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Abstract

Transitive models of set theory, the relative consistency of the axiom of choice using
the hereditarily ordinal definable sets or the constructible sets, forcing conditions and
generic filters, generic extensions, ZFC holds in generic extensions, the relative consis-
tency of the continuum hypothesis, the relative consistency of the negation of the con-
tinuum hypothesis, iterated forcing, the relative consistency of Martin’s axiom and
thus of the Suslin hypothesis.

Introduction

Sets are axiomatized by the Zermelo-Fraenkel axiom system ZF. Following Jech [?]
these axioms can be formulated in the first-order language with one binary relation
symbol ∈ as

− Extensionality : ∀z(z ∈x↔ z ∈ y)→ x= y

− Pairing : ∃z∀u(u∈ z↔ u=x∨u= y)

− Union : ∃z∀u(u∈ z↔∃y(u∈ y ∧ y ∈x))

− Power : ∃z∀u(u∈ z↔∀v(v ∈u→u∈x))

− Infinity : ∃z(∃x(x ∈ z ∧ ∀y¬y ∈ x) ∧ ∀u(u ∈ z→∃v(v ∈ z ∧ ∀w(w ∈ v↔ w ∈ u ∨ w =
u))))

− Separation : for every ∈ -formula ϕ(u, p) postulate ∃z∀u(u∈ z↔ u∈x∧ ϕ(u, p))

− Replacement : for every ∈ -formula ϕ(u, v, p) postulate

∀u, v, v ′(ϕ(u, v, p)∧ ϕ(u, v ′, p)→ v= v ′)→∃y∀v(v ∈ y↔∃u(u∈x∧ ϕ(u, v, p)))

− Foundation: ∃uu∈x→∃u(u∈x∧∀v(v ∈u→¬v ∈x))

The axioms capture the basic intuitions of Cantorean set theory. They are strong enough
to formalise all other mathematical fields. Usually the Axiom of Choice is also assumed

− Choice or AC: ∀u, u′((u ∈ x→∃v v ∈ u) ∧ (u ∈ x ∧ u′ ∈ x ∧ u � u′→¬∃v(v ∈ u ∧ v ∈
u′)))→∃y∀u(u∈x→∃v(v ∈u∧ v ∈ y ∧∀v ′(v ′∈u∧ v ′∈ y→ v ′= v)))).
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ZFC is the system consisting of ZF and AC. ZF− consists of all ZF-axioms except the
powerset axiom.

We use the intuition of a standard model of set theory (V ,∈ ), the universe of all (mathe-
matical) sets. This is usually pictured like an upward open triangle with the under-
standing that if x∈ y then x lies below y; x is in the extension of y. The ordinals are pic-
tured by a central line, extending to infinity.

(V ,∈ )

y

x
Ord

Although this picture gives some useful intuition, we can only know about sets by deduc-
tion from the ZF-axioms. On the other hand the axioms are incomplete in that they do
not decide important properties of infinitary combinatorics. The most important examples
are

− the system ZF does not decide the axiom of choice AC: if ZF is a consistent theory,
then so are ZF+AC and ZF+¬AC

− the system ZFC does not decide the continuum hypothesis: if ZFC is a consistent
theory, then so are ZFC+CH and ZFC+¬CH

Here a theory is consistent , if it does not imply a contradiction like x� x.
We appeal to the following central fact from mathematical logic: a theory T is consistent
iff it possesses a model. This allows to show consistency results by constructing models of
ZF and of ZFC.

We motivate the construction methods by analogy with the construction of fields in
algebra. The complex numbers (C,+ , · , 0, 1) form a standard field for many purposes.
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C is an algebraically closed field. It contains (isomorphic copies of) many interesting
fields, like the rationals Q, or extensions of Q of finite degree (algebraic number fields).
These subfields witness consistency results for the theory of fields:

− the field axioms do not decide the existence of 2
√

: Q is a model of ¬∃x x · x= 1 +
1, whereas Q( 2

√
) is a model of ∃xx ·x=1 +1

− by successively adjoining square roots one can form a field which satisfies ∀y∃x x ·
x = y but which does not contain 23

√
. This is used to show that the doubling of

the cube cannot be performed by ruler and compass

Let us mention a few properties of field constructions which will have analogues in con-
structions of models of set theory

− the fields are (or can be) embedded into the standard field C.

− the extension fields k(a) can be described within the ground field k: a is either
algebraic or transcendental over k; in the algebraic case one can treat a as a vari-
able x which is a zero of some polynomial in k[x]: p(x) = 0; in the transcendental
case a corresponds to a variable x such that p(x)� 0 for all p ∈ k[x]; calculations in
k(a) can be reduced to calculations in k.

− the ground field Q is countable. One can construct a transcendental real

a= 0, a0a1a2a3� ∈R
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by successively choosing decimals ai so that 0, a0a1� am “forces” pn(a)� 0, i.e.,

∀b(b=0, a0a1a2a3� ambm+1bm+1� → pn(b)� 0).

Here (pn)n<ω is some enumeration of k[x]. In view of the forcing method in set
theory we can write this as

0, a0a1a2a3� am  pn(ẋ)� 0

where ẋ is a symbol or name for the transcendental or generic real to be con-
structed.

For models of set theory this translates to

− consider transitive submodels (M,∈ ) of the standard universe (V ,∈ ).

− construct minimal submodels similar to the prime field Q.

− construct generic extensions N ⊇M by adjoining generic sets G, corresponding to
the transcendental numbers above: N =M [G].

− G is describable in the countable ground model M by infinitely many formulas, it
will be constructed by a countable recursion along countably many requirements
which can be expressed inside M .

We shall consider the models HOD (Hereditarily Ordinal Definable sets), Gödel’s model
L of constructible sets, generic extensions M [G], and symmetric submodels N of M [G].
This leads to a spectrum HOD, L,M ,M [G], N� of models of set theory like

(V ,∈ )

M
G

N =M [G]

HOD
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These models satisfy different extensions of the ZF-axioms: e.g., HOD � AC, M [G] may
satisfy CH or ¬CH, and symmetric submodels may satisfy ¬AC. This leads to the desired
(relative) consistency results.

Transitive Models of Set Theory

Let W be a transitive class. We consider situations when W together with the ∈ -relation
restricted to W is a model of axioms of set theory. So we are interested in the “model”
(W ,∈ ) or (W ,∈ ↾W ) where ∈ ↾W = {(u, v)|u∈ v ∈W }. Considering W as a universe for
set theory means that the quantifiers ∀ and ∃ in ∈ -formulas ϕ range over W instead over
the full universe V . For simplicity we assume that ∈ -formulas are only formed by vari-
ables v0, v1,� , the relations = and ∈ , and logical signs ¬, ∨ , ∃.

Definition 1. Let W be a term and ϕ be an ∈ -formula which do not have common vari-
ables. The relativisation ϕW of ϕ to W is defined recursively along the structure of ϕ:

− (vi∈ vj)W ≡ (vi∈ vj)

− (vi= vj)
W ≡ (vi= vj)

− (¬ϕ)W ≡¬(ϕW)

− (ϕ∨ ψ)W ≡ ((ϕW)∨ (ψW))

− (∃viϕ)W ≡∃vi∈W (ϕW)

If Φ is a collection of ∈ -formulas set ΦW = {ϕW |ϕ ∈ Φ}. Instead of ϕW or ΦW we also
say “ϕ holds in W”, “Φ holds in W”, “W is a model of ϕ”, etc.; we also write W � ϕ and
W �Φ.

ϕW and ΦW are obtained from ϕ and Φ by bounding all quantifiers by the class W .

We prove criteria for set theoretic axioms to hold in W .

Theorem 2. Assume ZF. Let W be a transitive class, W � ∅. Then

a) (Extensionality)W.

b) (Pairing)W↔∀x∈W∀y ∈W {x, y}∈W.

c) (Union)W↔∀x∈W ⋃

x∈W.

d) (Power)W↔∀x∈WP(x)∩W ∈W.
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e) (Infinity)W↔∃z ∈W (∅∈ z ∧∀u∈ z u+ 1∈ z).

f ) Let ψ be the instance of the Separation schema for the ∈ -formula ϕ(x, wK ). Then

ψW↔∀wK ∈W∀a∈W {x∈ a|ϕW(x,wK )}∈W.

g) Let ψ be the instance of the Replacement schema for the ∈ -formula ϕ(x, y, wK ).
Then ψW is equivalent to

∀wK ∈ W (∀x, y, y ′ ∈ W (ϕW(x, y, wK ) ∧ ϕW(x, y ′, wK ) → y = y ′) → ∀a ∈ W {y |∃x ∈
aϕW(x, y, wK )}∩W ∈W ).

h) (Foundation)W.

i) (Choice)W↔∀x∈W (∅ � x∧∀u, u′∈ x(u� u′→ u∩ u′ = ∅)→∃y ∈W∀u∈ x∃v {v}=
u∩ y).

Proof. Bounded quantications are not affected by relativisations to transitive classes:

(1) Let x∈W . Then ∀y(y ∈x→ ϕ)↔∀y ∈W (y ∈ x→ ϕ) and ∃y(y ∈ x∧ ϕ)↔∃y ∈W (y ∈
x∧ ϕ).

Proof . Assume that ∀y ∈W (y ∈ x→ ϕ). To show ∀y(y ∈ x→ ϕ) consider some y ∈ x. By
the transitivity of W , y ∈W . By assumption, ϕ holds. qed(1)

a)

(Extensionality)W ↔ (∀x∀y(∀z(z ∈x↔ z ∈ y)→ x= y))W

↔ ∀x∈W∀y ∈W [∀z ∈W (z ∈x↔ z ∈ y)→ x= y]

↔ ∀x ∈W∀y ∈W [[∀z ∈W (z ∈ x→ z ∈ y) ∧ ∀z ∈W (z ∈ y→ z ∈ x)]→
x= y]

↔ ∀x ∈W∀y ∈W [[∀z(z ∈ x→ z ∈ y) ∧ ∀z(z ∈ y→ z ∈ x)]→ x= y], by

(1).

The righthand side is a consequence of Extensionality in V .

b)

(Pairing)W ↔ (∀x∀y∃z∀u(u∈ z↔u= x∨u= y))W

↔ ∀x∈W∀y ∈W∃z ∈W∀u∈W (u∈ z↔u= x∨u= y)

↔ ∀x∈W∀y ∈W∃z ∈W∀u(u∈ z↔u=x∨u= y), by (1)

↔ ∀x∈W∀y ∈W∃z ∈Wz= {x, y}
↔ ∀x∈W∀y ∈W {x, y}∈W.
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c)

(Union)W ↔ (∀x∃z∀u(u∈ z↔∃y(u∈ y ∧ y ∈x)))W
↔ ∀x∈W∃z ∈W∀u∈W (u∈ z↔∃y ∈W (u∈ y ∧ y ∈x))
↔ ∀x∈W∃z ∈W∀u∈W (u∈ z↔∃y(u∈ y ∧ y ∈x)), by (1)

↔ ∀x∈W∃z ∈W∀u(u∈ z↔∃y(u∈ y∧ y ∈x)), by (1)

↔ ∀x∈W∃z ∈Wz=
⋃

x

↔ ∀x∈W
⋃

x∈W

d)

(Power)W ↔ (∀x∃z∀u(u∈ z↔∀v(v ∈u→ u∈x)))W
↔ ∀x∈W∃z ∈W∀u∈W (u∈ z↔∀v ∈W (v ∈u→u∈x))
↔ ∀x∈W∃z ∈W∀u∈W (u∈ z↔∀v(v ∈u→ u∈x)), by (1)

↔ ∀x∈W∃z ∈W∀u∈W (u∈ z↔u⊆x)
↔ ∀x∈W∃z ∈W∀u(u∈ z↔ u∈W ∧u⊆x)
↔ ∀x∈W∃z ∈Wz=P(x)∩W
↔ ∀x∈WP(x)∩W ∈W

e)

(Infinity)W ↔ (∃z(∃x(x ∈ z ∧ ∀y¬y ∈ x) ∧ ∀u(u ∈ z→∃v(v ∈ z ∧ ∀w(w ∈ v↔ w ∈ u ∨w =

u)))))W

↔ ∃z ∈W (∃x ∈W (x ∈ z ∧ ∀y ∈W ¬y ∈ x) ∧ ∀u ∈W (u ∈ z→∃v ∈W (v ∈ z ∧
∀w ∈W (w ∈ v↔w ∈u∨w= u))))

↔ ∃z ∈W (∃x(x ∈ z ∧ ∀y¬y ∈ x) ∧ ∀u(u ∈ z→∃v(v ∈ z ∧ ∀w(w ∈ v↔ w ∈ u ∨
w=u)))), by (1)

↔ ∃z ∈W (∅∈ z ∧∀u(u∈ z→ u+1∈ z)).

f) Separation:

(∀wK ∀a∃y∀x(x∈ y↔x∈ a∧ ϕ(x,wK )))W ↔ ∀wK ∈W∀a∈W∃y ∈W∀x∈W (x∈ y↔ x∈ a∧
ϕW(x,wK ))

↔ ∀wK ∈ W∀a ∈ W∃y ∈ W∀x(x ∈ y ↔ x ∈ a ∧
ϕW(x,wK )), by (1)

↔ ∀wK ∈W∀a∈W∃y ∈W y= {x∈ a|ϕW(x,wK )}
↔ ∀wK ∈W∀a∈W {x∈ a|ϕW(x, wK )}∈W
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g) Replacement:

ψW = (∀wK (∀x, y, y ′(ϕ(x, y, wK )∧ ϕ(x, y ′, wK )→ y= y ′)→∀a∃z∀y(y ∈ z↔∃x(x ∈ a∧ ϕ(x,

y, wK )))))W

↔ ∀wK ∈W (∀x, y, y ′∈W (ϕW(x, y, wK )∧ ϕW(x, y ′, wK )→ y= y ′)→∀a ∈W∃z ∈W∀y ∈
W (y ∈ z↔∃x∈W (x∈ a∧ ϕW(x, y, wK ))))

↔ ∀wK ∈ W (∀x, y, y ′ ∈ W (ϕW(x, y, wK ) ∧ ϕW(x, y ′, wK ) → y = y ′) → ∀a ∈ W∃z ∈
W∀y(y ∈ z↔ (∃x(x∈ a∧ ϕW(x, y, wK ))∧ y ∈W ))

↔ ∀wK ∈W (∀x, y, y ′ ∈W (ϕW(x, y, wK ) ∧ ϕW(x, y ′, wK )→ y = y ′)→∀a ∈W∃z ∈Wz =

{y |∃x∈ a ϕW(x, y, wK ))}∩W )

↔ ∀wK ∈W (∀x, y, y ′ ∈W (ϕW(x, y, wK ) ∧ ϕW(x, y ′, wK )→ y = y ′)→ ∀a ∈W {y |∃x ∈
aϕW(x, y, wK ))}∩W ∈W ).

h)

(Foundation)W ↔ (∀x(∃uu∈x→∃u(u∈x∧∀v(v ∈u→¬v ∈x))))W
↔ ∀x∈W (∃u∈Wu∈x→∃u∈W (u∈x∧∀v ∈W (v ∈u→¬v ∈x)))
↔ ∀x∈W (∃uu∈x→∃u(u∈x∧∀v(v ∈u→¬v ∈x))), by (1).

← ∀x(∃uu∈x→∃u(u∈x∧∀v(v ∈u→¬v ∈x)))
↔ Foundation in V .

i) Choice:

ACW ↔ (∀x(∀u, u′((u ∈ x→∃v v ∈ u) ∧ (u ∈ x ∧ u′ ∈ x ∧ u � u′→¬∃v(v ∈ u ∧ v ∈ u′)))→
∃y∀u(u∈x→∃v(v ∈u∧ v ∈ y ∧∀v ′(v ′∈u∧ v ′∈ y→ v ′= v))))))W

↔ ∀x ∈W (∀u, u′ ∈W ((u ∈ x→ ∃v ∈Wv ∈ u) ∧ (u ∈ x ∧ u′ ∈ x ∧ u � u′→ ¬∃v ∈
W (v ∈ u∧ v ∈u′)))→∃y ∈W∀u∈W (u∈ x→∃v ∈W (v ∈ u∧ v ∈ y ∧∀v ′∈W (v ′∈
u∧ v ′∈ y→ v ′ = v)))))

↔ ∀x ∈W (∀u, u′((u ∈ x→ ∃v v ∈ u) ∧ (u ∈ x ∧ u′ ∈ x ∧ u � u′→ ¬∃v(v ∈ u ∧ v ∈
u′)))→∃y ∈W∀u(u ∈ x→∃v(v ∈ u ∧ v ∈ y ∧ ∀v ′(v ′ ∈ u ∧ v ′ ∈ y→ v ′ = v))))), by

several applications of (1),
↔ ∀x∈W (∅ � x∧∀u, u′∈x(u� u′→ u∩u′ = ∅)→∃y ∈W∀u∈x∃v {v}=u∩ y)

�

The theorem yields models of fragments of ZFC in the von Neumann hierarchy (Vα)α∈Ord .

Theorem 3. Assume ZF. Then

a) Vα�Extensionality, Union, Separation, and Foundation;
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b) if α is a limit ordinal then Vα�Pairing and Powerset;

c) if α>ω then Vα� Infinity;

d) if AC holds then Vα�AC;

e) if AC holds, α is a regular limit ordinal and ∀λ<α 2λ<α , then Vα�Replacement;

f ) Vω� all axioms of ZFC except Infinity;

g) if AC holds and α is strongly inaccessible, i.e. α is a regular limit ordinal >ω and
∀λ<α 2λ<α then Vα�ZFC.

Proof. e) First prove by induction on ξ ∈ [ω, α) that ∀a∈Vξ card(a)<α . For the replace-

ment criterion let ∀wK ∈ Vα and assume that ∀x, y, y ′ ∈ Vα(ϕVα(x, y, wK ) ∧ ϕVα(x, y ′, wK )→
y= y ′). Let a∈Vα . Then

z= {y |∃x∈ aϕVα(x, y, wK ))}∩Vα

is a subset of Vα with card(z) 6 card(a)<α. Hence z ∈Vα . �

Models of the form Vα can be used to show relative consistencies .

Theorem 4. Let ZF be consistent. Then the theory consisting of all ZFC-axioms except
Infinity together with the negation of Infinity is consistent.

Proof. Assume that the theory consisting of all ZFC-axioms except Infinity together with
the negation of Infinity is inconsistent , i.e. that it implies a contradiction like ∃xx
 x. ZF
implies that the former theory holds in Vω . So its implications hold in Vω . Hence ZF
implies (∃xx
 x)Vω = ∃x∈Vω x
 x. Thus ZF is inconsistent. �

The following lead Abraham Fraenkel to the introduction of the Replacement schema.

Theorem 5. Let Z be the system of Zermelo set theory, consisting of the axioms of
Extensionality, Pairing, Union, Power, Separation, Infinity, and Foundation. Then Z does
not imply Replacement.

Proof. (Sketch) Vω+ω is a model of Z but Vω+ω does not satisfy Replacement: define the
map F :ω→Vω+ω , F (n)=Vω+n . F is definable in Vω+ω by the ∈ -formula

ϕ(x, y, ω, Vω) = ∃f(f is a function ∧ dom(f) ∈ ω ∧ x ∈ dom(f) ∧ f(0) = Vω ∧ ∀n(n + 1 ∈
dom(f)→∀u(u∈ f(n+1)↔u⊆ f(n))).
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ϕ formalises the definition of F by recursion on ω. Then F [ω] = {Vω+n|n<ω} � Vω+ω , and
so Vω+ω does not satisfy replacement for the formula ϕ. �

We shall discuss some details concerning the definition of ϕ inside W later.

Exercise 1. Define Hκ = {x|card(TC({x})) < κ}. Examine which ZFC-axiom hold in Hκ for various
κ.

Absoluteness and Reflection

In the study of models of set theory one passes from models (W ,∈ ) of set theory to other
models (W ′, ∈ ), and one is interested in the behaviour of truth values of certain formulas.
Some truth values are invariant or absolute.

Definition 6. Let W , W ′ be terms and let ϕ(x0, � , xn−1) be an ∈ -formula which does
not have common variables with W or W ′. ϕ is W-W ′-absolute if

∀x0,� , xn−1∈W ∩W ′ (ϕW↔ ϕW
′

).

If W ′ =V we call ϕ W-absolute.

In the next section we shall give syntactic criteria for absoluteness

Theorem 7. (Levy reflection theorem) Assume ZF. Let (Wα)α∈Ord be a continuous hier-
archy, i.e.

α< β→Wα⊆Wβ , and if λ is a limit ordinal then Wλ=
⋃

α<λ

Wα .

Let W =
⋃

α∈Ord
Wα be the limit of the hierarchy. Let ϕ0(xK ), � , ϕn−1(xK ) be a finite list of

∈ -formulas. Let θ0 ∈ Ord. Then there exists a limit ordinal θ > θ0 such that ϕ0(xK ), � ,
ϕn−1(xK ) are Wθ-W-absolute.

