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Das Wesen der Mathematik
liegt in threr Freiheit (GEORG CANTOR)

Aus dem Paradies, das Cantor uns geschaffen,
soll uns niemand vertreiben kénnen (DAVID HILBERT)

1 Introduction

What is Mathematics?

This a grand question and the main challenge for the philosophy of mathematics. A modest
attempt would be to say that mathematics deals with mathematical objects and describes them
in a mathematical language. Mathematical objects are usually considered or treated as objec-
tively existing, like numbers or geometric objects, or as created by definitions or existence postu-
lates. It seems that numbers like 0, 1, 2, ... are simply “there” and can be treated like physical
objects, although this pragmatic viewpoint becomes problematic on closer inspection. One can
define complicated objects like the collection of all twin primes, a collection which appears to be
very concrete and very illusive at the same time. Properties of existing and/or created mathe-
matical objects are expressed in a precise formal language which for the layman is a hallmark of
mathematics.

By all accounts, existence in mathematics is different from ordinary existence. Even if the
collection of twin primes “exists”, we do not attempt to grasp it by our usual means of percep-
tions. We do not go near it to measure or see it, like we would with all other kinds of physical
objects. If somebody claims that the collection is infinite, we would only accept a mathematical
proof of this statement and not any other kind of evidence like physical experiments or observa-
tions, historical records, or public opinions. So even if we hold that the collection of twin primes
exists, we treat it in a hypothetical and formal way: if T were the collection of twin primes then
T would be infinite.

Depending on personal world views a similar criticism, though not very pragmatic, could im
principle be held against ordinary existence of objects like tables and chairs. The natural sci-
ences, confronted with a myriad of different phenomena have always tried to understand them
through abstraction and unification. One can see tables and chairs made up from common
building blocks like molecules and atoms. This analysis surely misses some aspects of a chair,
but has been incredibly helpful for the advancement of knowledge. In physics the search is
always on for encompassing world formulas. It is conceivable that such formulas do not speak
about concrete physical objects but about some illusive notions like spaces, fields, symmetries,
whose existence might be as problematic as that of mathematical objects.

Can we thus proceed to find mathematical “world formulas” which talk about some funda-
mental objects and which govern the behaviour or familiar higher objects like numbers and fig-
ures? A unified foundation for all of mathematics would explain and secure the applicability of
one mathematical theory to another one. If number theory and geometry are parts of one bigger
consistent theory then it becomes clear why one cannot derive results in number theory which
contradict results in geometry.
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What should the fundamental objects for mathematics be? Since we cannot expect them to
exist in naive ways there will be many degrees of freedom, and the choice between various pro-
posals is a matter of practicality, aesthetics, and agreement among the practitioneers. It is fair
to say that set theory has been accepted as the basic theory for mathematics almost universally.
We shall see that numbers, spaces, functions, figures, etc. can be considered as sets and that
appropriate set theoretical assumptions imply that numbers, spaces, etc. have their familiar
properties. This is analogous to the explanation of macroscopic friction, say, by assuming the
the surfaces of bodies are made up from atoms with mutual attractions and repulsions. The
microscopic theory is justified if it can provide macroscopic theories which correspond to our
expectations. Set theory satisfies that criterion to a very high degree.

After the establishment of a successful theory, that theory poses questions of its own. In a
theory of atoms one can ask what happens when particles collide with high velocities in a
vacuum, although this question may seem irrelevant to the friction of tables and chairs. Simi-
larly, set theory has developed its own questions. These are mostly concerned with infinity,
transcending the concrete infinities given by collections of numbers or space points. One can
view the theory of infinity as going to extreme frontiers of mathematics and mathematical
knowledge.

At these frontiers there are many mathematical questions which cannot be decided by the
standard assumptions and methods. In contrast to DAVID HILBERT’s “es gibt kein ignorabimus”
one is able to show rigorously that certain statement cannot be proved or disproved from the
axioms. This is analogous to the undecidability of the parallel postulate from the other geomet-
rical axioms. In set theory we shall encounter and prove such phenomena in connection with the
axiom of choice. It is a tribute to mathematics that mathematics has often been able to mathe-
matically prove its limitations, be it in geometry, algebra, logic, or set theory.

Elements of Set Theory

We want to exemplify some aspects of set theory which will be crucial for the further devel-
opment.

