $M^W := \{x \in W \mid \varphi^W(x, a_1, \dots, a_n)\}$. Prove that if $W = V_{\omega+1}$ then (a) $\omega^W = \omega$. (b) $(x \text{ is finite})^W$ if and only if x is finite.

3. Let W be transitive and $x \in W$. Prove that (a) $(\bigcup x)^W = \bigcup x$ (b) $(\mathfrak{P}(x))^W = \mathfrak{P}(x) \cap W$.

4. Prove that in ZF minus Regularity, φ^V holds for every axiom φ of ZF. Hence if ZF minus Regularity is consistent, then also ZF is consistent.

Every problem will be graded with 8 points.

Please hand in your solutions during the lecture at April 29, 2009.