Proof. We may assume that the ∈ -formulas ϕi are only built using ¬, ∧ , ∃ and that all
subformulas of ϕi occur in the initial part ϕ0(xK ), � , ϕi−1(xK ) of the list of formulas. Let r
be the length of the vector xK . For i <n define functions Fi:W

r→Ord by

Fi(xK )=

{

min {β |∃v ∈Wβ ψ
W(xK )}, if ϕi=∃vψ and ∃v ∈WψW(xK )

0, else

By the definition of F ,

∀xK ∈W (∃v ∈WψW(xK )↔∃v ∈WFi(xK ) ψ
W(xK )). (1)
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Using the Replacement schema, recursively define an ω-sequence (θm)m<ω starting with
the given θ0 by

θm+1 =
⋃

{Fi(xK )|i < n∧xK ∈Wθm
}∪ (θm+ 1).

Define the limit ordinal θ=
⋃

m<ω
θm . Then for ϕi= ∃vψ from the list and xK ∈Wθ

∃v ∈Wθ ψ
W(xK )↔∃v ∈WFi(xK ) ψ

W(xK ). (2)

Now we show by induction on i <n that ϕi is Wθ-W -absolute. Let xK ∈Wθ .

Case 1 . ϕi is atomic. Then ϕi is trivially absolute.

Case 2. ϕi = ¬ϕj with j < i . Then ϕi
Wθ(xK ) = ¬ϕjWθ(xK ) ↔ ¬ϕjW(xK ) = ϕi

W(xK ), using the
induction hypothesis.

Case 3. ϕi = ϕj ∨ ϕk with j , k < i . Then ϕi
Wθ(xK ) = ϕj

Wθ(xK ) ∨ ϕkWθ(xK )↔ ϕj
W(xK ) ∨ ϕkW(xK ) =

ϕi
W(xK ), using the induction hypothesis.

Case 4 . ϕi= ∃vϕj with j < i . Then, using the induction hypothesis and (1) and (2)

ϕi
Wθ(xK ) = ∃v ∈Wθϕj

Wθ(xK )

↔ ∃v ∈Wθϕj
W(xK )

↔ ∃v ∈WFi(xK ) ϕj
W(xK )

↔ ∃v ∈Wϕj
W(xK )

= ϕi
W(xK ).

�

Theorem 8. If ZF is consistent then ZF is not equivalent to a finite system of axioms.

Proof. Work in ZF. Assume for a contradiction that ZF is equivalent to the list ϕ0, � ,
ϕn−1 of formulas without free variables. By the reflection theorem, Theorem 7, there
exists θ∈Ord such that ϕ0

Vθ,� , ϕn−1
Vθ . Thus ZF implies

∃w(w is transitive ∧ ϕ0
w∧� ∧ ϕn−1

w ). (3)

By Foundation take an ∈ -minimal such w0. Since the ϕ0, � , ϕn−1 imply all of ZF, they
also imply (3). Therefore

(∃w(w is transitive ∧ ϕ0
w∧� ∧ ϕn−1

w ))w0.

This is equivalent to

∃w ∈w0((w is transitive)w0∧ (ϕ0
w)w0∧� ∧ (ϕn−1

w )w0).
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Let w1 ∈ w0 be such a w. Since w0 is transitive, w1 ⊆ w0 . Relativising to w1 and to w0 is
equivalent to relativising to w1∩w0 =w1 :

(w1 is transitive)
w0∧ ϕ0

w1∧� ∧ ϕn−1
w1 .

Let “w1 is transitive” be the formula

∀u∈w1∀v ∈u v ∈w1 .

This is equivalent to

∀u∈w1∩w0∀v ∈u∩w0 v ∈w1

and to

(∀u∈w1∀v ∈u v ∈w1)
w0.

Hence

w1 is transitive∧ ϕ0
w1∧� ∧ ϕn−1

w1 .

This contradicts the ∈ -minimality of w0 . �

Similarly one gets

Theorem 9. Let Φ be a collection of ∈ -formulas which is a consistent extension of the
axiom system ZF. Then Φ is not finitely axiomatisable. So is ZFC is consistent it is not
finitely axiomatisable.

We can also use the reflection theorem to “justify” the assumption of transitive models of
set theory.

Theorem 10. Let ZF be consistent. Then the theory ZF +M is transitive + ZFM is con-
sistent where M is a new variable.

Proof. Assume that ZF + M is transitive + ZFM is inconsistent. Then the inconsistency
follows from finitely many formulas of that theory. Take ZF-axioms ϕ0,� , ϕn−1 such that

ϕ0,� , ϕn−1, ϕ0
M ,� , ϕn−1

M ,M is transitive

imply the inconsistent statement x � x . Work in ZF. By Reflection, Theorem 7, there is
some Vθ such that ϕ0,� , ϕn−1 are Vθ-absolute. Then the following hold:

ϕ0,� , ϕn−1, ϕ0
Vθ,� , ϕn−1

Vθ , Vθ is transitive.
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But then the proof of x� x can be carried out under the assignment M � Vθ . This means
that ZF is inconsistent. �

Similarly:

Theorem 11. Let ZFC be consistent. Then the theory ZFC + M is transitive + ZFCM is
consistent where M is a new variable.

Formalisation of Formal Languages

We want to construct Gödel’s model HOD which stands for the class of Hereditarily
Ordinal Definable sets. HOD will be a model of the theory ZFC. The basic intuitions are:

− we want to define some “minimal” model of set theory which only contains “neces-
sary”.

− a model of set theory must be closed under definable sets where definitions may
contain parameters from that model.

− one might define the model as the collection of all sets definable from parameters
out of some reasonable class.

− one could take the class Ord of ordinals as the class of parameters: the class OD of
Ordinal Definable sets is the collection of all sets of the form

y= {x|ϕ(x, αK )}

where ϕ is a formula of set theory and αK ∈Ord.

− this may leed to a class which satisfies the axiom of choice since we can wellorder
the collection of terms {x|ϕ(x, αK )} by wellordering the countable set of formulas
and the finite sequences of parameters.

− to get a transitive model we also need that elements x ∈ y are also ordinal defin-
able, that u ∈ x ∈ y are ordinal definable etc., i.e. that y is hereditarily ordinal
definable. That means TC({y})⊆OD.

So far we do not have a definition of HOD by a formula of set theory, since we are ranging
over all formulas ϕ of set theory. This makes arguing about HOD in ZF difficult.
Gödel’s crucial observation is that HOD is, after all, definable by a single ∈ -formula
which roughly is as follows:

z ∈HOD↔TC({z})⊆OD

13



and

y ∈OD↔ there exists an ∈ -formula ϕ and αK ∈Ord such that y= {x|ϕ(x, αK )}.

To turn the right-hand side into an ∈ -formula one has to formalise the collection of all ∈
-formulas in set theory and also the truth predicate ϕ(x, αK ) as a new formula in the vari-
ables ϕ (sic!), x, and αK .
Consider the language of set theory formed by variables v0, v1,� , the relations ≡ and ∈ ,
and logical signs ¬, ∨ , ∃. Code formulas ϕ of that language into sets ⌈ϕ⌉ by recursion on
the structure of ϕ as follows.

Definition 12. For a formula ϕ of set theory define the Gödelisation ⌈ϕ⌉ by recursion:

− ⌈vi≡ vj⌉=(0, i, j)

− ⌈vi∈ vj⌉=(1, i, j)

− ⌈¬ϕ⌉=(2, ⌈ϕ⌉, ⌈ϕ⌉)

− ⌈ϕ∨ ψ⌉= (3, ⌈ϕ⌉, ⌈ψ⌉)

− ⌈∃viϕ⌉= (4, i, ⌈ϕ⌉)

Note that ⌈ϕ⌉ ∈ Vω since Vω contains all the natural numbers and is closed unter ordered
triples. Next define the collection Fml of all (formal) formulas.

Definition 13. By recursion on the wellfounded relation

yRx↔∃u, v (x=(u, y, v)∨x= (u, v, y))

define

x∈Fml ↔ ∃i, j <ω x=(0, i, j)

∨∃i, j <ω x=(1, i, j)

∨∃y (y ∈Fml∧x=(2, y, y))

∨∃y , z(y ∈Fml∧ z ∈Fml∧x=(3, y, z))

∨∃i <ω∃y(y ∈Fml∧x=(4, i, y)).

Fml is the set of formalised ∈ -formulas. We have: Fml ⊆ Vω , and for every standard ∈ -
formula ϕ:

⌈ϕ⌉ ∈Fml .
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It is, however, possible that Fml contains nonstandard formulas which are not of the form
⌈ϕ⌉. One has to be very careful here since one is working in the vicinity of the Gödel
incompleteness theorems.

We interpret elements of Fml in structures of the form (M, E) where E is a binary rela-
tion on the set M and in particular in models of the form (M, ∈ ) which is a short nota-
tion for the ∈ -relation restricted to M :

(M,∈ )= (M, {(u, v)|u∈M ∧ v ∈M ∧u∈ v}).

Definition 14. Let Asn(M) = <ωM = {a|a: dom(a)→M,∃n<ω dom(a)⊆n} be the set of
assignments in M. We also denote the assignment a by a(0), � , a(n − 1) in case that

dom(a)=n. For a∈Asn(M), x∈M, and i <ω define the modified assigment a
x

i
by

a
x

i
(m)=

{

a(m), if m� i
x, else

Definition 15. For a structure (M, E) with M ∈ V, ϕ ∈ Fml, and a an assignment in M

define the satisfaction relation (M, E) � ϕ[a] (“ (M, E) is a model of ϕ under the assign-
ment a”) by recursion on the complexity of ϕ:

− (M,E) � (0, i, j)[a] iff a(i) = a(j)

− (M,E) � (1, i, j)[a] iff a(i)Ea(j)

− (M,E) � (2, y, y)[a] iff not (M,E) � y[a]

− (M,E) � (3, y, z)[a] iff (M,E) � y[a] or (M,E)� z[a]

− (M,E) � (4, i, y)[a] iff there exists x∈M: (M,E)� y[a
x

i
]

If dom(a)=n we also write (M,E)� ϕ[a(0),� , a(n− 1)].

Note that the recursion requires that M is a set since in the last clause we recurse to (M,

E)� y[a
x

i
] for x∈M and we cannot recurse to a proper class of preconditions.

The satisfaction relation agrees with the notion of “model” in terms of relativisations. A
straightforward induction on the complexity of formulas shows:

Lemma 16. Let ϕ(v0,� , vn−1) an ∈ -formula. Then for any set M with a∈M

∀v0,� , vn−1∈M((M,∈ )� ⌈ϕ⌉[v0,� , vn−1] ↔ ϕM).

Exercise 2. Define a wellorder <Fml of the set Fml in ordertype ω without using parameters.
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Exercise 3. Show: for any ϕ ∈ Fml there is n < ω such that for any structure (M, E) and assign-
ments b, b′ in M :

if b ↾n = b′ ↾ n then ((M, E) � ϕ[b]↔ (M, E)� ϕ[b′]).

Heriditarily Ordinal Definable Sets

We can now give the (official) definition of the class HOD.

Definition 17. Define

OD= {y |∃α∈Ord∃ϕ∈Fml∃a∈Asn(α) y= {z ∈Vα|(Vα,∈ )� ϕ[a
z

0
]}},

and

HOD= {x|TC({x})⊆OD}

We shall see that HOD is a model of ZFC.

Lemma 18. Ord⊆OD and Ord⊆HOD.

Proof. Let ξ ∈Ord. Then

ξ = {z ∈Vξ+1|z ∈ ξ}
= {z ∈Vξ+1|(z ∈ ξ)Vξ+1}
= {z ∈Vξ+1|(Vξ+1,∈ )� ⌈v0∈ v1⌉[z, ξ]}
∈ OD

If ξ ∈Ord then TC({ξ}) = ξ+ 1⊆OD and so ξ ∈HOD. �

Lemma 19. HOD is transitive.

Proof. Let x∈ y ∈HOD. Then TC({x})⊆TC({y})⊆OD and so x∈HOD. �

An element y = {z ∈ Vα|(Vα, ∈ ) � ϕ[a
z

0
]} of OD is determined or named by the tripel (Vα,

ϕ, a).

Definition 20. For x∈V, ϕ∈Fml, and a∈Asn(x) define the interpretation function

I(x, ϕ, a) = {z ∈x|(x,∈ )� ϕ[a
z

0
]}.
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We say that I(x, ϕ, a) is the interpretation of (x, ϕ, a), or that (x, ϕ, a) is a name for
I(x, ϕ, a).

Lemma 21. Let

OD∗ = {(Vα, ϕ, a)|α∈Ord, ϕ∈Fml, a∈Asn(α)}

be the class of OD-names. Then OD = I[OD∗]. OD∗ has a wellorder <OD∗ of type Ord
which is definable without parameters.

Proof. Let <Fml be a wellorder of Fml in ordertype ω which is definable without parame-
ters (see Exercise 2).

Wellorder the class
⋃

α∈Ord
Asn(α) of all relevant assignment by

a<Asna
′ ↔ max (ran(a))<max (ran(a ′))

∨ (max (ran(a)) = max (ran(a′)) ∧ ∃n ∈ dom(a′)(a ↾ n= a′ ↾ n ∧ (n � dom(a) ∨
(n∈ dom(a)∧ a(n)<a′(n)))))

Wellorder OD∗ in ordertype Ord by

(Vα, ϕ, a)<OD∗ (Vα ′, ϕ′, a ′) ↔ α<α ′

∨ (α=α ′∧ ϕ<Fml ϕ
′)

∨ (α=α ′∧ ϕ= ϕ ′∧ a<Asna
′).

�

Lemma 22. OD has a wellorder <ODof type Ord which is definable without parameters.

Proof. We let <OD be the wellorder induced by <OD∗ via I:

x<ODx
′ ↔ ∃(Vα, ϕ, a) ∈ OD∗(x = I(Vα, ϕ, a) ∧ ∀(Vα′, ϕ′, a′) ∈ OD∗(x′ = I(Vα ′, ϕ′, a′)→

(Vα, ϕ, a)<OD∗ (Vα′, ϕ′, a′))).
�

Lemma 23. Let z be definable from x1,� , xn−1 by the ∈ -formula ϕ(v1,� , vn):
∀vn(vn= z↔ ϕ(x1,� , xn−1, vn)). (4)

Let x1,� , xn∈OD and z ⊆HOD. Then z ∈HOD.
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Proof. TC({z}) = {z} ∪ TC(z) ⊆ {z} ∪ HOD. So it suffices to prove z ∈ OD. Using the
canonical wellorder <OD from Lemma 22 every element x of OD is definable from one
ordinal δ without further parameters: x is the δ-th element in the wellorder <OD . So we
may simply assume that the parameters x1,� , xn−1 are ordinals.

Let z, x1,� , xn−1∈Vθ0 . By Reflection take some θ > θ0 such that ϕ is Vθ-absolute. Then

z = {u∈Vθ|u∈ z}
= {u∈Vθ|∃vn (ϕ(x1,� , xn−1, vn)∧u∈ vn)}
= {u∈Vθ|∃vn∈Vθ (ϕ(x1,� , xn−1, vn)

Vθ∧u∈ vn)}
= {u∈Vθ|(Vθ,∈ )� ⌈∃vn (ϕ(v1,� , vn−1, vn)∧ v0∈ vn)⌉[u, x1,� , xn−1]}
∈ OD.

�

The two previous Lemmas justify the notion “ordinal definable”: if z ∈ OD it is definable
as the δ-th element in <OD for some ordinal δ. Conversely, if z is definable from ordinal
parameters the preceding proof shows that z ∈OD.

Theorem 24. ZFHOD.

Proof. Using the criteria of Theorem 2 we check certain closure properties of HOD.

a) Extensionality holds in HOD, since HOD is transitive.

b) Let x, y ∈HOD. Then {x, y} is definable from x, y, and {x, y} ⊆HOD. By Lemma 23,
{x, y} ∈HOD, i.e. HOD is closed with respect to unordered pairs. This implies Pairing in
HOD.

c) Let x ∈ HOD. Then
⋃

x is definable from x, and
⋃

x ⊆ TC({x})⊆ HOD. So
⋃

x ∈
HOD, and so Union holds in HOD.

d) Let x ∈ HOD. Then P(x) ∩ HOD is definable from x, and P(x) ∩ HOD ⊆ HOD. So
P(x)∩HOD∈HOD and Powerset holds in HOD.

e) ω ∈HOD implies that Infinity holds in HOD.

f) Let ϕ(x, wK ) be an ∈ -formula and wK , a ∈ HOD. Then {x ∈ a|ϕHOD(x, wK )} is a set by

Separation in V , and it is definable from wK , a. Moreover {x ∈ a|ϕHOD(x, wK )} ⊆ HOD. So
{x∈ a|ϕHOD(x,wK )}∈HOD, and Separation for the formula ϕ holds in HOD.

g) Let ϕ(x, y, wK ) be an ∈ -formula and wK , a∈HOD. Assume that

∀x, y, y ′∈HOD(ϕHOD(x, y, wK )∧ ϕHOD(x, y ′, wK )→ y= y ′).

Then {y |∃x ∈ aϕHOD(x, y, wK )} ∩HOD is a set by Replacement and Separation in V . It is
definable from wK , a. Moreover {y |∃x ∈ aϕHOD(x, y, wK )} ∩ HOD ⊆ HOD. So {y |∃x ∈
aϕHOD(x, y, wK )}∩HOD∈HOD, and Replacement for ϕ holds in HOD.
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h) Foundation holds in HOD since HOD is an ∈ -model. �

Hence HOD is an inner model of set theory , i.e. HOD is transitive, contains all ordinals,
and is a model of ZF.

Theorem 25. ACHOD.

Proof. We prove AC in HOD using Theorem 2. Consider x ∈ HOD with ∅ � x ∧ ∀u, u′ ∈
x(u� u′→u∩u′ = ∅). Define a choice set y for x by

y= {v |∃u∈x : v is the <OD -minimal element of u}.

Obviously y intersects every element of x in exactly one element. y is definable from x ∈
HOD and y ⊆HOD. By Lemma 23, y ∈HOD, as required. �

Theorem 26. (Kurt Gödel, 1938) If ZF is consistent then ZFC is consistent. In other
words: the Axiom of Choice is relatively consistent with the system ZF.

Proof. Since ZF proves that HOD is a model for ZFC. �

Exercise 4. Extend the formal language by atomic formulas for “x ∈ A” where A is considered a
unary predicate or relation. Define

OD(A)= {y |∃α∈Ord ∃ϕ∈Fml′ ∃β: ω→A∩Vα y = {z ∈ Vα|(Vα, A∩Vα,∈ )� ϕ[β
z

0
]}}

and the corresponding generalisation HOD(A) of HOD. Prove:

a) if A is transitive then A⊆HOD(A);

b) if A is moreover definable from some parameters a0,� , an−1∈A then ZFHOD(A).

Note that AC does in general not hold in HOD(A).

Absolute and Definite Notions

For terms we define:

Definition 27. Let W be a term, and t(xK ) = {y |ϕ(y, xK )} be a term which has no common
variables with W. Define the relativisation

tW(xK )= {y ∈W |ϕW(y, xK )}.
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Let W ′ be another term which has no common variables with t. Then t is W-W ′-absolute
if

∀xK ∈W ∩W ′((tW(xK )∈W↔ tW
′

(xK )∈W ′)∧ (tW(xK )∈W→ tW(xK )= tW
′

(xK ))).

If W ′ =V we call t W-absolute.

Formulas and terms may be absolute for complicated reasons. In this section we want to
study notions that are absolute between all transitive models of ZF− simply due to their
syntactical structure.

Definition 28. Let ψ(vK ) be an ∈ -formula and let t(vK ) be a term, both in the free vari-
ables vK . Then

a) ψ is definite iff for every transitive ZF−-model (M,∈ )

∀xK ∈M (ψM(xK )↔ ψ(xK )).

b) t is definite iff for every transitive ZF−-model (M,∈ )

∀xK ∈M tM(xK )∈M and ∀xK ∈M tM(xK )= t(xK ).

We shall prove that most simple set-theoretical notions are definite. We shall work induc-
tively: basic notions are definite and important set-theoretical operations lead from defi-
nite notions to definite notions.

The following lemma shows that the operations of relativisation and substitution of a
term into a formula commute.

Lemma 29. Let ϕ(x, yK ) be a formula, t(zK ) be a term, and M be a class. Assume that
∀zK ∈M t(zK )∈M. Then

∀yK , zK ∈M (ϕ(t(zK ), yK ))M↔ ϕM(tM(zK ), yK )).