Set-theoretic Reconstructions of Mathematical Objects

In current mathematics, many notions are explicitely defined using sets, e.g., a geometric
figure is a set of points, usually given by some definition. The following example indicates that
also notions which are not set theoretical prima facie can be construed set theoretically:

f is a real funktion = f is a set of ordered pairs (x, f(x)) of real numbers;

(z,y) is an ordered pair = (x,y) is a set ...{z,y}... ;

z is a real number = x is a left half of a DEDEKIND cut in Q = z is a subset of
Q, such that ... ;

r is a rational number = 7 is an ordered pair of integers, such that ... ;

z is an integer = z is an ordered pair of natural numbers (= non-negative inte-
gers);

N={0,1,2,...};

0 is the empty set;
1 is the set {0};
2 is the set {0, 1}; etc. etc.

We shall see that all mathematical notions can be reduced to the notion of set.
Sets

GEORG CANTOR characterized sets as follows:

Unter einer Menge verstehen wir jede Zusammenfassung M von bestimmten,
wohlunterschiedenen Objekten m unsrer Anschauung oder unseres Denkens
(welche die “Elemente” von M genannt werden) zu einem Ganzen.
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If m is an element of M one writes m € M. If all mathematical objects are reducible to sets,
both sides of these relation have to be sets. This means that set theory studies the € -relation
m € M for arbitrary sets m and M. As it turns out, this is also sufficient for the purposes of set
theory and mathematics. In set theory variables range over the class of all sets, the € -relation
is the only undefined structural component, every other notion will be defined from the € -rela-
tion. Basically, set theoretical statement will thus be of the form

LVr. 3y...... TEY..U=T...,
belonging to the first-order predicate language with the only given predicate € . To deal with

the complexities of set theory and mathematics one develops a comprehensive and intuitive
aparatus of abbreviations and definitions which allows to write familiar statements like

eim=—1

and to view them as a statement of set theory. The language of set theory may be seen as a
low-level, internal language. The language of mathematics possesses high-level “macro” expres-
sions which abbreviate low-level statements in an efficient and intuitive way.

Infinite Cardinalities

The infinite possesses unusual and partially counterintuitive properties. The set E = {0, 2, 4,
6, ...} of even numbers has just as many elements as the set N = {0, 1, 2, 3, ...} of all natural
numbers since the map

ffNoE, n—2-n
is a bijection between IN and IE. Note that all these notions like natural number, odd, even,
map, bijection will later be redefined as set-theoretical notions. One says that N and [E have the
same cardinality, and that they are both countable. This equality contradicts the traditional
principle that “the part is smaller than the whole”.

On December 12, 1873, GEORG CANTOR made a crucial discovery which may be taken as
the beginning of set theory:

Theorem 1. The set R of real numbers is not countable.

Proof. Assume that f:N« R is bijective. Define a decimal number
r=0,rorire...
by:
r; =0, if the i-th decimal position of f(i) is a 1, and r; =1 otherwise.
Since f is surjective, take a natural number n such that » = f(n). By definition 7, # the n-th
decimal position of f(n) and thus
rn, # the n-th decimal position of r = r,,.

Contradiction. 0

By this fundamental theorem the cardinality of the set R is strictly bigger than the cardi-
nality of IN. CANTOR’s diagonal argument can be applied to other sets, yielding higher and
higher cardinalities. Thus the theory of infinite sets encompasses a rich theory of higher infini-
ties. Infinitary combinatorics has some unusual properties. E.g., the real line R and the real

plane R x R have the same cardinality, higher dimension does not necessarily lead to higher car-
dinalities.

The Aziom of Choice

One often constructs sequences (a;);cs as follows:

for ¢ € I choose a; such that a; satisfies ... .
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This seems to be a straightforward generalization of an unproblematic procedure for finite sets
I. The possibility of infinitely many simultaneous choices cannot be proved directly and is usu-
ally postulated as the aziom of choice (AC). The axiom of choice is important in many areas of
mathematics. It is crucial for a smooth theory of infinite cardinalities. On the other hand it has
problematic, counterintuitive consequences.

The ZERMELO-FRAENKEL Axioms of Set Theory

The critical discussion of the axiom of choice and related principles lead to the first axioma-
tization of set theory by ERNST ZERMELO. We shall deal with the axiom system ZF named
after ZERMELO and ABRAHAM FRAENKEL. It is now recognized as the standard and universal
axiomatization of set theory. After sufficiently developing ZERMELO-FRAENKEL set theory we
shall study axiomatic aspects of set theory.

The Continuum Hypothesis

After proving that the set R is uncountable, CANTOR formulated the continuum hypothesis
according to which R possesses the next cardinality above the cardinality of N:

card(N) =Ng and card(R) =R .
This may be reformulated as:

for every infinite set X C R of real numbers, either there exists a bijection X < IN
or there exists a bijection X < R.