Proof. If t = t(zK ) is of the form t = z then there is nothing to show. Assume otherwise
that t is of the form t = {u|ψ(u, zK )}. We work by induction on the complexity of ϕ.
Assume that ϕ≡x= y and y, zK ∈M . Then

(t(zK )= y)M ↔ ({u|ψ(u, zK )}= y)M

↔ (∀u (ψ(u, zK )↔u∈ y))M
↔ ∀u∈M (ψM(u, zK )↔ u∈ y)
↔ {u∈M |ψM(u, zK )}= y

↔ tM(zK )= y

↔ ϕM(tM(zK ), y)
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Assume that ϕ≡ y ∈x and y, zK ∈M . Then

(y ∈ t(zK ))M ↔ ψM(
y

u
, zK )

↔ y ∈{u∈M |ψM(u, zK )}
↔ y ∈ tM(zK )

↔ ϕM(tM(zK ), y)

Assume that ϕ≡x∈ y and y, zK ∈M . Then

(t(zK )∈ y)M ↔ (∃u(u= t(zK )∧u∈ y)M
↔ ∃u∈M ((u= t(zK ))M ∧u∈ y)
↔ ∃u∈M (u= tM(zK )∧u∈ y), by the first case,

↔ ∃u(u= tM(zK )∧u∈ y), since M is closed w.r.t. t,

↔ tM(zK )∈ y
↔ ϕM(tM(zK ), y)

The induction steps are obvious since the terms t resp. tM are only substituted into the
atomic subformulas of ϕ. �

Theorem 30.

a) The formulas x= y and x∈ y are definite.

b) If the formulas ϕ and ψ are definite then so are ¬ϕ and ϕ∨ ψ.

c) Let the formula ϕ(x, yK ) and the term t(zK ) be definite. Then so are ϕ(t(zK ), yK ) and
∃x∈ t(zK ) ϕ(x, yK ).

d) The terms x, ∅, {x, y}, and ⋃

x are definite.

e) Let the terms t(x, yK ) and r(zK ) be definite. Then so is t(r(zK ), yK ).

f ) Let the formula ϕ(x, yK ) be definite. Then so is the term {x∈ z |ϕ(x, yK )}.

g) Let the term t(x, yK ) be definite. Then so is the term {t(x, yK ) |x∈ z}.

h) The formulas “R is a relation”, “f is a function”, “f is injective”, and “f is surjec-
tive” are definite.

i) The formulas Trans(x), Ord(x), Succ(x), and Lim(x) are definite.

j ) The term ω is definite.
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Proof. Let M be a transitive ZF−-model.
a) is obvious since (x= y)M≡ (x= y) and (x∈ y)M ≡ (x∈ y).
b) Assume that ϕ and ψ are definite and that (M, ∈ ) is a transitive ZF−-model. Then
∀xK ∈M (ϕM(xK )↔ ϕ(xK )) and ∀xK ∈M (ψM(xK )↔ ψ(xK )). Thus

∀xK ∈M ((ϕ∨ ψ)M(xK )↔ (ϕM(xK )∨ ψM(xK ))↔ (ϕ(xK )∨ ψ(xK ))↔ (ϕ∨ ψ)(xK ))

and

∀xK ∈M ((¬ϕ(xK ))M↔¬(ϕM(xK ))↔¬(ϕ(xK ))↔ (¬ϕ)(xK )).

c) Let (M,∈ ) be a transitive ZF−-model. Let yK , zK ∈M . t(zK )∈M since t is definite. Then

(ϕ(t(zK ), yK ))M ↔ ϕM(tM(zK ), yK ), by Lemma 29,

↔ ϕM(t(zK ), yK ), since t is definite,

↔ ϕ(t(zK ), yK ), since ϕ is definite.

Also

(∃x∈ t(zK ) ϕ(x, yK ))M ↔ (∀x(x∈ t(zK )→ ϕ(x, yK )))M

↔ ∀x∈M ((x∈ t(zK ))M→ ϕM(x, yK ))

↔ ∀x∈M (x∈ tM(zK )→ ϕM(x, yK ))

↔ ∀x∈M (x∈ t(zK )→ ϕ(x, yK )), since t and ϕ are definite,

↔ ∀x(x∈ t(zK )→ ϕ(x, yK )), since t(zK )⊆M,

↔ ∀x∈ t(zK ) ϕ(x, yK )).

d) A variable term x is trivially definite, since xM =x.

Consider the term ∅= {u|u� u}. Since M is non-empty and transitive, ∅∈M . Also

∅M = {u∈M |u� u}= ∅.

Consider the term {x, y}. For x, y ∈M :

{x, y}M = {u∈M |u=x∨u= y}= {u|u=x∨u= y}= {x, y}.

The pairing axiom in M states that

(∀x, y∃z z= {x, y})M.

This implies

∀x, y ∈M∃z ∈Mz= {x, y}M = {x, y}
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and

∀x, y ∈M {x, y}∈M.

Consider the term
⋃

x . For x∈M :

(
⋃

x)M = {u∈M |(∃v ∈x u∈ v)M}= {u∈M |∃v ∈x∩M u∈ v}= {u|∃v ∈x u∈ v}=
⋃

x.

The union axiom in M states that

(∀x∃z z=
⋃

x)M.

This implies

∀x∈M∃z ∈M z=(
⋃

x)M =
⋃

x

and

∀x∈M
⋃

x∈M.

e) is obvious.

f) Let yK , z ∈M . By the separation schema in M ,

(∃w w= {x∈ z |ϕ(x, yK )})M ,

i.e. {x∈ z |ϕ(x, yK )}M ∈M . Moreover by the definiteness of ϕ

{x∈ z |ϕ(x, yK )}M = {x∈M |x∈ y ∧ ϕM(x, yK )}= {x |x∈ y ∧ ϕ(x, yK )}= {x∈ z |ϕ(x, yK )}.

g) Since t is definite, ∀x, yK ∈M tM(x, yK )∈M . This implies

∀x, yK ∈M∃w ∈Mw= tM(x, yK )

and (∀x, yK ∃w w= t(x, yK ))M . Let yK , z ∈M . By replacement in M ,

(∃a a= {t(x, yK )|x∈ z})M .

Hence {t(x, yK )|x∈ z}M ∈M . Moreover

{t(x, yK )|x∈ z}M = {w |∃x∈ z w= t(x, yK )}M
= {w ∈M |∃x∈ z w= tM(x, yK )}
= {w |∃x∈ z w= tM(x, yK )}, since M is closed w.r.t. tM ,

= {w |∃x∈ z w= t(x, yK )}, since t is definite,
= {t(x, yK )|x∈ z}.
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h) “R is a relation” is equivalent to

∀z ∈R∃x, y ∈ (
⋃ ⋃

z) z= {{x}, {x, y}}.

This is definite, using c), d), e). The other relational statements are definite for similar rea-
sons.

i)

Trans(x) ↔ ∀y ∈x∀z ∈ y z ∈x
Ord(x) ↔ Trans(x)∧∀y ∈x Trans(y)

Succ(x) ↔ Ord(x)∧∃y ∈xx= y∪{y}
Lim(x) ↔ Ord(x)∧¬Succ(x)∧x� ∅

j) Consider the term ω=
⋂ {x|x is inductive}. Since M satisfies the axiom of infinity,

∃x∈M (x=ω)M .

Take x0∈M such that (x0 = ω)M. Then (Lim(x0))
M, (∀y ∈ x0¬Lim(y))M. By definiteness,

Lim(x0), ∀y ∈ x0 ¬Lim(y), i.e. x0 is equal to the smallest limit ordinal ω. Hence ω ∈ M .
The formula “x is inductive” has the form

∅∈x∧∀y ∈x
⋃

{y, {y}}∈x

and is definite by previous considerations. Now

ωM = (
⋂

{x|x is inductive})M
= ({y |∀x(x is inductive→ y ∈x)})M
= {y ∈M |∀x∈M (x is inductive→ y ∈x)}, since “x is inductive” is definite,

=
⋂

{x∈M |x is inductive}
=

⋂

{x∩ω |x∈M is inductive}, since ω ∈M,

=
⋂

{ω}, since ω is the smallest inductive set,

= ω.

�

We may view this theorem as a “definite” form of the ZF−-axioms: common notions and
terms of set theory and mathematics are definite, and natural operations lead to further
definite terms. Since the recursion principle is so important, we shall need a definite recur-
sion schema:
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Theorem 31. Let G(w, yK ) be a definite term, and let F (α, yK ) be the canonical term
defined by ∈ -recursion with G:

∀xF (x, yK )=G({(z, F (z, yK ))|z ∈x}, yK ).

Then the term F (x, yK ) is definite.

Proof. Let M be a transitive ZF−-model. By the recursion theorem, F is a total function
in V and in M :

∀x, yK ∈M FM(x, yK )∈M.

Assume that x were ∈ -minimal such that FM(x, yK ) � F (x, yK ). Then we get a contradic-
tion by

FM(x, yK ) = GM({(z, FM(z, yK ))|z ∈x}, yK )

= GM({(z, F (z, yK ))|z ∈x}, yK ), by the minimality of x,

= G({(z, F (z, yK ))|z ∈x}, yK ), by the definiteness of G,

= F (x, yK ).

�

Lemma 32. rank(x) is a definite term.

Proof. rank(x) =
⋃ {rank(y)+ 1|y ∈x}=G(rank ↾x) with the definite recursion rule

G(f)= {f(z)+ 1|z ∈ dom(f)} �

Theorem 33. Let G(w, yK ) be a definite term and let R(z, x) be a strongly wellfounded
relation such that the term {z |zRx} is definite. Let F (α, yK ) be the canonical term defined
by R-recursion with G:

∀xF (x, yK )=G({(z, F (z, yK ))|zRx}, yK ).

Then the term F (x, yK ) is definite.

Proof. Let M be a transitive ZF−-model. By the recursion theorem, F is a total function
in V and in M :

∀x, yK ∈M FM(x, yK )∈M.
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Assume that x were R-minimal such that FM(x, yK ) � F (x, yK ). Then we get a contradic-
tion by

FM(x, yK ) = GM({(z, FM(z, yK ))|(zRx)M}, yK )

= GM({(z, FM(z, yK ))|zRx}, yK ), by the assumptions on R,

= GM({(z, F (z, yK ))|zRx}, yK ), by the minimality of x,

= G({(z, F (z, yK ))|zRx}, yK ), by the definiteness of G,

= F (x, yK ).

�

Also other kinds of recursions lead from definite recursion rules to definite functions.

Note that not every important notion is definite. For the powerset operation we have
PM(x) = P(x) ∩M . If M does not contain all subsets of x then PM(x) � P(x). We shall
later produce countable transitive models M of ZF− so that PM(ω) � P(ω), and we thus
prove that P(x) is not definite. Obviously the construction of models of set theory is espe-
cially geared at exhibiting the indefiniteness of particular notions.

Exercise 5. Show that (x, y), x× y, f ↾x are definite terms.

Exercise 6. Show that TC(x) is a definite term.

Exercise 7. Show that the term Vn for n < ω is definite. Show that the term Vω is definite.

Lemma 34. The following modeltheoretic notions are definite:

a) the term Fml of all formalised ∈ -formulas;

b) the term Asn(M);

c) the formula “ (M,E)� ϕ[b]” in the variables M,E, ϕ, b.

Proof. a) and c). Fml and � are defined by recursion on the relation

yRx↔∃u, v (x= (u, y, v)∨x=(u, v, y)).

Then

{y |yRx}= {y ∈TC(x)|∃u, v ∈TC(x) (x=(u, y, v)∨x= (u, v, y))}

is definite. Therefore the characteristic function of Fml is definite as well as the term

Fml= {x∈Vω|x∈Fml}.

By Theorem 33 on definite recursions, Fml and � are definite.
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b) Define by definite recursion Asn0(M) = {∅} and

Asnn+1(M) =Asnn(M)∪{ax
n
|a∈Asnn(M )∧x∈M }.

Asnn(M) is a definite term, and Asn(M)=
⋃ {Asnn(M)|n∈ω} is also definite. �

The Constructible Hierarchy

We define the inner model L of set theory which was introduced by Kurt Gödel. The
study of L strongly uses the theory of absolute and definite notions.

Definition 35. The definable powerset of x is

Def(x)= {I(x, ϕ, b)|ϕ∈Fml∧ b∈Asn(x)}.

Lemma 36. I(x, ϕ, b) and Def(x) are definite.

Definition 37. The constructible hierarchy (Lα)α∈Ord is defined recursively:

− L0 = ∅

− Lα+1 =Def(Lα)

− for limit ordinals λ, Lλ=
⋃

α<λ
Lα

The constructible universe or constructible model is the class

L=
⋃

α∈Ord

Lα .

We state some properties of the constructible hierarchy.

The recursive and definite definition of the Lα-hierarchy implies immediately:

Theorem 38. The term Lα is definite.

The hierarchy satisfies natural hierarchical laws.

Theorem 39.

a) α6 β implies Lα⊆Lβ
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b) Lβ is transitive

c) Lβ ⊆Vβ

d) α< β implies Lα∈Lβ

e) Lβ ∩Ord= β

f ) β6ω implies Lβ =Vβ

g) β>ω implies card(Lβ)= card(β)

Proof. By induction on β ∈ Ord, and along a) − g). The case β = 0 is trivial. Let β > 0
and assume that a)− g) hold for δ < β. We first show a)− f) at β. The continuity of the
L-hierarchy at limit ordinals immediately yields a)− f) at limit ordinals.

So consider the case β= γ+ 1.

a) It suffices to show that Lγ ⊆Lβ . Let x∈Lγ . By b), Lγ is transitive and x⊆Lγ . Hence

x= {v ∈Lγ |v ∈x}= {v ∈Lγ |(Lγ ,∈ )� (v ∈w)
x

w
}= I(Lγ , v ∈w, x)∈Lγ+1 =Lβ .

b) Let x∈Lβ . Let x= I(Lγ , ϕ, pK ). Then by a) x⊆Lγ ⊆Lβ .
c) By induction hypothesis,

Lβ =Def(Lγ)⊆P(Lγ)⊆P(Vγ)=Vγ+1 =Vβ .

d) It suffices to show that Lγ ∈Lβ .

Lγ = {v ∈Lγ |v= v}= {v ∈Lγ |(Lγ ,∈ ) � v= v}= I(Lγ , v= v, ∅)∈Lγ+1 =Lβ .

e) Lβ ∩Ord⊆ Vβ ∩Ord = β. For the converse, let δ < β. If δ < γ the inductive hypothesis
yields that δ ∈ Lγ ∩ Ord ⊆ Lβ ∩ Ord. Consider the case δ = γ. We have to show that γ ∈
Lβ . There is a formula ϕ(v) which formalises being an ordinal where all quantifiers in ϕ

are bounded. Then if z is transitive

∀v ∈ z (v ∈Ord↔ ϕz(v)).

By induction hypothesis

γ = {v ∈Lγ |v ∈Ord}
= {v ∈Lγ |(Lγ ,∈ )� ϕ(v)}
= I(Lγ , ϕ, ∅)
∈ Lγ+1 = Lβ .
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f) Let β < ω. By c) it suffices to see that Vβ ⊆ Lβ . Let x ∈ Vβ . By induction hypothesis,
Lγ = Vγ . x⊆Vγ =Lγ . Let x= {x0,� , xn−1}. Then

x = {v ∈Lγ | v=x0∨ v=x1∨� ∨ v= xn−1}
= {v ∈Lγ | (Lγ ,∈ )� (v= v0∨ v= v1∨� ∨ v= vn−1)

x0x1� xn−1

v0 v1� vn−1
}

= I(Lγ , (v= v0∨ v= v1∨� ∨ v= vn−1), x0, x1,� , xn−1)

∈ Lγ+1 = Lβ .

Finally we prove g) for β limit or successor ordinal >ω :

card(β) 6 card(Lβ), by e),

6 card({I(Lδ, ϕ, a)|δ < β ∧ ϕ∈Fml∧ a∈Asn(Lδ)})
6

∑

δ<β

(card(Fml) · card(<ωLδ))

6
∑

δ<β

(card(Fml) · card(Lδ)
<ω)

6
∑

δ<β

(ℵ0 · card(Lδ))

6
∑

δ<β

(ℵ0 · card(δ))

6 ℵ0 · card(β) · card(β)

= card(β), since β is infinite.

�

The properties of the constructible hierarchy imply immediately:

Theorem 40.

a) L is transitive.

b) Ord⊆L.

Theorem 41. ZFL.

Proof. By Theorem 2 we only have to check certain closure properties of L.

Extensionality holds in L, since L is transitive.

Pairing : Let x, y ∈ L. It suffices to see that {x, y} ∈ L. Take α ∈Ord such that a, b ∈ Lα.
Then

{x, y} = {v ∈Lα |v=x∨ v= y}
= {v ∈Lα |(Lα,∈ )� (v0 = v1∨ v0 = v2)[(v, x, y,� )]}
= I(Lα, ⌈v0 = v1∨ v0 = v2⌉, (0, x, y))
∈ Lα+1⊆L.
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Union : Let x ∈ HOD. It suffices to see that
⋃

x ∈ L. Take α ∈ Ord such that x ∈ Lα.
Then

⋃

x = {v ∈Lα |∃v2(v ∈ v2∧ v2∈x)}
= {v ∈Lα |(Lα,∈ )� ∃v2(v0∈ v2∧ v2∈ v1)[v, x]}
= I(Lα, ⌈∃v2(v0∈ v2∧ v2∈ v1)⌉, 0, x)
∈ Lα+1⊆L.

Powerset : Let x∈L. It suffices to see that P(x)∩L∈L. P(x)∩L is a set by the powerset
axiom in V . Take α∈Ord such that P(x)∩L⊆Lα . In particular x∈Lα . Then

P(x)∩L = {v ∈Lα |v⊆ x}
= {v ∈Lα |∀v2(v2∈ v→ v2∈x)}
= {v ∈Lα |(Lα,∈ ) �∀v2(v2∈ v0→ v2∈ v1)[v, x]}
= I(Lα, ⌈∀v2(v2∈ v0→ v2∈ v1)⌉, 0, x)
∈ Lα+1⊆L.

ω ∈L implies that Infinity holds in L.

Separation : Let ϕ(v0, v1, � , vn−1) be an ∈ -formula and a, w1, � , wn−1 ∈ L. It suffices to

see that {v0 ∈ a|ϕL(v0, w1, � , wn−1)} ∈ L. By reflection take α ∈ Ord such that a, w1, � ,
wn−1∈Lα and such that ϕ is Lα-L-absolute. Then

{v0∈ a|ϕL(v0, w1,� , wn−1)} = {v0∈ a|ϕLα(v0, w1,� , wn−1)}
= {v0∈Lα|(v0∈ a∧ ϕ(v0, w1,� , wn−1))

Lα}
= {v ∈ Lα|(Lα, ∈ ) �

⌈

v0 ∈ vn ∧ ϕ(v0, v1, � , vn−1)
⌉

[v, w1, � ,
wn−1, a]}

= I(Lα,
⌈

v0∈ vn∧ ϕ(v0, v1,� , vn−1)
⌉

, v, w1,� , wn−1, a}
∈ Lα+1

Replacement : Let ϕ(u, v, wK ) be an ∈ -formula and a, yK ∈ L . Assume that ϕ(u, v, yK )
defines a function in L, i.e.

∀u∈L∀v, v ′∈L(ϕL(u, v, yK )∧ ϕL(u, v ′, yK )→ v= v ′).

It suffices to show that

{v ∈L |∃u∈ aϕL(u, v, yK )}∈L.

By the replacement schema in V choose θ0∈Ord such that

{v ∈L |∃u∈ aϕL(u, v, yK )}⊆Lθ0 .
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By the Levy reflection theorem choose a limit ordinal θ > θ0 such that ϕ is absolute
between Lθ and L. Then

{v ∈L |∃u∈ aϕL(u, v, yK )} = {v ∈Lθ |∃u∈ aϕL(u, v, yK )}
= {v ∈Lθ |∃u∈ aϕLθ(u, v, yK )}
= {v ∈Lθ |(∃u∈ aϕ(u, v, yK ))Lθ}∈Lθ+1⊆L.

Foundation holds in L since L is an ∈ -model. �

The same techniques yield:

Lemma 42. If θ is a regular cardinal >ω then (ZF−)Lθ.

Proof. Extensionality, Pairing, Union, Infinity, Separation and Foundation are checked
just as in the previous theorem. For Replacement consider an ∈ -formula ϕ(u, v, wK ) and
a, yK ∈Lθ . Assume that ϕ(u, v, yK ) defines a function in Lθ, i.e.

∀u∈Lθ∀v, v ′∈Lθ (ϕLθ(u, v, yK )∧ ϕLθ(u, v ′, yK )→ v= v ′).

It suffices to show that

{v ∈Lθ |∃u∈ aϕLθ(u, v, yK )}∈Lθ .

Since card(a)<θ and θ is regular, take θ0<θ such that

{v ∈Lθ |∃u∈ aϕLθ(u, v, yK )}⊆Lθ0 .

Transfering the proof of the Levy reflection theorem from the constructible hierarchy to
the limited hierarchy (Lα)α<θ one obtains a limit ordinal θ1 ∈ (θ0, θ) such that ϕ is abso-
lute between Lθ1 and Lθ. Then

{v ∈Lθ |∃u∈ aϕLθ(u, v, yK )} = {v ∈Lθ1 |∃u∈ aϕLθ(u, v, yK )}
= {v ∈Lθ1 |∃u∈ aϕLθ1(u, v, yK )}
= {v ∈Lθ1 |(∃u∈ aϕ(u, v, yK ))Lθ1}∈Lθ1+1⊆Lθ .

�

Exercise 8. Prove that every Lα is closed under the operations

a) x, y� x∪ y, x∩ y, x \ y

b) x� ⋃

x
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c) x� TC(x), where TC(x) is the transitive hull of x .

Exercise 9. Assume that (Wα|α∈Ord) is a continuous hierarchy. Prove

∀a⊆
⋃

α∈Ord

Wα ∃θ a⊆Wθ .

Wellordering L

We shall now prove an external choice principle for the constructible sets. This will be
internalized through the axiom of constructibility . Every constructible set x is an interpre-
tation

x= I(Lα, ϕ, a)

and we say that (Lα, ϕ, a) is a name for x.

Definition 43. Define the class of constructible names as

L̃= {(Lα, ϕ, a)|α∈Ord, ϕ∈Fml, a∈Asn(Lα)}.

This class has a natural stratification

L̃α= {(Lβ , ϕ, a)∈ L̃ |β <α} for α∈Ord.

A location of the form (Lα, ϕ, pK ) is called an α-location.

Definition 44. Define wellorders <α of Lα and <̃
α
of L̃α by interleaved recursion on α.

− <0 = <̃0 = ∅ is the trivial wellorder on L0 = L̃0 = ∅;

− if <α is a wellordering of Lα then define <̃
α+1

on L̃α+1 by:

(Lβ , ϕ, a)<̃α+1(Lγ , ψ, b) iff

(β < γ) or (β= γ ∧ ϕ<Fml ψ) or

(β = γ ∧ ϕ= ψ ∧max (dom(a))<max (dom(b)) or

(β = γ ∧ ϕ = ψ ∧ max (dom(a)) = max (dom(b)) ∧ ∃n ∈ dom(b)(a ↾ n = b ↾ n ∧ (n ∈
dom(a)→ a(n)<β b(n)))));

− if <̃
α+1

is a wellordering on L̃α+1 then define <α+1 on Lα+1 by:

y <α+1 z iff there is a name for y which is <̃α+1-smaller then every name for z.

− for limit λ, let <λ=
⋃

α<λ
<α and <̃λ=

⋃

α<λ
<̃α .~
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This defines two hierarchies of wellorderings linked by the interpretation function I.

Theorem 45.

a) <α and <̃α are well-defined

b) <̃α is a wellordering of L̃α

c) <α is a wellordering of Lα

d) β <α implies that <̃β is an initial segment of <̃α

e) β <α implies that <β is an initial segment of <α

Proof. By induction on α∈Ord. �

We can thus define wellorders <L and <̃ of L and L̃ respectively:

<L=
⋃

α∈Ord

<α and <̃=
⋃

α∈Ord

<̃α

Theorem 46. <L is a wellordering of L.

We also note:

Theorem 47. The terms <α and <̃α are definite.

The axiom of constructibility

The previous section shows that L can be wellordered from the position of the settheoret-
ical universe V . This does not automatically imply that such a wellorder can be defined
within L. We now show that the development so far can also be carried out within L so
that L can define a wellordering of L. Technically that is expressed by the following
axiom:

Definition 48. The axiom of constructibility is the property V =L.

It states that every set in the universe is a constructible set. This property is not univer-
sally true, but it holds within the model L itself. The proof is based on the definiteness of
the term Lα .
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Theorem 49. (ZF−) The axiom of constructibility holds in L. This can be also written as

(V =L)L or L=LL.

Proof. The formula x∈Lα is definite since Lα is definite. Then L=
⋃

α∈Ord
Lα implies

∀x∈L∃α∈Ordx∈Lα
∀x∈L∃α∈L(α∈Ord∧ x∈Lα)
∀x∈L∃α∈L((α∈Ord)L∧ (x∈Lα)L)

∀x∈L∃α∈L((α∈Ord)L∧ (x∈Lα)L)

(∀x∃α x∈Lα)L

(∀xx∈L)L

(V =L)L. �

By Lemma 42, if θ is a regular cardinal > ω then (ZF−)Lθ. This allows to transfer the
above proof to Lθ .

Lemma 50. If θ is a regular cardinal >ω then (V =L)Lθ.

Theorem 51. (ZF−) The axiom of choice holds in L: ACL.

Proof. Work inside the model L. By Theorem 46, <L is a wellorder of L. By the pre-
vious theorem, V = L, and so <L is a wellorder of V . This implies that every set can be
wellordered. �

So we obtain the desired

Theorem 52. (ZF) The theory ZFC holds in L.

We obtain the obvious axiomatic consequences:

Theorem 53. (Kurt Gödel) If the theory ZF is consistent then the theory ZF+ V = L

is also consistent.

Theorem 54. (Kurt Gödel) If the theory ZF is consistent then the theory ZFC=ZF+
AC is also consistent.

The model L is a minimal model of set theory:

34



Theorem 55. L is the ⊆ -smallest transitive class M such that Ord⊆M and (ZF−)M.

Proof. Let M be transitive, Ord ⊆M , and (ZF−)M. Since Lα is a definite term, ∀αLα ∈
M . The transitivity of M implies ∀αLα⊆M . Hence L=

⋃

α∈Ord
Lα⊆M . �

Skolem hulls

Theorem 56. (Downward Löwenheim-Skolem Theorem, ZFC) Let X ⊆M � ∅ be sets.
Then there exists N ⊆M such that

a) X ⊆N and card(N)6 card(X)+ℵ0 ;

b) every ∈ -formula is N-M-absolute.

Proof. Take a wellorder ≺ of M . Define a Skolem function S:Fml×Asn(M),

S(ϕ, a) =

{

the ≺ smallest element of I(M, ϕ, a), if this exists,
m0 , else,

where m0 is some fixed element of M . Intuitively, S(ϕ, a0, a1, � , ak−1) is the ≺ -smallest
element z ∈M such that M � ϕ(z, a1,� , ak−1), if such a z exists.

Define N0 =X, N1, N2,� recursively:

Nn+1 =Nn∪S[Fml×Asn(Nn)],

and let N =
⋃

n<ω
Nn .

We show inductively that card(Nn)6 card(X) +ℵ0 :

card(Nn+1) 6 card(Nn)+ card(Fml×Asn(Nn))

6 card(Nn)+ card(Fml) · card(<ωNn)

6 card(Nn)+ℵ0 · card(Nn)
<ω

6 card(X)+ℵ0 +ℵ0 · (card(X)+ℵ0), by inductive assumption,

6 card(X)+ℵ0 .

Hence

card(N) 6
∑

n<ω

card(Nn) 6
∑

n<ω

(card(X)+ℵ0) =ℵ0 · (card(X) +ℵ0)= card(X)+ℵ0 .
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We prove the N -M -absoluteness of the ∈ -formula ϕ by induction on the complexity of ϕ.
The cases ϕ≡ v0 = v1 and ϕ≡ v0 ∈ v1 are trivial. The induction steps for ϕ≡ ϕ0 ∨ ϕ1 and
ϕ≡ ¬ϕ0 are easy. Finally consider the formula ϕ≡ ∃v0 ψ(v0, v1, � , vk−1). Consider a1, � ,
ak−1∈N . The Skolem value u=S(⌈ψ⌉, a1,� , ak−1) is an element of N . Then

(∃v0 ψ(v0, a1,� , ak−1))
N → ∃v0∈NψN(v0, a1,� , ak−1)

→ ∃v0∈NψM(v0, a1,� , ak−1), by the inductive assumption,

→ ∃v0∈MψM(v0, a1,� , ak−1)

→ (∃v0 ψ(v0, a1,� , ak−1))
M.

Conversely assume that (∃v0 ψ(v0, a1,� , ak−1))
M . Then I(M, ⌈ψ⌉, a1,� , ak−1)� ∅ and z=

S(⌈ψ⌉, a1,� , ak−1) is the ≺ -smallest element of M such that ψM(z, a1,� , ak−1). The con-

struction of N implies that z ∈ N . By induction hypothesis, ψN(z, a1, � , ak−1). Hence
∃v0∈NψN(z, a1,� , ak−1)≡ (∃v0 ψ(v0, a1,� , ak−1))

N. �

Note that this proof has some similarities with the proof of the Levy reflection principle.
Putting X = ∅ the theorem implies that every formula that has some infinite model M has
a countable model N . E.g., the formula “there is an uncountable set” has a countable
model. This is the famous Skolem paradox. As a prepartation for the forcing method we
also want the countable structure to be transitive.

Theorem 57. Assume (Extensionality)N. Then there is a transitive N̄ and π: N ↔ N̄

such that π is an ∈ -isomorphism, i.e. ∀x, y ∈N (x∈ y↔ π(x)∈π(y)). Moreover, N̄ and π
are uniquely determined by N. π and N̄ are called the Mostowski transitivisation or col-
lapse of N.

Proof. Define π:N→V recursively by

π(y)= {π(x)|x∈ y ∩N }.

Set N̄ =π[N ].

(1) N̄ is transitive.
Proof . Let z ∈π(y)∈ N̄ . Take x∈ y ∩N such that z=π(x). Then z ∈π[N ] = N̄ . qed(1)

(2) π:N↔ N̄ .
Proof . It suffices to show injectivity. Assume for a contradiction that z ∈ N̄ is ∈ -minimal
such that there are y, y ′ ∈ N , y � y ′ with z = π(y) = π(y ′). (Extensionality)N implies
(∃x(x ∈ y↔ x � y ′))N. Take x ∈ N such that x ∈ y↔ x � y ′. We may assume that x ∈ y
and x � y ′. Then π(x) ∈ π(y) = π(y ′). According to the definition of π take x′ ∈ y ′ ∩ N
such that π(x) = π(x′). By the minimality of z, x= x′. But then x= x′∈ y ′, contradiction.
qed(2)
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(3) π is an ∈ -isomorphism.
Proof . Let x, y ∈ N . If x ∈ y then π(x) ∈ π(y) by the definition of π. Conversely assume
that π(x) ∈ π(y). By the definition of π take x′ ∈ y ∩ N such that π(x) = π(x′). By (2),
x= x′ and so x∈ y. qed(3)

To show uniqueness assume that Ñ is transitive and π̃ : N ↔ Ñ is an ∈ -isomorphism.
Assume that y ∈ N is ∈ -minimal such that π(y) � π̃(y). We get a contradiction by

showing that π(y) = π̃(y). Consider z ∈ π̃(y). The transitivity of Ñ implies z ∈ Ñ . By the
surjectivity of π̃ take x∈N such that z = π̃(x). Since π̃ is an ∈ -isomorphism, x∈ y. And
since π is an ∈ -isomorphism, π(x) ∈ π(y). By the minimality of y, π(x) = π̃(x). Hence
z = π̃(x) = π(x) ∈ π(y). Thus π̃(y)⊆ π(y). The converse can be shown analogously. Thus
π(y)= π̃(y), contradiction. �

It is easy to see that ∈ -isomorphisms preserve the truth of ∈ -formulas.

Lemma 58. Let π: N ↔ N̄ be an ∈ -isomorphism. Let ϕ(v0, � , vn−1) be an ∈ -formula.
Then

∀v0,� , vk−1∈N (ϕN(v0,� , vk−1)↔ ϕN̄(π(v0),� , π(vk−1))).

Lemma 59. (ZFC) Let ϕ0,� , ϕn−1 be ∈ -formulas without free variables with are true in

V. Then there is a countable transitive set N̄ such that ϕ0
NK ,� , ϕn−1

N̄ .

Proof. We may assume that ϕ0 is the extensionality axiom. By the Reflection Theorem 7

we can take θ ∈Ord such that ϕ0
Vθ, � , ϕn−1

Vθ . By Theorem 56 there is a countable N such
that all ∈ -formulas as N -Vθ-absolute. In particular ϕ0

N ,� , ϕn−1
N . By Theorem 57 there is

transitive set N̄ and an ∈ -isomorphism π: N ↔ N̄ . Then N̄ is countable. By Lemma 58
ϕ0
NK ,� , ϕn−1

N̄ . �

Theorem 60. If ZFC is consistent then the following theory is also consistent: ZFC +M

is countable and transitive + ZFCM, where M is some variable.

Proof. Assume that the theory ZFC+M is countable and transitive + ZFCM is inconsis-
tent. Then there is a finite sequence ϕ0,� , ϕn−1 of ZFC-axioms such that the theory

ϕ0,� , ϕn−1,M is countable and transitive, ϕ0
M ,� , ϕn−1

M

implies x� x. Work in ZFC. By Lemma 59 there is a countable transitive set N̄ such that

ϕ0
NK , � , ϕn−1

N̄ . Setting M = N̄ we get the contradiction x � x. Hence ZFC is inconsis-
tent. �

The consideration so far justify the following picture as a basis for further studies:
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(V ,∈ )

M

HOD

The argument of the Theorem can be extended to every ∈ -theory which extends ZFC,
like ZFC+CH or ZFC+¬CH.

Theorem 61. Let T be a theory in the language of set theory which extends ZFC.
Assume that T is consistent. Then the following theory is also consistent: T +M is count-
able and transitive + TM, where M is some variable.

The Continuum Hypothesis in L

Lemma 62. Let κ be an infinite cardinal. Then P(κ)∩L⊆Lκ+ and card(P(κ)∩L)6κ+.

Proof. Let z ∈ P(κ) ∩ L. Let θ > ω be regular such that z ∈ Lθ . By Lemmas 42 and 50,

(ZF−+ V =L)Lθ. By Theorem 56 take N ⊆Lθ such that

a) κ∪{z}⊆N and card(N) =κ ;

b) every ∈ -formula is N -Lθ-absolute.

Then (ZF− + V = L)N. Let π: N ↔ N̄ be the Mostowski transitivisation of N . Then

(ZF−+ V =L)N̄ . Let θ̄ =Ord∩ N̄ . θ̄ is a limit ordinal.

(1) N̄ ⊆Lθ̄ .
Proof . (V =L)N̄ implies
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(∀xx∈L)N̄ ,

(∀x∃α x∈Lα)N̄ ,

∀x∈ N̄ ∃α∈ N̄ ((α∈Ord)N̄ ∧ (x∈Lα)N̄),

∀x∈ N̄ ∃α∈ N̄ (α∈Ord∧ x∈Lα), by definiteness and since (ZF−)N̄ ,

∀x∈ N̄ ∃α∈ θ̄ x∈Lα , and so N̄ ⊆⋃

α<θ̄
Lα=Lθ̄ . qed(1)

(2) θ̄ < κ+.
Proof . card(θ̄ ) 6 card(N̄ ) = card(N)= κ. qed(2)

(3) π ↾κ= id ↾κ .
Proof . Note that κ⊆N . We prove by induction on ξ <κ that π(ξ)= ξ :

π(ξ) = {π(ζ)|ζ ∈ ξ ∩N }, by the proof of the Mostowski isomorphism theorem,

= {π(ζ)|ζ ∈ ξ}, since κ⊆N ,
= {ζ |ζ ∈ ξ}, by induction hypothesis,

= ξ .

qed(3)

(4) π(z) = z, since π(z)= {π(ζ)|ζ ∈ z ∩N }= {ζ |ζ ∈ z ∩N }= {ζ |ζ ∈ z}= z.

Thus z=π(z)∈ N̄ ⊆Lθ̄ ⊆Lκ+ . By Theorem 39, g) card(P(κ)∩L)6 card(Lκ+) =κ+. �

Theorem 63. (Kurt Gödel) ZFC+ V =L implies the generalised continuum hypothesis
GCH.

Proof. Assume ZFC + V = L. Let κ be an infinite cardinal. By the previous Lemma,
2κ= card(P(κ)) = (card(P(κ)∩L) 6κ+. �

Putting together this Theorem and Theorem 53 yields:

Theorem 64. (Kurt Gödel) If ZFC is consistent, then ZFC+GCH is consistent.

Extensions of Models of Set Theory

So far we have constructed and studied inner models , i.e. submodels of given models of
set theory. We shall now work towards extending models of set theory by the forcing
method of Paul Cohen. Cohen introduced these techniques to show the independence
of AC and CH from ZF.
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We shall work in the situation justified by Theorem 60: assume ZFC and ZFCM where M
is countable and transitive. Such an ∈ -structure (M, ∈ ) is called a ground model . We
intend to adjoin a generic set G to M so that the extension M [G] is again a model of
ZFC. Cohen proved the independence of CH by constructing a generic extension

M [G]�ZFC+¬CH.

As already said in the introduction the extension M ⊆ M [G] has some similarities to a
transcendental field extension k ⊆ k(a). The transcendental element a can be described in
the ground field k by a variable x; some properties of a can be described in k. That k(a)
is a field follows from the field axioms in k. The extension is generated by k and a: every
intermediate field K with k ⊆K ⊆ k(a) and a∈K satisfies K = k(a).

The settheoretic situation will be much more complicated than the algebraic analogue.
Whereas there is up to isomorphism only one transcendental field extension of transcen-
dence degree 1 we shall encounter a rich spectrum of generic extensions.

So fix the ground model M as above. We shall use sets G to determine extensions M [G].
G may be seen as the limit of a (countable) procedure in which more and more properties
of M [G] are being determinea or forced . Limits are often described by filters. Our G will
be a filter on a preordering (P ,6 ).

Definition 65. A partial order or a forcing is a tripel (P , 6 , 1P) such that (P , 6 ) is a
transitive and reflexive binary relation (a preordering) with a maximal element 1P . The
elements of P are called (forcing) conditions. We say that p is stronger than q iff p 6 q.
Conditions q0,� , qn−1 are compatible iff they have a common extension p6 q0,� , qn−1 .

An example of a forcing relation is Cohen forcing (P ,6 , 1P):

P =Fn(ω, 2,ℵ0)= {p|p:dom(p)→ 2∧ dom(p)⊆ω∧ card(dom(p))<ℵ0

consists of all partial functions from ω to 2. Cohen forcing will approximate a total func-
tion from ω to 2, i.e. a real number. The approximation of a total function is captured by
the forcing relation: a condition p is stronger than q iff the function p extends the func-
tion q:

p6 q iff p⊇ q.

Let 1P = ∅ be the function with the least information content. Two Cohen condition q1, q2
are compatible iff they are compatible as functions, i.e. if q1∪ q2 is a function.

Fix some forcing relation (P , 6 , 1P) ∈ M . It is important that the forcing relation is an
element of the ground model so that the ZFC-properties of M may be applied to P .
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Definition 66. G⊆P is a filter on P iff

a) 1P ∈G ;

b) ∀q ∈G∀p> q p∈G ;

c) ∀p, q ∈G∃r ∈G(r6 p∧ r6 q).

In the case of Cohen forcing, a filter is a system of pairwise compatible partial function
whose union is again a partial function from ω to 2. We shall later introduce generic fil-
ters which would make that union a total function.

Fix a filter G on P . We shall construct an extension M [G] which will satisfy some axioms
of ZFC. This will later be strengthened to generic extensions which satisfy all of ZFC.
Elements x∈M [G] will have names ẋ ∈M in the ground model; G allows to interpret ẋ as
x : x = ẋG. The crucial issue for computing the interpretation ẋG is to decide when ẏG ∈
ẋG. This shall be decided by the filter G. So the important information about ẋ is con-
tained in the set

{(ẏ , p)|p decides that ẏ ∈ ẋ}.

In the forcing method one identifies ẋ with that set:

ẋ= {(ẏ , p)|p decides that ẏ ∈ ẋ}.

This motivates the following interpretation function:

Definition 67. Define the G-interpretation ẋG of ẋ ∈ M by recursion on the strongly
wellfounded relation ẏ R ẋ iff ∃u (ẏ , u)∈ ẋ :

ẋG= {ẏG|∃p∈G (ẏ , p)∈ ẋ}.

Let

M [G] = {ẋG|ẋ ∈M }

be the extension of M by P and G.

We examine which settheoretic axioms hold in M [G].

Lemma 68. M [G] is transitive.

Proof. Let u∈ ẋG∈M [G]. Then u∈{ẏG|∃p∈G (ẏ , p)∈ ẋ}⊆M [G]. �
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Lemma 69. ∀ẋ ∈M rank(ẋG) 6 rank(ẋ).

Proof. By induction on the relation ẏ R ẋ iff ∃u (ẏ , u)∈ ẋ:

rank(ẋG) =
⋃

{rank(ẏG) + 1|∃p∈G (ẏ , p)∈ ẋ}
6

⋃

{rank(ẏ) + 1|∃p∈G (ẏ , p)∈ ẋ}, by inductive hypothesis,

6
⋃

{rank((ẏ , p))+ 1|(ẏ , p)∈ ẋ}
6

⋃

{rank(u)+ 1|u∈ ẋ}
= rank(ẋ).

�

To show that M [G]⊇M we define names for elements of M .

Definition 70. Define by ∈ -recursion the canonical name for x∈M:

x̌= {(y̌ , 1P) |y ∈x}.

Lemma 71. For x∈M holds x̌G=x. Hence M ⊆M [G].

Proof. By ∈ -induction.

x̌G = {ẏG|∃p∈G (ẏ , p)∈ ẋ}
= {y̌G|y ∈x}, by the definition of x̌ and since 1P ∈G,
= {y |y ∈x}, by inductive hypothesis,

= x.

�

Lemma 72. M [G]∩Ord=M ∩Ord.

Proof. Let α ∈M [G] ∩ Ord. Take ẋ ∈M such that ẋG = α . By Lemma 32, rank(u) is a
definite term. Hence rank(ẋ)∈M ∩Ord. Hence

α= rank(α)= rank(ẋG)6 rank(ẋ)∈M ∩Ord . �

To check that G∈M [G] we need a name for G.

Definition 73. Ġ= {(p̌ , p)|p∈P } is the canonical name for the filter on P.
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Lemma 74. Ġ ∈M and ĠH =H for any filter H on P.

Proof. The term x̌ in the variable x is definite since it is defined by a definite ∈ -recur-
sion. So (x̌ , x) and {(p̌ , p)|p ∈ P } are definite terms in the variables x and P resp. Then

P ∈M implies that Ġ ∈M . Moreover

ĠH = {p̌H |p∈H}= {p|p∈H }=H.