The continuum and its generalizations imply strong combinatorial properties.
Independence

The ZF-axioms are subject to the incompleteness theorems of KURT GODEL: there are set
theoretical statements which cannot be proved or disproved from the axioms. This independence
does not only affect self-referential statements similar to the liar paradozon (“this sentence
cannot be proved from the axioms”), but also natural properties like the axiom of choice or the
continuum hypothesis. We shall prove this by constructing differing models of set theory in
which these statements are true or false.

2 The ZERMELO-FRAENKEL Axioms

CANTOR’s naive description of the notion of set suggests that for any mathematical statement in
©(z) in one free variable x there is a set y such that

ey p(z),

i.e., y is the collection of all sets = which satisfy ¢ . Setting ¢(x) to be x ¢ = this becomes
rey—rtx,

and in particular for z=y:
yEY—y¢y.

This contradiction is usually denoted RUSSELL’s paradox. It shows that the formation of sets as
collections of sets by arbitrary formulas is not consistent. ZERMELO’s main idea was to restrict
the formulas allowed in the formation of sets. The following axiom system extends the original
ZERMELO axioms by contributions by FRAENKEL, MIRIMANOFF, and SKOLEM.

Definition 2. The system ZF of the ZERMELO-FRAENKEL axioms of set theory consists of the
following axioms:
a) The set existence axiom (Ex):

JaVy—-yex
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- there 1s a set without elements, the empty set.
b) The axiom of extensionality (Ext):
VaVy(Vz(z €z z€y)—ax=1y)
- a set is determined by its elements, sets having the same elements are identical.
¢) The pairing axiom (Pair):
VaVyIzVw(u €z u=aVu=y).
- z 18 the unordered pair of x and y.
d) The union axiom (Union):
VedyVz(z € y— Jw(w €z A z € w))
-y is the union of all elements of x.
e) The separation schema (Sep) postulates for every € -formula p(z,1,...,%n):
V. VeYedyWz(z €y z€x A (2,21, ..., Tp))
- this is an infinite scheme of axioms, the set z consists of all elements of x which satisfy
©.
f) The powerset axiom (Pow):
VedyVz(z € y = Vw(w € z—w €x))
-y consists of all subsets of x.
g) The replacement schema (Rep) postulates for every € -formula p(x,y,x1,...,Ty):
V.. Ve,(VavVyvy' ((e(z, ¥y, 21, .-, 2n) A p(z, ¥ 21, .. xn)) — y=9y') —
VudwWy (yeve Fz(zeunp(z, y, z1,...,20))))
- v is the image of u under the map defined by .
h) The axiom of infinity (Inf):

Jx(Fy(yexAVzzey) AVy(ycr— Iz(zex AVuw(w Ez—weyVw=y))))

- by the closure properties of x, x has to be infinite.

i) The foundation schema (Found) postulates for every € -formula ¢(x,x1,...,%n):
Voy..Vo,(Fre(x, 21, ..., x0) — F2(@(x, 21, .00y ) AVZ (2 €2 — —0(2), 21,4 ..., T2))))

- if ¢ is satisfiable then there are € -minimal elements satisfying .

Note that the axiom system is an infinite set of axioms. It seems unavoidable that we have to go
back to some previously given set notions to be able to define the collection of set theoretical
axioms - another example of the frequent circularity in foundational theories.

We shall discuss the axioms one by one and simultaneously introduce the logical language
and useful conventions.

2.1 Set Existence

The set existence axiom
JaVy ~yex,

like all axioms, is expressed in a language with quantifiers 3 (“there exists”) and V (“for all”),
which is familiar from the e-d-statements in analysis. The language of set theory uses variables
Z, Yy, ... which may satisfy the binary relations € or =: z € y (“x is an element of y’) or x =y .
These elementary formulas may be connected by the propositional connectives A (“and”), V
(“or”), — (“implies”), <« (“is equivalent”), and — (“not”). The use of this language will be
demonstrated by the subsequent axioms.
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2.2 Extensionality
The axiom of extensionality
VavVr'(Vy(yez—yea’) -z =2a')
expresses that a set is exactly determined by the collection of its elements. This allows to prove
that there is exactly one empty set.

Lemma 3. VaVa/'(Vy ~y€x AVy ~y€a’ —x=1’).