�

Theorem 75. M [G] is a model of Extensionality, Pairing, Union, Infinity, and Founda-
tion.

Proof. We employ the criteria of Theorem 2. Extensionality and Choice hold since M [G]
is a transitive ∈ -model.

Pairing: Let x, y ∈M [G]. Take names ẋ , ẏ ∈M such that x= ẋG, y= ẏG. Set

ż = {(ẋ , 1P), (ẏ , 1P)}.

Then

{x, y}= {ẋG, ẏG}= żG∈M [G].

Union: Let x∈M [G] and x= ẋG, ẋ ∈M . Set

ż = {(u̇ , r)|∃p, q ∈P ∃v̇(r6 p∧ r6 q∧ (u̇ , p)∈ v̇ ∧ (v̇ , q)∈ ẋ}.

The right-hand side is a definite term in the variables P , 6 , ẋ ∈ M , hence ż ∈ M . We
show that

⋃

x= żG.

Let u∈⋃

x. Take v ∈ x such that u∈ v ∈x= ẋG. Take v̇ ∈M and q ∈G such that (v̇ , q)∈
ẋ and v̇G = v. Take u̇ ∈M and p ∈ G such that (u̇ , p) ∈ v̇ and u̇G = u. Take r ∈ G such
that r6 p, q. By the definition of ż , (u̇ , r)∈ ż , and u= u̇G∈ żG since r ∈G.

Conversely let u ∈ żG. Take r ∈G and u̇ ∈M such that (u̇ , r)∈ ż and u= u̇G. By the defi-
nition of ż , take p, q ∈P and v̇ ∈M such that

r6 p∧ r6 q ∧ (u̇ , p)∈ v̇ ∧ (v̇ , q)∈ ẋ.

Then p, q ∈G and u= u̇G∈ v̇G∈ ẋG= x. Hence u∈⋃

x.

Infinity holds in M [G] since ω ∈M ⊆M [G]. �
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Problem 1. Do Powerset and Choice hold in M [G]?

Generic Filters and the Forcing Relation

If (ẏ , p) ∈ ẋ then p ∈ H → ẏH ∈ ẋH; so regardless of other aspects p “forces” that ẏ ∈ ẋ.
And if ẏH ∈ ẋH this is (leaving some technical issues aside) forced by some p ∈ H . We
want to generalise this phenomenon from the most fundamental of furmulas, v0∈ v1 , to all
∈ -formulas: consider a formula ϕ(v0,� , vn−1) and names ẋ0,� , ẋn−1 . We want a relation

p ϕ(ẋ0,� , ẋn−1)

such that

a) p  ϕ(ẋ0, � , ẋn−1) implies that M [H] � ϕ(ẋ0
H , � , ẋn−1

H ) for every appropriate filter
H on P with p∈H

b) if M [H ] � ϕ(ẋ0
H ,� , ẋn−1

H ) for some appropriate filter H on P with p∈H then there
is p∈H such that p ϕ(ẋ0,� , ẋn−1).

Let us continue the discussion with the vague notion of “appropriate filter”. By b), an
appropriate filter H has to decide every ϕ . There is r ∈H such that r ϕ or r¬ϕ:

{r ∈P |r ϕ or r¬ϕ}∩H � ∅;
We argue that the set D = {r ∈ P |r  ϕ or r  ¬ϕ} is a dense set in P . Let p ∈ P . Take
an appropriate filter H on P with p ∈H . Suppose that M [H ] � ϕ. By b) take some q ∈H
such that q  ϕ. By the compatibility of filter elements take r ∈ H such that r 6 p, q .
Then r ϕ and r ∈D. In case M [H ] �¬ϕ we similarly find r6 p, r ∈D.

It will turn out that the set D will be definable inside the ground model, thus D ∈ M .
Accordingly, a filter H on P will be appropriate if it intersects every D ∈ M which is a
dense subset of P . We now give rigorous definitions of appropriate filters and of the
forcing relation.

Definition 76. Let (P ,6 , 1P) be a forcing.

a) D⊆P is dense in P iff ∀p∈P ∃q ∈Dq6 p.

b) A filter G on P is M-generic iff D∩G� ∅ for every D ∈M which is dense in P.

If M [G] is an extension of M by an M-generic filter we call M [G] a generic extension.

For countable ground models we have
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Theorem 77. Let (P , 6 , 1P) be a partial order, let M be a countable ground model, and
let p∈P. Then there is an M-generic filter G on P with p∈G.

Proof. Take a wellorder ≺ of M in ordertype ω. Let (Dn|n < ω) be an enumeration of
all D ∈M which are dense in P . Define an ω-sequence p= p0 > p1 > p2 >� recursively:

pn+1 is the ≺ -smallest element of M such that pn+1 6 pn and pn+1∈Dn .

Then G= {p∈P |∃n<ω pn6 p} is as desired. �

Fix a ground model M and a partial order (P ,6 , 1P)∈M .

Definition 78. Let ϕ(ẋ0, � , ẋn−1) be a sentence of the forcing language, i.e. ϕ(v0, � ,
vn−1) is an ∈ -formulas and ẋ0, � , ẋn−1 ∈ M. For p ∈ P define p P

M ϕ(ẋ0, � , ẋn−1), p
forces ϕ(ẋ0,� , ẋn−1), iff for all M-generic filters G on M with p∈G :

ϕM [G](ẋ0
G,� , ẋn−1

G ).

If M or P are obvious from the context we also write P or  instead of P
M .

We shall state several properties of  . Some of the properties amount to a definition of
 ϕ by recursion on the complexity of ϕ which can be carried out inside the ground
model M .

Lemma 79.

a) If p ϕ and q6 p then q ϕ.

b) If p ϕ and ϕ implies ψ then p ψ.

c) If (ẏ , p)∈ ẋ and p∈P then p ẏ ∈ ẋ .

Proof. a) Let G∋ q be M -generic on P . Then p∈G. Hence M [G] � ϕ.

b) Let G∋ p be M -generic on P . Then M [G]� ϕ. Since ϕ implies ψ, also M [G]� ψ.

c) Let G∋ p be M -generic on P . Then

ẏG∈{u̇G|∃q ∈G (u̇ , q)∈ ẋ}= ẋG. �

For simplicity we assume that ∈ -formulas are only built from the connectives ∧ ,¬, ∀. We
want to show (recursively) that every ∈ -formula has the following property:
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Definition 80. The ∈ -formula ϕ(v0, � , vn−1) satisfies the forcing theorem iff the fol-
lowing hold:

a) The class

Forceϕ= {(p, ẋ0,� , ẋn−1)|p∈P ∧ ẋ0,� , ẋn−1∈M ∧ p ϕ(ẋ0,� , ẋn−1)}

is definable in M;

b) if M [G] is a generic extension and ẋ0, � , ẋn−1 ∈ M with M [G] � ϕ(ẋ0
G, � , ẋn−1

G )
then there is p∈G such that p ϕ(ẋ0,� , ẋn−1).

Lemma 81. Let ϕ(v0, � , vn−1) and ψ(v0, � , vn−1) be ∈ -formulas satisfying the forcing
theorem. Then we have for all names ẋ0,� , ẋn−1∈M

a) p (ϕ∧ ψ)(ẋ0,� , ẋn−1) iff p ϕ(ẋ0,� , ẋn−1) and p ψ(ẋ0,� , ẋn−1).

b) p¬ϕ(ẋ0,� , ẋn−1) iff ∀q6 p¬q ϕ(ẋ0,� , ẋn−1).

c) p∀v0ϕ(v0,ẋ1,� , ẋn−1) iff ∀ẋ0∈Mp ϕ(ẋ0,� , ẋn−1).

d) The formulas (ϕ∧ ψ), ¬ϕ, and ∀v0 ϕ satisfy the forcing theorem.

Proof. a) is immediate.

b) For the implication from left to right assume p  ¬ϕ(ẋ0, � , ẋn−1) and let q 6 p. If
q  ϕ(ẋ0, � , ẋn−1) then p  ϕ(ẋ0, � , ẋn−1). Take an M -generic G ∋ p. Then M [G] � ¬
ϕ(ẋ0

G,� , ẋn−1
G ) and M [G]� ϕ(ẋ0

G,� , ẋn−1
G ). Contradiction.

For the converse assume ¬p  ¬ϕ(ẋ0, � , ẋn−1). By the definition of  take an M -generic

G ∋ p such that M [G] � ϕ(ẋ0
G, � , ẋn−1

G ). Since ϕ satisfies the forcing theorem take r ∈ G
with r  ϕ(ẋ0, � , ẋn−1). Take q ∈ G such that q 6 p, r. Then q  ϕ(ẋ0, � , ẋn−1), and the
right-hand side of the equivalence is false.

c) is similar to the case a). The implication from left to right is immediate. For the con-
verse assume ∀ẋ0 ∈ M p  ϕ(ẋ0, � , ẋn−1). et G ∋ p be M -generic on P . Then ∀ẋ0 ∈
M M [G] � ϕ(ẋ0

G, � , ẋn−1
G ). Then M [G] � ∀v0ϕ(v0, ẋ1

G, � , ẋn−1
G ). Thus p  ∀v0ϕ(v0,ẋ1, � ,

ẋn−1).

d) The cases a) − c) contain definitions of Forceϕ∧ψ , Force¬ϕ , and Force∀v0ϕ on the basis
of definitions of Forceϕ and Forceψ . We now show b) of Definition 80 for ϕ ∧ ψ, ¬ϕ, and
∀v0 ϕ. So let M [G] be a generic extension.

ϕ ∧ ψ : Assume M [G] � (ϕ ∧ ψ)(ẋ0
G, � , ẋn−1

G ). Then M [G] � ϕ(ẋ0
G, � , ẋn−1

G ) and

M [G] � ψ(ẋ0
G,� , ẋn−1

G ). Since ϕ and ψ satisfy the forcing theorem, take p, q ∈G such that
p  ϕ(ẋ0, � , ẋn−1) and q  ψ(ẋ0, � , ẋn−1). Take r ∈ G with r 6 p, q. Then r  ϕ(ẋ0, � ,
ẋn−1), r ψ(ẋ0,� , ẋn−1), and r (ϕ∧ ψ)(ẋ0,� , ẋn−1).
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¬ϕ : Assume M [G]�¬ϕ(ẋ0
G,� , ẋn−1

G ). Define

D= {p∈P |p ϕ(ẋ0,� , ẋn−1) or ∀q6 p ¬q ϕ(ẋ0,� , ẋn−1)}.

Since Forceϕ is definable in M , we get D ∈M . It is easy to see that D is dense in P . By
the genericity of G take p ∈G ∩D. We cannot have p  ϕ(ẋ0, � , ẋn−1) because M [G] � ¬
ϕ(ẋ0

G, � , ẋn−1
G ). Hence ∀q 6 p ¬q  ϕ(ẋ0, � , ẋn−1). Then b) implies that p  ¬ϕ(ẋ0, � ,

ẋn−1).

∀v0 ϕ : Assume M [G]�∀v0 ϕ(v0, ẋ1
G,� , ẋn−1

G ). Define

D= {p∈P |∀ẋ0∈M p ϕ(ẋ0,� , ẋn−1) or ∃ẋ0∈Mp¬ϕ(ẋ0, ẋ1� , ẋn−1)}.

Then D ∈M since Forceϕ and Force¬ϕ are definable in M .

(1) D is dense in P .
Proof . Consider r ∈ P . If ∀ẋ0 ∈M r  ϕ(ẋ0, � , ẋn−1) then r ∈ D. Otherwise take ẋ0 ∈M
with ¬r  ϕ(ẋ0, � , ẋn−1). Take an M -generic filter H ∋ r such that M [H ] � ¬ϕ(ẋ0

G, � ,
ẋn−1
G ). Since ¬ϕ satisfies the forcing theorem, take s ∈ H with s  ¬ϕ(ẋ0, � , ẋn−1). Take
p∈H such that p6 r, s. Then p¬ϕ(ẋ0,� , ẋn−1) and p∈D. qed(1)

By the genericity of G take p∈G∩D. Assume for a contradiction that ∃ẋ0∈Mp¬ϕ(ẋ0,

ẋ1� , ẋn−1). Take ẋ0 ∈ M such that p  ¬ϕ(ẋ0, ẋ1� , ẋn−1). Since p ∈ G, M [G] � ¬ϕ(ẋ0
G,

ẋ1
G, � , ẋn−1

G ), contradicting the assumption of the quantifier case. So p is in the “other
half” of D, i.e. ∀ẋ0∈M p ϕ(ẋ0,� , ẋn−1). By c), p ∀v0 ϕ(v0, ẋ1,� , ẋn−1). �

The Atomic Case

The atomic case of the forcing theorem turns out more complicated than the cases that we
have considered so far. This is due to the hierarchical structure of sets. We treat the
equality case v1 = v2 as two inclusions v1⊆ v2 and v2⊆ v1 . The relation x1

G ⊆ x2
G is equiva-

lent to

{y1
G|∃s1∈G (y1, s1)∈x1}⊆{y2

G|∃s2∈G (y2, s2)∈x2}.

Lemma 82.

a) px1⊆x2 iff ∀(y1, s1)∈x1 (s1∈P→
D(y1, s1, x2):={q∈P |q6 s1→∃(y2, s2)∈x2(s2∈P ∧ q6 s2∧ q y1⊆ y2∧ q y2⊆ y1)}
is dense in P below p).

b) Forcev1⊆v2 is definable in M.

c) If x1
G⊆x2

G then there is p∈G such that p x1⊆x2 .
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Here we say that a set D⊆P is dense in P below p iff ∀p′ 6 p∃q6 q q ∈D.

Proof. Consider the relation

(q, y1, y2)R(p, x1, x2)↔ (y1∈ dom(x1)∨ y1∈ dom(x2))∧ (y2∈ dom(x1)∨ y2∈ dom(x2)).

(1) R is strongly wellfounded.
Proof . If (q, y1, y2)R(p, x1, x2) then

(rg(y1)< rg(x1)∨ rg(y1)< rg(x2))∧ (rg(y2)< rg(x1)∨ rg(y2)< rg(x2)),

and so max (rg(y1), rg(y2))<max (rg(x1), rg(x2)). Hence an infinite decreasing sequence in
R leads to an infinite decreasing sequence in Ord. qed(1)

By recursion on R define

S(p, x1, x2) ↔ ∀(y1, s1)∈x1 (s1∈P→
{q ∈P |q6 s1→∃(y2, s2)∈x2(s2∈P ∧ q6 s2∧S(q, y1, y2)∧S(q, y2, y1)}
is dense in P below p).

By a simultaneous induction on R we prove that (p  x1 ⊆ x2)↔ S(p, x1, x2) and proper-
ties a) and c). This also proves b).

a) Assume p x1⊆ x2 . Let (y1, s1)∈ x1 and s1∈ P . To show that D(y1, s1, x2) is dense in
P below p consider p ′ 6 p. It suffices to find q6 p′ with q ∈D(y1, s1, x2). Let G∋ p′ be M -
generic on P .

If ¬p′ 6 s1 then p′∈D(y1, s1, x2) and we can take q= p′.

So assume that p′6 s1 . Then s1, p∈G and

y1
G∈x1

G⊆x2
G= {y2

G|∃s2∈G (y2, s2)∈x2}.

Take (y2, s2)∈ x2 such that s2∈G and y1
G= y2

G. Then y1
G⊆ y2

G and y2
G⊆ y1

G. By the induc-
tive assumption c) take p′′, p ′′′ ∈ G such that p′′  y1 ⊆ y2 and p′′′  y2 ⊆ y1 . Take q ∈ G
such that q 6 p′, s2, p

′′, p ′′′. Then q 6 p′ 6 s1 , q 6 s2 , q  y1⊆ y2 , and q  y2⊆ y1 . Hence
q ∈D(y1, s1, x2).

Conversely assume the right-hand side of a). Let G∋ p be M -generic on P . We have show
that x1

G ⊆ x2
G, i.e. {y1

G|∃s1 ∈ G (y1, s1) ∈ x1} ⊆ {y2
G|∃s2 ∈ G (y2, s2) ∈ x2}. So let y1

G ∈ x1
G.

Take s1 ∈ G such that (y1, s1) ∈ x1 . Take p′ ∈ G, p ′ 6 p, s1 . The right-hand side of a)
implies that D(y1, s1, x2) is dense in P below p and thus below p′. By the inductive
assumption, D(y1, s1, x2) ∈M . By the genericity of G, take q ∈G, q 6 p′, q ∈D(y1, s1, x2).
By the definition of D(y1, s1, x2) take (y2, s2)∈x2 such that

s2∈P ∧ q6 s2∧ q y1⊆ y2∧ q y2⊆ y1 .
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Since q, s2∈G this implies y1
G⊆ y2

G, y2
G⊆ y1

G, and so

y1
G= y2

G∈x2
G.

Ror (q, y1, y2)R(p, x1, x2) the induction hypothesis implies that S(q, y1, y2) and S(q, y2, y1)
agree with q  y1⊆ y2 and q  y2⊆ y1 respectively. Now a) and the recursive definition of
S(p, x1, x2) agree and yield that

(p x1⊆x2)↔S(p, x1, x2).

c) Let M [G] be a generic extension such that M [G] �x1
G⊆x2

G. Set

D= {p∈P | p x1⊆x2

∨∃(y1, s1)∈x1 (s1∈P ∧∀q6 p

(q6 s1∧∀(y2, s2)∈x2((s2∈P ∧ q y1⊆ y2∧ q y2⊆ y1)→¬q6 s2)))}.

D ∈M since by the inductive assumption we may replace  in the definition of D by the
predicate S which is definable in M .

(2) D is dense in P .
Proof . Let r ∈ P . If r  x1⊆ x2 we are done. So assume ¬r  x1⊆ x2 . By the equivalence
in a) take (y1, s1) ∈ x1 such that s1 ∈ P and D(y1, s1, x2) is not dense in P below r. Take
p6 r such that ∀q6 p q � D(y1, s1, y2). q � D(y1, s1, y2) is equivalent to

q6 s1∧∀(y2, s2)∈x2(s2∈P ∧ q y1⊆ y2∧ q y2⊆ y1→¬q6 s2).

Hence p6 r is an element of D. qed(2)

By the M -genericity take p ∈ G ∩ D. We claim that p  x1 ⊆ x2 . If not then the alterna-
tive in the definition of D holds: take (y1, s1)∈x1 such that s1∈P and

∀q6 p (q6 s1∧∀(y2, s2)∈x2((s2∈P ∧ q y1⊆ y2∧ q y2⊆ y1)→¬q6 s2)). (5)

In particular for q= p we have

p6 s1∧∀(y2, s2)∈x2((s2∈P ∧ p y1⊆ y2∧ p y2⊆ y1)→¬p6 s2).

Then s1∈G and y1
G∈ x1

G⊆ x2
G= {y2

G|∃s2∈G (y2, s2)∈ x2}. Take (y2, s2)∈ x2 such that s2∈
G and y1

G = y2
G. Then y1

G ⊆ y2
G and y2

G ⊆ y1
G. Since c) holds at R-smaller triples, there are

q ′, q ′′ ∈ G such that q ′  y1 ⊆ y2 and q ′′  y2 ⊆ y1 . Take q ∈ G such that q 6 p, s2, q
′, q ′′.

Then (y2, s2) satisfies

s2∈P ∧ q y1⊆ y2∧ q y2⊆ y1∧ q6 s2 .
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But this contradicts (5). Hence p x1⊆x2 . �

We can now deal with the other atomic cases:

Lemma 83.

a) x= y satisfies the forcing theorem.

b) x∈ y satisfies the forcing theorem.

Proof. For a) observe that px= y iff px⊆ y and p y ⊆x .
b) We claim that p  x ∈ y iff D = {q 6 p|∃(u, r) ∈ y (q 6 r ∧ q  x = u)} is dense in P

below p.

Assume that p x∈ y. To prove the density of D consider s6 p. Take an M -generic filter
G on P with s∈G. s x∈ y and so xG ∈ yG= {uG|∃r ∈G(u, r)∈ y}. Take (u, r)∈ y such
that xG = uG and r ∈G. By the forcing theorem for equalities take t ∈G such that t x=
u. Take q ∈G such that q6 s, r, t. Then q6 p, q6 r, and q x=u. Hence q ∈D.

Conversely let D be dense in P below p. To show that p  x ∈ y let G be an M -generic
filter on P with p ∈G. By the genericity there is q 6 p such that q ∈G ∩D. Take (u, r) ∈
y such that q6 r∧ qx= u . Then r ∈G and xG=uG∈ yG.
Finally assume that xG ∈ yG. yG = {uG|∃r ∈G(u, r) ∈ y}. Take some (u, r) ∈ y such that
r ∈ G and xG = uG. By a) take s ∈ G such that s  x = u. Take p ∈ G such that p 6 r, s.
Then p x=u and p u∈ y. Hence p x∈ y. �

So we have proved the forcing theorem:

Theorem 84. For every ∈ -formula ϕ(v0,� , vn−1) the following hold:

a) The property pP
Mϕ(ẋ0,� , ẋn−1) is definable in M;

b) if M [G] � ϕ(ẋ0
G,� , ẋn−1

G ) in a generic extension M [G] then there is p ∈G such that
p ϕ(ẋ0,� , ẋn−1).

ZFC in M [G]

Let M [G] be a generic extension of the ground model M by the generic filter G on P ∈M .
We know already that M [G] is a model of Extensionality, Pairing, Union, Infinity, and
Foundation.

Theorem 85. M [G]�Separation
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Proof. Consider an ∈ -formula ϕ(x, wK ) and sets wK , a ∈ M [G]. It suffices to prove that

{x ∈ a|ϕM [G](x, wK )} ∈M [G]. Take names ẇK , ȧ ∈M such that ẇK G = wK and ȧG = a. Define
the name

ż = {(ẋ , p)|ẋ ∈ dom(ȧ)∧ p (ẋ ∈ ȧ ∧ ϕ(ẋ , ẇK ))}.

By the forcing theorem, ż ∈M . It suffices to show that żG= {x∈ a|ϕM [G](x, wK )}.
Consider x ∈ żG. Take (ẋ , p) ∈ ż such that p ∈G and x= ẋG. Then p (ẋ ∈ ȧ ∧ ϕ(ẋ , ẇK )).

By the definition of  , x= ẋG ∈ ȧG = a , ϕM [G](ẋG, ẇK G), and ϕM [G](x, wK ). Hence x ∈ {x ∈
a|ϕM [G](x, wK )}.
Conversely let x∈ {x∈ a|ϕM [G](x, wK )}. Take (ẋ , p′)∈ ȧ such that p′∈G and x= ẋG. Then

ϕM [G](ẋG, ẇK G). By the forcing theorem, take p′′ ∈ G such that p ′′  ϕ(ẋ , ẇK ). Take p ∈ G
such that p6 p′ and p6 p′′. Then

ẋ ∈ dom(ȧ)∧ p (ẋ ∈ ȧ ∧ ϕ(ẋ , ẇK ))

and

(ẋ , p)∈ ż .

Hence x= ẋG∈ żG. �

Theorem 86. M [G]�Power.

Proof. Let x ∈M [G]. It suffices to show that P(x) ∩M [G] ∈M [G]. Take a name x∈M˙
such that ẋG= x. Define the name

ż = {(ẏ , p)|ẏ ⊆ dom(ẋ)×P ∧ p ẏ ⊆ ẋ}.

By the forcing theorem and by the powerset axiom in M , ż ∈M . It suffices to show that
żG=P(x)∩M [G].

Consider y ∈ żG. Take (ẏ , p) ∈ ż such that y = ẏG and p ∈G. Then p  ẏ ⊆ ẋ and so y =
ẏG⊆ ẋG=x. Hence y ∈P(x)∩M [G].

Conversely let v ∈ P(x) ∩M [G]. Take v̇ ∈M such that v = v̇G and take q ∈ G such that
q v̇ ⊆ ẋ. Define

ẏ = {(u̇ , r)∈ dom(ẋ)×P |r6 q∧ q u̇ ∈ v̇ }.

(1) ẏG= v̇G.
Proof . Let u̇G∈ ẏG, (u̇ , r)∈ ẏ and r ∈G. Then r u̇ ∈ v̇ , and u̇G∈ v̇G. Conversely let u∈
v̇G⊆ ẋG. Then u= u̇G for some u̇ ∈ dom(ẋ). Since u̇G ∈ v̇G take r ∈G such that r6 q and
r u̇ ∈ v̇ . Then (u̇ , r)∈ ẏ and u= u̇G∈ ẏG. qed(1)
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Take p ∈G such that p ẏ = v̇ and p  v̇ ⊆ ẋ. Then p ẏ ⊆ ẋ and (ẏ , p) ∈ ż . Hence v =
v̇G= ẏG∈ żG. �

Theorem 87. M [G]�Replacement .

Proof. Consider an ∈ -formula ϕ(x, y, wK ) and sets wK , a ∈M [G]. Suppose that ϕ(x, y, wK )
is functional in M [G], i.e.,

M [G] �∀x, y, y ′(ϕ(x, y, wK )∧ ϕ(x, y ′, wK )→ y= y ′).

Take p∈G such that p ∀x, y, y ′(ϕ(x, y, wK )∧ ϕ(x, y ′, wK )→ y= y ′).

It suffices to prove that

{y |∃x∈ aϕM [G](x, y, wK )}∩M [G]∈M [G].

Take names ẇK , ȧ ∈ M such that ẇK G = wK and ȧG = a. Using replacement in the ground
model M take a set B ∈M such that

∀ẋ ∈ dom(ȧ)∀s∈P (∃ẏ ∈Ms ϕ(ẋ , ẏ , ẇK )→∃ẏ ∈Bs ϕ(ẋ , ẏ , ẇK )).

Define the name

ż = {(ẏ , p)|ẏ ∈B}∈M.

We claim that

{y |∃x∈ aϕM [G](x, y, wK )}∩M [G]⊆ żG.

Let x ∈ a such that ϕM [G](x, y, wK ). Take ẋ ∈ dom(ȧ) such that x = ẋG and take ẏ ∈M
such that y= ẏG. Take s∈G such that s ϕ(ẋ , ẏ , ẇK ). We may assume that s6 p. By the

choice of B there is u̇ ∈ B such that s  ϕ(ẋ , u̇ , ẇK ). Since s forces the functionality of ϕ
we have s ẏ = u̇. Hence y= ẏG= u̇G∈ żG.

But then separation in M [G] implies that

{y |∃x∈ aϕM [G](x, y, wK )}∩M [G] = {y |∃x∈ aϕM [G](x, y, wK )}∩ żG∈M [G]

as required. �

Theorem 88. M [G]�AC.
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Proof. Let x ∈ M [G]. It suffices to find a surjection f : α→ x′ ⊇ x, f ∈ M [G], α ∈ Ord.
Take a name ẋ ∈ M such that x = ẋG. Since AC holds in M , take a surjective g: α →
dom(ẋ), g ∈M , α∈Ord. Define f :α→ range(f) by

f(ξ)= g(ξ)G.

Note that the interpretation function ż � żG is defined by a definite recursion in the
parameter G. Hence it is definable within M [G] and f ∈ M [G], using replacement in
M [G]. To show that x⊆ range(f) consider y ∈ x. Take ẏ ∈ dom(ẋ) such that y= ẏG. Take
ξ <α such that g(ξ)= ẏ . Then

y= ẏG= g(ξ)G= f(ξ)∈ range(f).

�

Theorem 89. M [G] is the ⊆ -minimal transitive model of ZF− such that M ∪ {G} ⊆
M [G].

Proof. Assume that N is a transitive model of ZF− such that M ∪ {G} ⊆ N . Since the
interpretation function ż � żG is defined by a definite recursion in the parameter G, the
model N is closed under the interpretation function. This means that

M [G] = {żG|ż ∈M }⊆N.

�

Adding a Cohen real

To exclude trivial generic extensions of the form M [G] =M we define

Definition 90. A forcing (P , 6 , 1) is separative if ∀p ∈ P ∃q, r 6 p q⊥r where q⊥r
denotes that q and r are incompatible.

Most forcings are separative. As an example consider the Cohen forcing (P ,6 , 1)

P =Fn(ω, 2,ℵ0)= {p|p:dom(p)→ 2∧ dom(p)⊆ω∧ card(dom(p))<ℵ0}

with 6 =⊇ and 1 = ∅. Given p∈P take i∈ω \dom(p). Then

p∪{(i, 0)}6 p, p∪{(i, 1)}6 p, and p∪{(i, 0)}⊥ p∪{(i, 1)}.

Lemma 91. Let G be M-generic on the separative forcing (P , 6 , 1) ∈ M. Then G � M

and M [G]�M.
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Proof. Assume that G∈M . Define

D= {q ∈P |q � G}∈M.

(1) D is dense in P .
Proof . Let p∈P . By separativity take q, r6 p such that q⊥r . Since elements of the filter
G are pairwise compatible, q � G or r � G. Hence q ∈D or r ∈D. qed(1)

By the genericity of G, G ∩ D � ∅. But by the definition of D, G ∩ D = ∅. Contradic-
tion. �

We are now in a position to prove a first independence result using forcing.

Theorem 92. Let G be M-generic on the separative forcing (P , 6 , 1) ∈ M. Then the
axiom of constructibility does not hold in the generic extension: M [G]� V � L.
Proof. Assume that M [G] � V =L. Then M [G] � ∃α∈Ord G∈Lα . By the definiteness of
being and ordinal and of the term Lα there is α ∈M [G] ∩ Ord = M ∩ Ord such that G ∈
Lα . But then G∈Lα∈M , contradicting the previous Lemma. �

The previous considerations started from the theory ZFC + M is a ground model, i.e., a
countable transitive model of ZFC, and proved the existence of a model M [G] � ZFC + ϕ.
Assume that ZFC+ ϕ were inconsistent. Then ZFC+ ϕ implies a contradiction like 0 = 1.
Then ZFC + M is a ground model is inconsistent since it implies 0 = 1. By Theorem 61,
ZFC is inconsistent. By contraposition, the forcing construction leads to the following rel-
ative consistency result: if ZFC is consistent, then ZFC+ ϕ is consistent. Hence

Theorem 93. Assume that ZFC is consistent. Then ZFC+ V � L is consistent.

Lemma 94. Let T be a theory. T + ϕ is consistent iff T does not imply ¬ϕ.

Proof. Assume that T does imply ¬ϕ. Work in the theory T + ϕ. Then ¬ϕ and ϕ both
hold which is a contradiction. Thus T + ϕ is inconsistent.

Conversely assume that T + ϕ is inconsistent. Work in ZFC. Assume ϕ. By the inconsis-
tency assumption this implies a contradiction. Thus ϕ does not hold. So we have shown
that T implies ¬ϕ. �

Definition 95. A statement ϕ is independent from T if T does not imply ϕ and if T does
not imply ¬ϕ.

Theorem 96. Assume that ZFC is consistent. Then the axiom of constructibility is inde-
pendent from ZFC.
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Proof. Theorem 53 implies that ZFC + V = L is consistent, hence ZFC does not imply
V � L. Theorem 93 implies that ZFC does not imply V =L. �

Now consider Cohen forcing P = Fn(ω, 2, ℵ0) over the ground model M . Let G be M -
generic on P .

Lemma 97. The set

c=
⋃

G

is a Cohen real over M, i.e.,

a) c:ω→ 2;

b) the generic G can be defined from c as G= {p∈P |p⊆ c};

c) c � M.

Proof. a) We show that c is functional. Let (n, i), (n, j) ∈ c. Take p, q ∈G such that (n,
i) ∈ p and (n, j) ∈ q. Since G is a filter there is r ∈ G such that r 6 p, q. Then (n, i), (n,
j)∈ r. Since r is a function, i= j.

Hence c:dom(c)→ 2 where dom(c)⊆ω.
(1) dom(c) =ω.
Proof . We use a density argument which is typical for the analysis of forcing extensions.
Let n∈ω. Define

Dn= {p∈P |n∈ dom(p)}.

Obviously Dn∈M . We show that Dn is dense in P . Let q ∈P . If n∈ dom(q) then q ∈Dn.
Otherwise q∪{(n, 0)}6 q and q ∪{(n, 0)}∈Dn.

Since G is M -generic on P , G∩Dn� ∅. Take p∈G∩Dn. Then

n∈ dom(p)⊆ dom(c).

b) If q ∈G then q ⊆⋃

G= c. Conversely consider q ∈ P , q ⊆ c. For every assignment (n,
i) ∈ q take pn ∈G such that pn(n) = i. Since dom(q) is finite and since G is a filter we can
take p∈G such that ∀n∈ dom(q) p6 pn . Then ∀n∈ dom(q) p(n) = pn(n) = q(n) and p6 q.
Since G is upwards closed, q ∈G.
c) follows from b) since G � M . But we want to give another density argument. Consider
a real x∈M , x:ω→ 2. Define

Dx= {p∈P |p *x}.
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Dx ∈M since this is a definite definition from the parameter x ∈M . We show that Dx is
dense in P . Let q ∈ P . Since dom(q) is finite, take n ∈ ω \ dom(q). Then q ∪ {(n, 1 −
x(n))}6 q and q∪{(n, 1−x(n))}∈Dx .

Since G is M -generic on P , G ∩Dx � ∅. Take p ∈G ∩Dx . Then p * x. Take n ∈ dom(p)
such that p(n) � x(n). Then c(n) = p(n) � x(n) and so c � x. Since c is different from
every ground model real x we have that c � M . �

By b) the extension M [G] is also the ⊆ -smallest ZF−-extension of M which contains c.
So one can also write M [c] instead of M [G] and call it a Cohen extension.

Cohen reals are a very common component of forcing extensions. In the next section we
shall adjoin a great number of Cohen reals thereby violating the continuum hypothesis.
As a preparation we shall study some more properties of the present generic extension
M [G]. A lot of information can be decoded from (the bits of) a Cohen real and we shall
see an example now.

If we identify reals with characteristic functions on ω, R= ω2, then R∩M [G]⊇R∩M is a
proper transcendental field extension. We shall see that the adjunction of c makes the set
of ground model reals very small.

Definition 98. A set X ⊆ R has measure zero if for every ε > 0 there exists sequence
(In|n<ω) of intervals in R such that X ⊆⋃

n<ω
In and

∑

n<ω
length(In)6 ε .

Lemma 99. In the Cohen extension M [c] the set R∩M of ground model reals has mea-
sure zero.

Proof. For our purposes we define real intervals as follows: for s ∈ <ω2 = {t|t: dom(t)→
2∧ dom(t)∈ω} define the interval

Is= {x∈R|s⊆ x}⊆R

and define length(Is) = 2−dom(s). Note that Is = Is∪{(dom(s),0)} ∪ Is∪{(dom(s),1)} , length(R) =

I∅= 2−0 = 1, and length(Is∪{(dom(s),0)})= length(Is∪{(dom(s),1)})=
1

2
length(Is).

Let ε > 0 be given. We may assume that ε= 2−i. We shall extract intervals I0, I1, I2, � of
lengths 2−i−1, 2−i−2, 2−i−3,� from the Cohen real c. For n<ω define sn: i+n+ 1→ 2 by

sn(l) = c(n+ l).

Let In= Isn
. Then

∑

n<ω

length(In) =
∑

n<ω

2−i−n−1 = 2−i= ε.
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We show by a density argument that R∩M ⊆⋃

n<ω
In . Let x∈R∩M . Define

Dx= {p∈P |∃n<ω ∀l < i+n+ 1(n+ l∈ dom(p)∧ p(n+ l)= x(l))}∈M.

(1) Dx is dense in P .
Proof . Let q ∈P . Take n<ω such that dom(q)⊆ n. Set

p= q∪{(n+ l, x(l))|l < i+n+1}.

Then p6 q and p∈Dx . qed(1)

By the genericity of G take p∈G∩Dx . Take n<ω such that

∀l < i+n+1(n+ l∈ dom(p)∧ p(n+ l) =x(l)).

Then

∀l < i+n+1 c(n+ l) =x(l)

and

∀l < i+n+ 1 sn(l)= x(l).

Hence sn⊆x and x∈ In⊆
⋃

n<ω
In . �

It is conceivable that R ∩M becomes small in M [G] for trivial reasons, namely that R ∩
M is countable in M [G]. We shall however show that cardinalities are absolute between
M and M [G]. In particular R∩M is uncountable in M [G].

Definition 100. A forcing P preserves cardinals if for every generic extension M [G]⊇M
by P the following holds: every cardinal in M is a cardinal in M [G].

In the following simple arguments will be generalised later.

Lemma 101. Let M [G] be a generic extension by Cohen forcing P =Fn(ω, 2,ℵ0) and let
f :α→ β, f ∈M [G]. Then there is a function F :α→M, F ∈M such that

∀ξ <α (f(ξ)∈F (ξ)∧ cardM(F (ξ))6ℵ0).

Proof. Take a name ḟ ∈M such that f = ḟ
G. Take p ∈G such that p ḟ : α̌→ β̌ . In M ,

define F :α→M by

F (ξ)= {ζ < β |∃q6 p q ḟ (ξ̌ ) = ζ̌ }.
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Let ξ <α.

(1) f(ξ)∈F (ξ).
Proof . Let ζ = f(ξ). Take q ∈ G such that q  ḟ (ξ̌ ) = ζ̌ . We may assume that q 6 p.
Then ζ ∈F (ξ). qed(1)

(2) cardM(F (ξ))6ℵ0 .
Proof . For ζ ∈ F (ξ) choose qζ 6 p such that qζ  ḟ (ξ̌ ) = ζ̌ . If ζ , ζ ′ ∈ F (ξ) and qζ = qζ ′

then qζ  ζ̌ = ḟ (ξ̌ ) = ζ ′̌. Since ζ̌ and ζ ′̌ are canonical names this implies ζ = ζ ′. Thus the
function ζ� qζ is an injection of F (ξ) into the countable set P . �

Theorem 102. Cohen forcing P =Fn(ω, 2,ℵ0) preserves cardinals.

Proof. Let M [G] be a generic extension by Cohen forcing. Assume that κ > ω is not a
cardinal in M [G]. Take a surjective function f : α→ κ , f ∈M [G] with α < κ. By the pre-
vious Lemma take a function F :α→M , F ∈M such that

∀ξ <α (f(ξ)∈F (ξ)∧ cardM(F (ξ))6ℵ0).

Then κ⊆⋃

ξ<α
F (ξ) and

cardM(κ)6 cardM(
⋃

ξ<α

F (ξ))6
∑

ξ<α

cardM(F (ξ))6
∑

ξ<α

ℵ0 = cardM(α) · ℵ0 = cardM(α)<κ.

So κ is not a cardinal in M . �

Problem 2. Is R∩M meager in M [G], i.e., is it a union of countably many nowhere dense sets?

Models for ¬CH

We shall obtain ¬CH by adjoining κ Cohen reals to a ground model M where λ ∈ [ω2
M ,

Ord∩M). So define κ-fold Cohen forcing P =(P ,6 , 1)∈M by P =Fn(λ×ω, 2,ℵ0), 6 =
⊇ , and 1= ∅. Let G be M -generic on P . Let F =

⋃

G. Like Lemma 97a) one can show

(1) F :λ×ω→ 2.

We extract a sequence (cα|α<λ) of reals cα:ω→ 2 from F by:

cα(n) =F (α, n).

(2) α< β <λ→ cα� cβ .
Proof . Define

Dαβ= {p∈P |∃n<ω ((α, n)∈ dom(p)∧ (β, n)∈ dom(p)∧ p(α, n)� p(β, n))}∈M.

58



To prove that Dαβ is dense in P consider q ∈ P . Since q is finite take n < ω such that (α,
n) � dom(q) and (β, n) � dom(q). Then

p= q∪{((α, n), 0), ((β, n), 1)}6 q

and p∈Dαβ . By the M -genericity of G take p∈G∩Dαβ . Take n<ω such that

(α, n)∈ dom(p)∧ (β, n)∈ dom(p)∧ p(α, n)� p(β, n).

Then cα� cβ since

cα(n)=F (α, n)= p(α, n)� p(β, n)=F (β, n)= cβ(n).

qed(2)

So in M [G] there is an injection α� cα of λ into R and

cardM [G](R)> cardM [G](λ).

If we can show that cardinals are absolute between M and M [G] then this would yield ¬
CH in M [G] by

cardM [G](R)> cardM [G](λ) > cardM [G](ω2
M) = cardM [G](ω2

M [G])=ω2
M [G]

.

The proof of the absoluteness of cardinals is modeled after the proof of cardinal preserva-
tion for simple Cohen forcing. The countability of simple Cohen forcing is replaced by
the following combinatorial property of forcings:

Definition 103. Let Q = (Q, 6 , 1) be a forcing. A ⊆ Q is an antichain in Q if ∀p, q ∈
A(p � q→ p⊥ q). Q has the countable chain condition (ccc) if every antichain in Q is at
most countable.

To prove that Fn(λ×ω, 2,ℵ0) has the ccc we use the following.

Theorem 104. Let (ai|i < ℵ1) be a sequence of finite sets. Then there are Z ⊆ ℵ1 ,
card(Z)=ℵ1 and a finite set b such that (ai|i <Z) is a ∆-system with root b , i.e.,

∀i, j ∈Z (i� j→ ai∩ aj = b).

Proof. By the regularity of ℵ1 there is Z0⊆ℵ1 , card(Z0)=ℵ1 and a finite n<ω such that

∀i∈Z0 card(ai)=n.
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Take m 6 n maximal such that there is a set b with card(b) =m and Z1⊆ Z0 , card(Z1) =
ℵ1 such that

∀i∈Z1 b⊆ ai .

Such an m exists, since trivially ∀i∈Z0 ∅⊆ ai .
(1) For all u � b there is i(u)<ℵ1 such that ∀i∈Z1 (i > i(u)→u � ai),
because otherwise b∪{u} would contradict the maximality of m.

Define a strictly increasing sequence (iξ |ξ < ℵ1) of ordinals iξ ∈ Z1 by recursion: let iξ be
the minimal i∈Z1 such that ∀ζ < ξ ∀u∈ aζ \ b i > i(u).
(2) Z = {aiξ|ξ <ℵ1} is a ∆-system with root b .
Proof . Let ζ , ξ ∈Z, ζ < ξ. By the choice of Z1 we have b⊆ aiζ , b⊆ aiξ , and so aiζ∩ aiξ⊇ b.
For the converse consider u∈ aiζ ∩ aiξ . Assume for a contradiction that u � b. By construc-

tion iξ> i(u). Then (1) implies that u � aiξ . Contradiction, and so u∈ b. �

Theorem 105. Fn(λ×ω, 2,ℵ0) has the ccc.