Proof. Consider x, 2’ such that Vy ~y € x AVy -y € x’. Consider . Then —y € z and -y € z’.
This implies Vy(y € z < y € 2’). The axiom of extensionality implies z =z’. O

Note that this is a formal proof in the sense of mathematical logic. The sentences of the
proof can be derived from earlier ones by purely formal deduction rules. The rules of natural
deduction correspond model common sense figures of argumentation which treat hypothetical
objects as if they would concretely exist.

2.3 Pairing
The pairing axiom
VaVydzVu(u €z u=acVu=y)
postulates that for all sets =, y there is set z which may be denoted as
z={z,y}.
This notation abbreviates the formula
Vu(u€z—u=cVu=y).

The language of mathematics which we are about to introduce will consist of many such abbre-
viations. The abbreviations are chosen for intuitive, pragmatic, or historical reasons. Using the
notation for unordered pairs, the pairing axiom may be written as

VaVy3dz z={x,y}.

By the axiom of extensionality, the term-like notation has the expected behaviour. E.g.:
Lemma 4. VaVyVzVz' (z={x,y} A2/ ={a,y} - 2=2').
Proof. Exercise. 0

Note that we use a number of notational conventions: variables have to be chosen in a rea-
sonable way, for example the symbols z and 2’ in the lemma have to be taken different and dif-
ferent from z and y. We also assume some operator priorities to reduce the number of brackets:
we let A bind stronger than Vv, and V stronger than — and <.

We used the “term” {z, y} to occur within set theoretical formulas. This abbreviation is than
to be expanded in a natural way, so that officially all mathematical formulas are formulas in
the “pure” € -language. We want to see the notation {x, y} as an example of a class term. We
define uniform notations and convention for such abbreviation terms.

Definition 5. A class term is of the form {x|¢} where x is a variable and ¢ € LS. If {z|¢}
and {y|v¥} are class terms then

—  u € {z|¢} stands for @% , where @% is obtained from ¢ by (resonably) substituting the
variable x by the variable u ;

—  u={x|p} stands for Yv(vEu— @%);

—  {z|p}=u stands for V’U((p%H’UEU),’
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— {alg}={yl¥} stands for Vo (gt o b2,
— A{z|p} €u stands for v(veunv={x|p};
— {elp}e{ylv} stands for Jo(EAv={cle}).

A term is either a variable or a class term.

We shall further extend this notation give suggestive or traditional names to important for-
mulas and class terms.
Definition 6.

a) O:={z|x+x} is the empty set;

b) V:={x|z=ua} is the universe (of all sets);

¢) {z,y}:={ulu=xVu=y} is the unordered pair of x and y.

Lemma 7.
a) DeV.
b) Vz,y{z,y}teV.

Proof. a) ) € V abbreviates the formula
Fv(v=vAv=0).
This is equivalent to Jvv =( which again is an abbreviation for
FoVw (w € v w+#w).

This is equivalent to JvVww ¢ v which is equivalent to the axiom of set existence. So @ € V is
another way to write the axiom of set existence.
b) Va,y {x,y} €V abbreviates the formula

Ve, yIz(z=2zNz={z,y}).
This can be expanded equivalently to the pairing axiom

Va,yIzVu(u €z u=xzVu=y). O

So a) and b) are concise equivalent formulations of the axiom Ex and Pair.
We also introduce bounded quantifiers to simplify notation.

Definition 8. Let A be a term. Then Va € A stands for Va(x € A— ¢) and Iz € A stands
for x(zx e AN ).
Definition 9. Let z,vy, z,... be variables and X,Y , Z,... be class terms. Define
a) XCY:=VeeXzeY, X is a subclass of Y;
b) XUY :={z|lreXVzeY} is the union of X and Y;
¢) XNY :={z|lre X Az €Y} is the intersection of X and Y;
d) X\Y:={z|lxre X ANz ¢ Y} is the difference of X and Y;
) U X:={z|FyeXxecy} is the union of X ;
f) N X:={z|Vye Xz ey} is the intersection of X ;
)
)
)
)

gy

g9) P(X):={z|x C X} is the power class of X;

h) {X}:={x|lx=X} is the singleton set of X;
{X,Y}h={x|]r=XVa=Y} is the (unordered) pair of X and Y;
{Xoy., Xnab:={z|lz=XoV..Vz =X, _1}.

1

J
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One can prove the well-known boolean properties for these operations. We only give a few
examples.

Proposition 10. X CYAY CX—-X=Y.
Proposition 11. |J {z,y}=zUvy.