Proof. Assume for a contradiction that {pi|i <ℵ1} is an antichain in Fn(λ× ω, 2,ℵ0) con-
sisting of pairwise distinct conditions. (dom(pi)|i < ℵ1) is a sequence of finite sets and by
the ∆-system theorem one can take a finite set b and Z ⊆ ℵ1 , card(Z) = ℵ1 such that
(dom(pi)|i < Z) forms a ∆-system with root b. Since there are only finitely many 0-1-
valued functions on the finite set b take a function q: b→ 2 and Z1⊆Z , card(Z1) =ℵ1 such
that

∀i∈Z1 pi ↾ b= q .

Take i, j ∈Z1 , i� j. Then dom(pi)∩ dom(pj) = b and pi ↾ b= pj ↾ b= q. Then pi and pj are
compatible in Fn(λ×ω, 2,ℵ0), contradiction. �

We extend the proof of Lemma 101 from countable forcing to ccc forcing.

Lemma 106. Let M [G] be a generic extension by some ccc forcing Q= (Q,6 , 1) and let
f :α→ β, f ∈M [G]. Then there is a function F :α→M, F ∈M such that

∀ξ <α (f(ξ)∈F (ξ)∧ cardM(F (ξ))6ℵ0).

Proof. Take a name ḟ ∈M such that f = ḟ
G. Take p ∈G such that p ḟ : α̌→ β̌ . In M ,

define F :α→M by

F (ξ)= {ζ < β |∃q6 p q ḟ (ξ̌ ) = ζ̌ }.

Let ξ <α. As before we see that
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(1) f(ξ)∈F (ξ).

(2) cardM(F (ξ))6ℵ0 .
Proof . For ζ ∈ F (ξ) choose qζ 6 p such that qζ  ḟ (ξ̌ ) = ζ̌ . Consider ζ , ζ ′ ∈ F (ξ), ζ � ζ ′

and assume for a contradiction that qζ and qζ ′ are compatible in Q. Take q ∈ Q, q 6 qζ ,

qζ ′ . Then q  ζ̌ = ḟ (ξ̌ ) = ζ ′̌. Since ζ̌ and ζ ′̌ are canonical names this implies ζ = ζ ′, which
is a contradiction. So qζ and qζ ′ are incompatible in Q. Thus the function ζ � qζ is an
injection of F (ξ) into to antichain {qζ |ζ ∈ F (ξ)}. By the ccc, {qζ |ζ ∈ F (ξ)} is at most
countable, and so F (ξ) is at most countable. �

This covering property implies immediately that the ccc forcing Q preserves cardinals.
Hence M [G] �¬CH, and we have

Theorem 107. Assume that ZFC is consistent. Then so is ZFC + ¬CH. Indeed CH is
independent from ZFC.

Proof. The construction above showed the consistency of ZFC + ¬CH. Theorem 64
showed the consistency of ZFC + CH. These two relative consistencies prove the indepen-
dence of CH from ZFC. �

The violation of CH means that 2ℵ0> ℵ1 . We now want to arrange that the value of 2ℵ0 is
exactly equal to κ.

Lemma 108. Let M ⊆M [G] be a generic extension by some partial order P ∈M. Let β ∈
OrdM and x∈M [G], x⊆ β. Then there is a name ẋ ∈M, ẋG=x of the form

ẋ= {(α̌ , q)|α< β ∧ q ∈Aα},

where every Aα is an antichain in P.

Proof. Take some name x̃ ∈ M , x̃G = x. Take p ∈ G such that p  x̃ ⊆ β̌ . Work in M .
Consider α< β and let Fα= {q ∈P |q α̌ ∈ x̃}. The set

Z = {A⊆Fα|A is an antichain in P }

is partially ordered by ⊆ . Let C ⊆Z be a chain in (Z,⊆ ), i.e.

A,A′∈Z→A⊆A ′∨A ′⊆A.

Then
⋃

C ⊆ Fα is also an antichain in P . Thus (Z, ⊆ ) is an inductive partial order. By
Zorn’s lemma, choose a maximal element Aα∈Z. Then define

ẋ= {(α̌ , q)|α< β ∧ q ∈Aα}∈M.

61



We show that ẋG= x. Let α ∈ ẋG. Take q ∈G such that (α̌ , q)∈ ẋ. Then q ∈Aα⊆ Fα and
q α̌ ∈ x̃ . Hence α∈ x̃G=x .

Conversely let α ∈ x= x̃G. Take r ∈G such that r  α̌ ∈ x̃ . We may assume that r 6 p so

that r x̃ ⊆ β̌ . Then r ǎ < β̌ and so α< β. Set

D= {s∈P |∃q ∈Aα s6 q}∈M.

D is dense in P below r: Let r ′ 6 r. Then r ′  α̌ ∈ x̃ and r ′ ∈ Fα . If r ′ ∈ Aα then r ′ ∈D.
Otherwise r ′ � Fα and by the maximality of Aα we have that Aα∪{r ′} is not antichain. So
take q ∈Aα such that q and r ′ are compatible. Take s6 q, r ′. Then s∈D.

Since G ∋ r is M -generic there is s ∈G ∩D. Take q ∈Aα such that s6 q. Then q ∈G and
(α̌ , q)∈ ẋ. Hence α= α̌G∈ ẋG. �

Lemma 109. Let M ⊆M [G] be a generic extension by some ccc partial order P ∈M. Let
β ∈OrdM, β>ω. Then

cardM [G](PM [G](β)) 6 (card(P )card(β))M.

Proof. In M [G] define a map F : (β×ωP )M→PM [G](β) by

f � {(α, f(α, n))|α< β ∧n<ω}G.

By the previous lemma, F is a surjection. Hence

cardM [G](PM [G](β))6 cardM [G]((β×ωP )M)6 cardM((β×ωP )M)6 (card(P )card(β))M. �

Let us reconsider the forcing extension of the ground model M by λ Cohen reals.
Assume GCH in M and take λ ∈ CardM with M � cof(λ) > ω1 . Let G be M -generic on
P =Fn(λ×ω, 2,ℵ0)∈M . Cardinals are absolute between M and M [G].

Lemma 110. M [G]� 2ℵ0 =λ .

Proof.

λ 6 cardM [G](PM [G](ω)) , by our first results about this forcing,

6 (card(P )ℵ0)M , by the previous lemma,

6 (λℵ0)M , by GCH in M,

= λ, by GCH in M.

�
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So 2ℵ0 can be any cardinal λ of uncountable cofinality. Note that cof(2ℵ0)> ω by König’s
lemma. For cardinals λ = ℵ2, ℵ3, � , ℵω+1, � , ℵω1

, � in M we obtain relative consistency
results of the following type.

Theorem 111. Assume that ZFC is consistent. Then the following theories are consis-
tent:

a) ZFC+ 2ℵ0 =ℵ2 ;

b) ZFC+ 2ℵ0 =ℵ3 ;

c) ZFC+ 2ℵ0 =ℵω+1 ;

d) ZFC+ 2ℵ0 =ℵω1
.

Changing the value of 2κ

We have seen that the value of 2ℵ0 is highly independent. We now extend our techniques
from ℵ0 to an arbitrary regular cardinal κ. So fix a ground model M with M � ZFC and
let κ be a regular cardinal in M . Also let λ be a cardinal in M with cof(λ) > κ. We want
to construct a generic extension with 2κ=λ.

In M , define the forcing P = (P ,6 , 1)∈M for adding λ Cohen subsets of κ by

P =Fn(λ×κ, 2, κ)= {p∈M |p: dom(p)→ 2∧ dom(p)⊆λ×κ∧ cardM(dom(p))<κ}∈M,

and 6 = ⊇ , 1 = ∅. Let G be M -generic on P . Let F =
⋃

G. Like Lemma 97a) one can
show

(1) F :λ×κ→ 2.

We extract a sequence (cα|α<λ) of functions cα:κ→ 2 from F by:

cα(n) =F (α, n).

The density argument used for the case κ=ℵ0 also shows

(2) α< β <λ→ cα� cβ .
So in M [G] there is an injection α� cα of λ into κ2 and

(2κ)M [G] = cardM [G](κ2) > cardM [G](λ).

To study the cardinality situation in M [G] we extend the ccc-techniques developed previ-
ously.
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Definition 112. Let Q = (Q, 6 , 1) be a forcing. Q has the θ-chain condition (θ-cc) if
every antichain in Q has cardinality <θ.

Note that the ℵ1-chain condition is the countable chain condition.

Theorem 113. Assuming the GCH, P =Fn(λ×κ, 2, κ) has the κ+-cc.

Proof. Consider an antichain A in P . By simultaneous recursion we define ascending
sequences (Ai|i6 κ) of subsets of A and (Di|i6 κ) where every Ai and Di has cardinality
6 κ. Set A0 = {p0} where p0 is some fixed element of A. If Ai is defined let Di =

⋃

{dom(p)|p ∈ Ai}. For limit l 6 κ let Al =
⋃

i<l
Ai and Dl =

⋃

i<l
Di . Then card(Al) 6 κ ·

κ= κ and card(Dl) 6κ ·κ=κ

It remains to define Ai+1 from Ai and Di . For h: dom(h) → 2 with dom(h) ⊆ Di and
card(dom(h))<κ choose ph,i∈A with ph,i ↾Di= h , if possible; if such a ph,i does not exist
set ph,i= p0 . Then let

Ai+1 =Ai∪{ph,i|h: dom(h)→ 2∧ dom(h)⊆Di∧ card(dom(h))<κ}.

When we view the relevant functions h as defined on a bounded subset of κ > card(Di)
then their number is 6 card(<κκ) = κ<κ = κ ; the last equality follows from GCH and the
regularity of κ. Hence card(Ai) 6 card(Ai) +κ=κ.

To show that card(A) 6 κ it suffices to see that A = Aκ . So let p ∈ A. Since
card(dom(p))<κ there is some i <κ such that dom(p)∩Dκ= dom(p)∩Di . Set h= p ↾Di .
Then in the recursive construction we chose some ph,i ∈ A with ph,i ↾Di = h . dom(ph,i) ⊆
Di+1 .

dom(p)∩ dom(ph,i) ⊆ dom(p)∩Di+1 , since dom(ph,i)⊆Di+1

⊆ dom(p)∩Di , since dom(p)∩Dκ=dom(p)∩Di

⊆ Di

But p ↾ Di = h = ph,i ↾ Di , and so p and ph,i are compatible. Since A is an antichain we
have p= ph,i∈Aκ . �

We generalise a “covering” lemma from the ccc case.

Lemma 114. Let M [G] be a generic extension by some θ-cc forcing Q = (Q, 6 , 1) ∈ M
where θ is a cardinal in M. Let f : α→ β, f ∈M [G]. Then there is a function F : α→M,
F ∈M such that

∀ξ <α (f(ξ)∈F (ξ)∧ cardM(F (ξ))<θ).
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Proof. Take a name ḟ ∈M such that f = ḟ
G. Take p ∈G such that p ḟ : α̌→ β̌ . In M ,

define F :α→M by

F (ξ)= {ζ < β |∃q6 p q ḟ (ξ̌ ) = ζ̌ }.

Let ξ <α. As before we can show that

(1) f(ξ)∈F (ξ).

(2) cardM(F (ξ))<θ . �

θ-cc forcing preserves cardinals > θ :

Lemma 115. Let M [G] be a generic extension by some θ-cc forcing Q = (Q, 6 , 1) ∈ M
where θ is a cardinal in M. Then

∀β ∈CardM(β> θ→ β ∈CardM [G]).

Proof. Let β > θ and β � CardM [G]. We may assume that β is a limit ordinal. Take some
surjective function f ∈M [G], f : α→ β, with α < β. By the previous lemma take a func-
tion F :α→M , F ∈M such that

∀ξ <α (f(ξ)∈F (ξ)∧ cardM(F (ξ))<θ).

Then β ⊆⋃

ξ<α
F (ξ) and

cardM(β)6 cardM(
⋃

ξ<α

F (ξ)) 6
∑

ξ<α

cardM(F (ξ)) 6
∑

ξ<α

ℵ0 = cardM(α) · ℵ0 = cardM(α)<κ.

So κ is not a cardinal in M . �

The previous lemmas show that forcing by P = Fn(λ × κ, 2, κ) preserves cardinals > κ+.
To show the preservation of cardinals 6 κ we use another combinatorial property of the
partial order.

Definition 116. Let Q= (Q,6 , 1) be a forcing. A subset C ⊆Q is a chain in Q if (C,6
) is a linear order. Q is θ-closed if every chain in Q of cardinality < θ has a lower bound
in Q, i.e.,

∀C(C is a chain in Q∧ card(C)<θ→∃p∈Q∀q ∈C : p6 q).

Lemma 117. P =Fn(λ×κ, 2, κ) is κ-closed.
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Proof. Let C ⊆P , card(C)<κ. Then p=
⋃

C ∈P is a lower bound for C. �

Lemma 118. Let M [G] be a generic extension by Q= (Q,6 , 1) ∈M where Q is θ-closed
in M. Let f :α→ β, f ∈M [G], α<θ. Then f ∈M.

Proof. Take a name ḟ ∈M and p∈G such that f = ḟ
G and p ḟ : ǎ→ β̌ . Define

D= {q ∈Q|∃g ∈M : q ḟ = ǧ }∈M.

(1) D is dense in Q below p.
Proof . Work in M . Let p′ 6 p. Define a descending sequence (pi|i < α) of conditions 6 p′

and a function g: α→ β by recursion. Let (pi|i < j) and g ↾ j already be defined. {pi|i <
j} ∪ {p′} is a chain in Q of cardinality 6 card(j) 6 card(α) < θ. By θ-closure choose a
lower bound pj

′ of {pi|i < j} ∪ {p′}. Then choose pj 6 pj
′ and g(j) < β such that

pj  ḟ (ǰ )= g(j).

{pi|i < α} is a chain in Q of cardinality card(α)< θ. By θ-closure choose a lower bound q

of {pi|i <α}. Then

q ḟ : ǎ→ β̌ ∧ ǧ : ǎ→ β̌ ∧∀i <αK : ḟ (ǰ ) = g(j).

Hence q ḟ = ǧ and q ∈D. qed(1)

By genericity take q ∈G∩D. Take g ∈M such that q ḟ = ǧ . Then f = ḟ
G= g ∈M . �

Lemma 119. Let M [G] be a generic extension by Q= (Q,6 , 1) ∈M where Q is θ-closed
in M. Then

∀β ∈CardM(β <θ→ β ∈CardM [G]).

Proof. Let β < θ and β � CardM [G]. Take some surjective function f ∈M [G], f : α→ β,
with α< β. By the previous lemma f ∈M . Hence β � CardM. �

So forcing with P = Fn(λ × κ, 2, κ) preserves all cardinals. To see that it makes 2κ = λ we
use again names of a canonical form for subsets of κ.

Lemma 120. Let M ⊆ M [G] be a generic extension by P = Fn(λ × κ, 2, κ)M. Let β ∈
OrdM, β>ω. Then

cardM [G](PM [G](β))6 (λcard(β))M.
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Proof. We first show card(P )=λ in M :

card(Fn(λ×κ, 2, κ)) = card({p|p: dom(p)→ 2∧ dom(p)⊆λ×κ∧ card(p)<κ})
6 card({p|∃λ̄ < λ (p: dom(p)→ 2∧ dom(p)⊆ λ̄ ×κ})

since cof(λ)>κ,

6
∑

λ̄<λ

2card(λ̄×κ)

6
∑

λ̄<λ

λ , by GCH,

= λ

In M [G] define a map F : (β×κP )M→PM [G](β) by

f � {(ǎ , f(α, i))|α< β ∧ i < κ}G.

By Lemma 108, F is a surjection. Hence

cardM [G](PM [G](β)) 6 cardM [G]((β×κP )M)

6 cardM((β×κP )M)

= (λκ·card(β))M

= ((λκ)card(β))M

= (λcard(β))M, by GCH and (λκ)M =λ.

�

Theorem 121. Let M be a ground model satisfying GCH. Let κ, λ be cardinals in M

where κ is regular in M and cofM(λ) > κ. Let M ⊆ M [G] be a generic extension by P =
Fn(λ×κ, 2, κ)M. Then

a) M [G] �∀µ<κ 2µ= µ+;

b) M [G] � 2κ= λ .

Proof. In M , the forcing P =Fn(λ× κ, 2, κ)M is κ-closed and satisfies κ+-cc.

a) Let µ<κ. By Lemma 118, PM [G](µ) =PM(µ). Using GCH in M we get in M [G]

µ+ 6 2µ= card(P(µ))= card(PM(µ))6 cardM(PM(µ))= (µ+)M = µ+.

b) Combining a first observation about M [G] with the preservation of cardinals we get

(2κ)M [G] = cardM [G](κ2) > cardM [G](λ) =λ.
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For the converse

(2κ)M [G] = cardM [G](PM [G](κ))6 (λκ)M =λ.

�

With more effort, the behaviour of 2µ above κ can also be exactly determined. We obtain
relative consistency results of the form

Theorem 122. Assume that ZFC is consistent. Then the following theories are consis-
tent:

a) ZFC+ 2ℵ0 =ℵ1 + 2ℵ1 =ℵ3 ;

b) ZFC+ 2ℵ0 =ℵ1 + 2ℵ1 =ℵω+1 ;

c) ZFC+ 2ℵ0 =ℵ1 + 2ℵ1 =ℵω2
;

d) ZFC+ 2ℵ0 =ℵ3 + 2ℵ1 =ℵ4 + 2ℵ2 =ℵω+1 .

Proof. To prove results like (b), first apply our construction to κ1 = ℵ2, λ1 = ℵω+1. Then
apply the construction to κ2 = ℵ1, λ2 = ℵ4 in the generic extension M [G]. Finally apply it
in the next generic extension to κ3 =ℵ0, λ3 =ℵ3. �

Note, that it is important to proceed backwards, dealing with the largest cardinal first.
This is necessary because the first step preserves GCH below κ1 which is used in the
second step to preserve cardinals. Since we have to proceed backwards, we can change the
value of the continuum function only at finitely many places in this way. Can we also do
it for infinitely many places? Yes, but then we have to do it all in one step. This is done
by product forcing .

Product forcing

Definition 123. Let P = (P ,≤P , 1P) and Q= (Q,≤Q , 1Q) be forcings. Then the product
forcing

P ×Q= (P ×Q,≤ , 1) = (P ,≤P , 1P)× (Q,≤Q , 1Q)

is defined by

(p1, q1)≤ (p2, q2) iff p1≤P p2∧ q1≤Q q2 ,

and 1= (1p, 1Q).
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Let M be a ground model. Let G be an M -generic filter on P ×Q. Define

G1 = {p∈P J ∃q ∈Q(p, q)∈G}

and

G1 = {q ∈Q J ∃p∈P (p, q)∈G}.

Then it is easily seen that G1 and G2 are M -generic on P and Q respectively, and G =
G1×G2. The exact relationship is given by the next lemma.

Theorem 124. (The Product Lemma) G ⊆ P × Q is an M-generic filter if and only if
G = G1 × G2 for some M-generic filter G1 on P and some M [G1]-generic filter G2 on Q.
Moreover, M [G] =M [G1][G2].

Proof. For the direction from left to right, let G be the M -generic filter on P ×Q. Define
G1 and G2 as above. It is easily checked that G1 and G2 are filters and that G ⊆G1×G2.
For G1 × G2 ⊆ G, let (p1, p2) ∈ G1 × G2. Then there are p1

′ ∈ P and p2
′ ∈ Q such that (p1

′ ,

p2) ∈ G and (p1, p2
′ ) ∈ G. Since G is a filter, there exists (p, q) ≤ (p1

′ , p2), (p1, p2
′ ) with (p,

q)∈G. But (p, q)≤ (p1, p2). So (p1, p2)∈G since G is a filter. This proves G=G1×G2.

It is easy to see that G1 is generic over M : If D1 ∈M is dense in P , then D1× Q is dense
in P ×Q; and since (D1×Q)∩G� ∅, we have D1∩G1� ∅.
To show that G2 is generic over M [G1], let D2 ∈ M [G1] be dense in Q. Let Ḋ2 be a P -

name such that Ḋ2
G1 =D2 and p1∈G1 such that

p1 P (Ḋ2 is dense in Q).

Let D′ = {(r1, r2) J r1≤ p1 and r1 P ř2∈ Ḋ2}. We first show that D′ is dense below (p1, 1q).
Fix (q1, q2)≤ (p1, 1Q). We have q1≤ p1, so

q1 P ∃x∈ Q̌(x∈ Ḋ2∧x≤ q2).

So there is r2∈Q and a r1≤ q1 such that

r1 P (ř2∈ Ḋ2∧ ř2≤ q̌2);

thus (r1, r2) ≤ (q1, q2) and (r1, r2) ∈ D′. Since (p1, 1Q) ∈ G1 × G2, there is some (r1, r2) ∈
(G1×G2)∩D′. Hence r1 P ř2∈ Ḋ2, i.e. r2 = ř2

G1∈ Ḋ2
G1 =D2. So r2∈G2∩D2.

For the direction from right to left, let G1 ⊆ P be M -generic and let G2 ⊆ Q be M [G1]-
generic. Set G=G1×G2. Clearly G is a filter on P ×Q. To show that G is M -generic, let
D ∈M be dense in P ×Q. Let

D2 = {p2∈Q J (p1, p2)∈D for some p1∈G1}.
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The set D2 is in M [G1]. We will show that D2 is dense in Q and thus D ∩ (G1× G2) � ∅.
Let q2 ∈ Q be arbitrary. Since D is dense in P × Q, it follows that the set D1 = {p1 ∈ P J
∃p2≤ q2(p1, p2)∈D} is dense in P . Hence there is p1∈G1∩D1 and so D2 is dense in Q.

The fact that M [G1 × G2] = M [G1][G2] follows from the fact that generic extensions are
minimal ZFC models containing M as a subset and the generic filter as element. Thus
M ⊆ M [G1][G2] and G1 × G2 ∈ M [G1][G2] implies M [G1 × M [G1][G2]. Conversely, M ⊆
M [G1 × G2] and G1 ∈M [G1 × G2], so M [G1] ⊆M [G1 × G2]; but also G2 ∈M [G1 × G2], so
M [G1][G2]⊆M [G1×G2]. �

Definition 125. Let (Pi J i ∈ I) be a sequence of forcings Pi = (Pi, 6i , 1i). The product
P = (P ,6 , 1) = Πi∈I

<κPi with support <κ consists of all functions p: I→ V such that p(i) ∈
Pi for all i∈ I and

|{i∈ I J p(i)� 1}|<κ.

s(p):= {i∈ I J p(i)� 1} is called the support of p. P is partially ordered by

p≤ q iff p(i)6i q(i) for all i∈ I.

Let 1= (1i|i∈ I).

If G is an M -generic filter on Πi∈I
<κPi, then for each i∈ I, the set

Gi= {p(i) J p∈G}
is an M -generic filter on Pi. Such products and similar ones are often used in forcing con-
structions. We use them to prove the following

Theorem 126. (Easton) Let M � GCH be a ground model. In M, let F be a function
whose arguments are regular cardinals and whose values are cardinals, such that for all κ,
λ∈ dom(F )

a) F (κ)>κ

b) F (κ)≤F (λ) if κ≤λ

c) cof(F (κ))>κ.

Then there exists a generic extension M [G] of M such that M and M [G] have the same
cardinals and cofinalities, and for every κ∈ dom(F )

M [G] � 2κ=F (κ).

Remark 127. This theorem is also true if F is a class, but this would require to develop
class forcing where the collection of conditions may be a proper class.
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For the proof, work in M . For each κ ∈ dom(F ), let Pκ = Fn(κ× F (κ), 2, κ), i.e. the set of
all p: dom(p)→ 2 such that

dom(p)⊆κ×F (κ) and |dom(p)|<κ.

Let (P ,≤ ) be the Easton product of Pκ, κ ∈ dom(F ): A condition p ∈ P is a function p=
(pκ J κ∈ dom(F ))∈Πκ∈dom(F )Pκ such that

|{κ∈ dom(F ) J pκ� ∅}∩ γ |< γ

for every regular γ (not necessarily in dom(F )). s(p): = {κ ∈ dom(F ) J pκ � ∅} is the sup-
port of p. Set p≤ q iff

p(i)≤ q(i) for all i∈ dom(F ).

Set

P≤λ= {p∈P J s(p)⊆λ+}

and

P>λ= {p∈P J s(p)⊆Ord \ λ+}.

Then

P @ P>λ×P≤λ.

Hence we can for any λ view the extension by P as an extension obtained in two steps,
first by P>λ and then by P≤λ. This allows us to do for infinitely many regular cardinals
what we could do before only for finitely many.

It is easy to see that

Lemma 128. P>λ is λ+-closed.

To prove the λ+-cc for P≤λ we use a ∆-system lemma.

Lemma 129. Let κ ≥ ω be a cardinal. Let θ ≥ κ be regular such that ∀α < θ |α<κ| < θ.
Assume |A| ≥ θ and ∀x ∈ A |x| < κ. Then there exists a B ⊆ A such that B = θ and B

forms a ∆-system, i.e. ∃r∀a� b∈B a∩ b= r.

Proof. Exercise. �

Lemma 130. P≤λ satisfies the λ+-cc, if λ is regular.
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Proof. For p∈P≤λ, let

d(p) =
⋃

{{κ}× dom(pκ) J κ∈ dom(F )∩λ+}.

Then by the assumption on s(p), |d(p)| < λ. So assume that A ⊆ P≤λ, |A| = λ+. Since we
assume GCH, we can apply the ∆-system lemma. Hence there is A′ ⊆ A of size λ+ such
that

{d(p) J p∈A}
forms a ∆-system with root r. Since |r | < λ, 2|r | ≤ λ by GCH. So there is A′′⊆ A′ of size
λ+ such that

pκ(x)= qκ(x) for all (κ, x)∈ r; p, q ∈A′′.

But then all p∈A′′ are compatible. Hence A is not an antichain. �

Lemma 131. Let G × H be an M-generic filter on P × Q where P is λ+-closed and Q

satisfies the λ+-cc. Then every function f :λ→M in M [G×H] is in M [H ]. In particular,

PM [G×H](λ)= PM [H ](λ)

Proof. Let ḟ be a P × Q-name such that ḟ G×H = f . Assume w.l.o.g. that for some A ∈
M

1 ḟ : λ̌→ Ǎ.

Otherwise one has to change the following definition of Dα and make a case distinction

like in the proof of PM(λ)= PM [G](λ) for λ+-closed forcings.
For α<λ, let

Dα= {p∈P J ∃W max. antichain ∧∃{a(p,q)
(α) J q ∈W }∀q ∈W (p, q)  ḟ (α̌)= ǎ(p,q)

(α) }.

Then p ≤ q ∈Dα→ p ∈Dα. And every Dα is dense in P : Let p0
′ ∈ P . Since 1  ḟ : λ̌→ Ǎ,

there exists (p0, q0) ≤ (p0
′ , 1) and a0 ∈ A such that (p0, q0)  ḟ (α̌) = ǎ0. We construct by

induction sequences 〈pi J i < δ〉 and 〈qi J i < δ〉 such that

pi≤ pj for all i≤ j < δ,

(pi, qi)  ḟ (α̌)= ǎi for some ai∈A,

and

{qi J i < δ} is a maximal antichain in Q.
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Hence δ < λ+ by the λ+-cc. Assume that 〈pi J i < η〉 and 〈qi J i < η〉 have already been con-
structed. Then let pη

′ ∈ P be by λ+-closedness such that pη
′ ≤ pi for all i < η. If {qi J i < η}

is a maximal antichain, pη
′ ∈Dα and pη

′ ≤ p0
′ . So we are done. If {qi J i < η} is not maximal,

we pick some qη
′ such that qη

′ is incompatible with all i < η. Consider (pη
′ , qη

′ ). Since 1  ḟ :

λ̌→ Ǎ, there exists (pη, qη)≤ (pη
′ , qη

′ ) and aη∈A such that

(pη, qη)  ḟ (α̌)= ǎη.

This proves the density of Dα.
Since P is λ+-closed, it follows that

⋂ {Dα J α < λ} is dense. So there exists some p ∈ G
such that p ∈Dα for all α < λ. We pick (in M) for each α < λ a maximal antichain Wα ⊆
Q and a family {a(p,q)

(α) J q ∈Wα} such that

(p, q) ḟ (α̌) = ǎ(p,q)
(α)

for all q ∈Wα. By the genericity of H , for every α there is a unique q ∈Wα such that q ∈
H, and we have for every α<λ

f(α) = a(p,q)
(α)

where qis the unique q ∈Wα∩H.

However, this defines f in M [H ]. �

Now, we can finish the proof of Easton’s theorem. Let κ be a regular cardinal in M . We
shall show that κ is regular in M [G]. If κ fails to be regular, there exists a function f that
maps some λ < κ, regular in M , cofinally into κ. We consider P as the product P = P>λ×
P≤λ. Then G = G>λ × G≤λ and M [G] = M [G>λ][G≤λ]. By the previous lemma, f is in
M [G≤λ] and so κ is not regular in M [G≤λ]. However, this is a contradiction since P≤λ sat-
isfies the κ-cc and hence κ is regular in M [G≤λ].

It remains to prove that (2λ)M [G] = F (λ), for each λ ∈ dom(F ). By the previous lemma,

(2λ)M [G] =(2λ)M [G≤λ]. However, like before (2λ)M [G≤λ] =F (λ).

Models of ¬AC

So far we have only considered techniques which construct models of AC. To obtain
models of ¬AC we use a relativised version of the HOD construction, that we already
introduced in an exercise.

Definition 132. Define

OD(s) = {y |∃α∈Ord ∃ϕ∈Fml∃a∈Asn((α∪ s)∩Vα) y= {z ∈Vα|(Vα,∈ )� ϕ[a
z

0
]}},
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and

HOD(s) = {x|TC({x})⊆OD(s)}.

So HOD(s) is built from parameters in Ord∪ s much like HOD was built from parameters
in Ord.

We shall examine which axioms of set theory hold in HOD(s). Just as before we get that
Ord⊆HOD and HOD is transitive.

Lemma 133. Let z be definable from x1,� , xn−1 by the ∈ -formula ϕ(v1,� , vn):
∀vn(vn= z↔ ϕ(x1,� , xn−1, vn)). (6)

Let x1,� , xn∈OD(s) and z ⊆HOD(s). Then z ∈HOD(s).

Proof. TC({z}) = {z} ∪ TC(z) ⊆ {z} ∪ HOD(s). So it suffices to prove that z ∈ OD(s).
By the definition of OD(s) choose

α1,� , αn−1∈Ord, ϕ1,� , ϕn−1∈Fml, and a1,� , an−1 ,

such that for i=1,� , n− 1

ai∈Asn((αi∪ s)∩Vαi
) and xi= {w ∈Vαi

|(Vαi
,∈ )� ϕi[ai

w

0
]}.

Choose sufficiently high, pairwise distinct j1,� , jn−1<ω which are intended to be indices
for “new” variables vj1, � , vjn−1

in the Gödelised language. Let ϕi
vji ∈ Fml be obtained

from ϕi ∈ Fml by relativising all quantifiers to the term for the von Neumann level Vvji
.

Let α be a limit ordinal >α1,� , αn−1 such that z ∈ Vα and such that the formula ϕ is Vα-
absolute. Let ai

∗ be the assignment obtained by adding the assigment ji� αi . Then ai
∗ is

an assignment in α∪ s and

xi= {w ∈Vαi
|(Vαi

,∈ )� ϕi[ai
w

0
]}= {w ∈Vα|(Vα,∈ )� ϕi

vji[ai
∗w

0
]}.

By renaming variables we may assume that the formulas ϕi
vji do not share variables except

the variable v0 and that they do not contain the variables v1,� , vn . One may also assume
that the assignments ai

∗ are all merged into a single assignment a . Then

z = {u |Vα�∃vn∃v1� ∃vn−1(u∈ vn∧ ϕ(v1,� , vn−1, vn)∧
∀w(w ∈ v1↔ ϕ1

vj1[a∗
w

0
])∧� ∧∀w(w ∈ vn−1↔ ϕn−1

vjn−1[a∗
w

0
]))}

= {u |(Vα,∈ ) �∃vn∃v1� ∃vn−1(u∈ vn∧ ϕ(v1,� , vn−1, vn)∧
∀w(w ∈ v1↔ ϕ1

vj1
w

v0
)∧� ∧∀w(w ∈ vn−1↔ ϕn−1

vjn−1
w

v0
))[a∗]}
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Here we assume that the formula behind (Vα,∈ ) � is Gödelised and an element of FML.
Hence z ∈OD(s). �

Theorem 134. Let s=TC({r}) for some set r ∈V. Then ZFHOD(s).

Proof. The transitivity of s implies

(1) s⊆HOD(s).

Also

(2) The class HOD(s) =HOD(TC({r})) is definable from the parameter r ∈ s .
Using the criteria of Theorem 2 we check certain closure properties of HOD(s).

a) Extensionality holds in HOD(s), since HOD(s) is transitive.

b) Let x, y ∈ HOD(s). Then {x, y} is definable from x, y, and {x, y} ⊆ HOD(s). By
Lemma 133, {x, y} ∈ HOD(s), i.e. HOD(s) is closed under unordered pairs. This implies
Pairing in HOD(s).

c) Let x ∈HOD(s). Then
⋃

x is definable from x, and
⋃

x⊆TC({x})⊆HOD(s). So
⋃

x∈HOD(s), and so Union holds in HOD(s).

d) Let x∈HOD(s). Then P(x)∩HOD(s) is definable from x and r ∈HOD(s), and P(x)∩
HOD(s)⊆HOD(s). So P(x)∩HOD(s)∈HOD(s) and Powerset holds in HOD(s).

e) ω ∈HOD(s) implies that Infinity holds in HOD(s).

f) Let ϕ(x, wK ) be an ∈ -formula and wK , a ∈ HOD(s). Then {x ∈ a|ϕHOD(s)(x, wK )} is a set
by Separation in V , and it is definable from wK , a and r ∈ HOD(s). Moreover {x ∈
a|ϕHOD(s)(x, wK )} ⊆ HOD(s). So {x ∈ a|ϕHOD(s)(x, wK )} ∈ HOD(s), and Separation for the
formula ϕ holds in HOD(s).

g) Let ϕ(x, y, wK ) be an ∈ -formula and wK , a∈HOD(s). Assume that

∀x, y, y ′∈HOD(s)(ϕHOD(s)(x, y, wK )∧ ϕHOD(s)(x, y ′, wK )→ y= y ′).

Then {y |∃x ∈ aϕHOD(s)(x, y, wK )} ∩ HOD(s) is a set by Replacement and Separation in V .

It is definable from wK , a and r ∈ HOD(s). Moreover {y |∃x ∈ aϕHOD(s)(x, y, wK )} ∩
HOD(s)⊆HOD(s). So {y |∃x ∈ aϕHOD(s)(x, y, wK )} ∩HOD(s) ∈HOD(s), and Replacement
for ϕ holds in HOD(s).

h) Foundation holds in HOD(s) since HOD(s) is an ∈ -model. �

Hence HOD(s) is an inner model of ZF set theory. We shall see that in general HOD(s) is
not a model of AC.

Fix a ground model M and the forcing

P = (P ,< , 1)=Fn(ω×ω, 2, ω)M =Fn(ω×ω, 2, ω),
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partially ordered by reverse inclusion. P is the partial order for adjoining ω many Cohen
reals ai⊆ω . Let G be M -generic on P , f =

⋃

G:ω×ω→ 2, and for i <ω define

ai= {n∈ω |f(i, n)= 1}.

Let A= {ai|i < ω}, s= TC({A}) = {A} ∪ A ∪ ω. Set N = (HOD(s))M [G]. By the previous
lemma:

Lemma 135. N is transitive, A∈N and ZFN.

We shall see that A does not have a wellorder in N . Note that A is the “unordered” set
{ai|i < ω} but not the sequence (ai|i < ω). The basic idea is that the Cohen reals ai
behave in very similar ways so that one may permute them without changing the overall
properties of the model N . This permutability of the ai is reflected in a symmetry prop-
erty of the forcing P .

Lemma 136. Let π:ω↔ω be a permutation. Let π ′:P↔P be the induced map

π ′(p)= {((π(i), n), p(i, n))|(i, n)∈ dom(p)}.

Then

a) π ′: (P ,< , 1)↔ (P ,< , 1) is an order isomorphism and (π−1) ′ ◦π ′ = id ↾P.

b) If D is dense in P then π ′[D] is dense in P.

c) If G is M-generic on P then π ′[G] is M-generic on P; moreover M [G] =M [π ′[G]].

Proof. Easy. �

Let uns now introduce some canonical names for the generic objects so far.

Definition 137. For i <ω let

ȧi= {(ň , p)|n<ω, p∈P , p(i, n) = 1}.

Let Ȧ = {(ȧi, 1)|i <ω}. Obviously ȧi
G= ai and Ȧ

G=A .

Permutions π:ω↔ω act on the forcing construction as follows.

Lemma 138. (ȧπ(i))
π ′[G] = ȧi

G and Ȧπ ′[G] = ȦG.
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Proof.

(ȧπ(i))
π ′[G] = {n<ω |∃p∈π ′[G] p(π(i), n) = 1}

= {n<ω |∃p∈Gp(i, n) = 1}
= ȧi

G.

Ȧπ ′[G] = {(ȧi)π
′[G]|i <ω}= {ȧπ−1(i)

G |i <ω}= {ȧiG|i <ω}= ȦG.

�

Lemma 139. Let ϕ(u0, � , uk−1, v0, � , vl−1, w) be an ∈ -formula, α0, � , αk−1 ∈ Ord, and
i0,� , il−1<ω. For p∈P holds

p ϕ(α̌0,� , α̌k−1, ȧi0,� , ȧil−1
, Ȧ) iff π ′(p) ϕ(α̌0,� , α̌k−1, ȧπ(i0),� , ȧπ(il−1), Ȧ).

Proof. Assume p ϕ(α̌0,� , α̌k−1, ȧi0,� , ȧil−1
, Ȧ). Let H be M -generic on P with π ′(p) ∈

H. Then (π ′)−1[H ] is M -generic on P with p ∈ (π ′)−1[H ], and M [H ] = M [(π ′)−1[H ]]. Bu
assumption

M [(π ′)−1[H ]] � ϕ(α0,� , αk−1, ȧi0
(π ′)−1[H ]

,� , ȧil−1

(π ′)−1[H]
, Ȧ(π ′)−1[H]).

Then

M [H ]� ϕ(α0,� , αk−1, ȧ(π ′)−1◦π ′(i0)
(π ′)−1[H]

,� , ȧ(π ′)−1◦π ′(il−1)
(π ′)−1[H ]

, Ȧ(π ′)−1[H ])

and

M [H ] � ϕ(α0,� , αk−1, ȧπ(i0)
H ,� , ȧπ(il−1)

H , ȦH).

Hence

π ′(p) ϕ(α̌0,� , α̌k−1, ȧπ(i0),� , ȧπ(il−1), Ȧ).

The converse direction follows by considering π−1 instead of π. �

Lemma 140. In N there is no wellorder of the set A.

Proof. Assume that N possesses a wellorder of A. Then take f ∈ N and η ∈ Ord such
that f : η↔ A . Then f ∈ N = (HOD(s))M [G] where s = TC({A}) = {A} ∪ A ∪ ω. So take
α0,� , αk−1∈Ord and i0,� , il−1<ω such that f is definable in M [G] by the ∈ -formula ϕ
and the parameters α0,� , αk−1, ai0,� , ail−1

, A:

f(ξ) = b iff M [G] � ϕ(α0,� , αk−1, ai0,� , ail−1
, A, ξ , b).
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Consider some i∗∈ω \ {i0,� , il−1} and ξ < η such that f(ξ)= ai∗ . Then

M [G] � ϕ(α0,� , αk−1, ai0,� , ail−1
, A, ξ , ai∗).

Take p∈G such that

p ϕ(α̌0,� , α̌k−1, ȧi0,� , ȧil−1
, Ȧ , ξ̌ , ȧi∗)

and

p  ∀y∀y ′(ϕ(α̌0, � , α̌k−1, ȧi0, � , ȧil−1
, Ȧ , ξ̌ , y) ∧ ϕ(α̌0, � , α̌k−1, ȧi0, � , ȧil−1

, Ȧ , ξ̌ , y ′)→ y =

y ′).

Take i∗∗ ∈ ω \ {i0, � , il−1, i∗} such that dom(p) ∩ ({i∗∗} × ω) = ∅. Define a permutation π:
ω↔ω,

π(i)=







i∗∗ iff i= i∗
i∗ iff i= i∗∗
i else

By the previous lemma

π ′(p) ϕ(α̌0,� , α̌k−1, ȧπ(i0),� , ȧπ(il−1), Ȧ , ξ̌ , ȧπ(i∗)),

i.e.

π ′(p) ϕ(α̌0,� , α̌k−1, ȧi0,� , ȧil−1
, Ȧ , ξ̌ , ȧi∗∗).

Consider (i, n) ∈ dom(p) ∩ dom(π ′(p)). The choice of i∗∗ and π implies that i � i∗, i∗∗ .
Then π(i)= i and π ′(p)(i, n)= π ′(p)(π(i), n) = p(i, n). Hence p and π ′(p) are compatible in
P . Take q6 p, π ′(p). The previous forcing statements imply

q ϕ(α̌0,� , α̌k−1, ȧi0,� , ȧil−1
, Ȧ , ξ̌ , ȧi∗),

q ϕ(α̌0,� , α̌k−1, ȧi0,� , ȧil−1
, Ȧ , ξ̌ , ȧi∗∗),

and

q  ∀y∀y ′(ϕ(α̌0, � , α̌k−1, ȧi0, � , ȧil−1
, Ȧ , ξ̌ , y) ∧ ϕ(α̌0, � , α̌k−1, ȧi0, � , ȧil−1

, Ȧ , ξ̌ , y ′)→ y =

y ′).

Then

q ȧi∗ = ȧi∗∗ .

This is a contradiction since the weakest condition 1 forces that the Cohen reals ȧi are
pairwise distinct. �

Theorem 141. (Paul Cohen) If ZF is consistent then ZF + ¬AC is consistent. Hence
the Axiom of Choice is independent from ZF.
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