Proof. We show the equality by two inclusions:
(C). Letuel {z,y}. vwe{r,ytAuecv). Letve{z,y} Aucv. (v=xVv=y)Aucw.
Case 1. v=xz. Thenuecx. uexVuecy. HenceuecaxUy.
Case 2. v=y. Thenuecy. uexVuecy. HenceuecaxUy.
Conversely let ucxUy. uexVuey.
Case 1. u€x. Then x € {z,y} Auecz. w(we{r,y}Aucv)and uel {z,y}.
Case 2. u€y. Then x € {z,y} Auecz. wwe{r,y}Aucv)and uel {z,y}. O

Exercise 1. Show:a) |JV=V.b) N V=0.¢) U0h=0.d) NO=V.

Combining objects into ordered pairs (x, y) is taken as an undefined fundamental operation
of mathematics. We cannot use the unordered pair {x, y} for this purpose, since it does not
respect the order of entries:

{z,yt={y,z}.

We have to introduce some asymmetry between x and y to make them distinguishable. Fol-
lowing KURATOWSKI and WIENER we define:

Definition 12. (z,y):={{x}, {x,y}} is the ordered pair of x and y.

The definition involves substituting class terms within class terms. We shall see in the fol-
lowing how these class terms are eliminated to yield pure €-formulas.

Lemma 13. VaVy3zz=(x,y).

Proof. Consider sets x and y. By the pairing axiom choose u and v such that v = {x} and v =
{z,y}. Again by pairing choose z such that z={u,v}. We argue that z=(x, y). Note that
(#,9) = {{z h {2, y}} = {wlw = {z} Vo ={z, y}}
Then z = (z,y) is equivalent to
Vw(wez—w={z}vVw={z,y}),
Vww=uVw=ve (w={z}Vw={z,y}),
and this is true by the choice of u and v. O

The KURATOWSKI-pair satisfies the fundamental property of ordered pairs:
Lemma 14. (z,y)=(2',y') —wxz=2'Ay=1".

Proof. Assume (z,y)=(z',y'), ie.,
(1) (Lo} {2y} = Lo'h (s '
Case 1. x=1y. Then
{o}={z, 4},
[} {oyH = (o} fo b = (o)),
o= (' h (2 y'
{z}={2'} and z =2/,
{z}={z',y'} and y' ==.
Hence x =2’ and y =x =y’ as required.
Case 2. x#+y. (1) implies
(o} = {w} or {a'} ={, y}.
The right-hand side would imply =’ =y, contradicting the case assumption. Hence
{z'}={z} and ' ==.
Then (1) implies
{ZL',y}:{ZL'/,y/}:{SC,y/} andy:y/' O
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Exercise 2.

a) Show that (z, y) := {{z, 0}, {y, {0}}} also satisfies the fundamental property of ordered pairs (F.
HAUSDORFF).

b) Can {z,{y,0}} be used as an ordered pair?

Exercise 3. Give a set-theoretical formalization of an ordered-triple operation.

Ordered pairs allow to introduce relations and functions in the usual way. One has to distin-
guish between sets which are relations and functions, and class terms which are relations and
functions.

Definition 15. A term R is a relation if all elements of R are ordered pairs, i.e., RCV x V.
Also write Rxy or xRy instead of (z,y) € R. If A is a term and R C A x A then R is a rela-
tion on A.

Note that this definition is really an infinite schema of definitions, with instances for all
terms R and A . The subsequent extensions of our language are also infinite definition schemas.
We extend the term language by parametrized collections of terms.

Definition 16. Let t(Z) be a term in the variables & and let ¢ be an € -formula. Then
{t(@)|p} stands for {z|3Z(p A z=1t(Z)}.
Definition 17. Let R, S, A be terms.

a) The domain of R is dom(R):={z|Jyx Ry}.
) The range of R is ran(R):={y|3zx Ry}.
) The field of R is field(R):= dom(R)Uran(R).
) The restriction of R to A is Rl A:={(x,y)[xRynz € A}.
) The image of A under R is R[A]:= R"A:={y|3x € AxRy}.
)
)
)

& o >

(9]

The preimage of A under R is R™1[A]:={x|3y€ Az Ry}.
The composition of S and R (“S after R”) is So R:={(z,2)|Jy(x Ry A ySz)}.
The inverse of R is R~ ={(y, )|z Ry}.

~

IS NS

Relations can play different roles in mathematics.

Definition 18. Let R be a relation.
a) R is reflexive iff Vz €field(R) xRz .
R is irreflexive iff Va €field(R) ~zRx .
R is symmetric iff Va,y(x Ry— yRx).
R is antisymmetric iff Va,y(zRyAyRx—xz=vy).

)
)
)
e) R is transitive iff Vo,y,z (xRyAyRz—xRz).
) R is connex iff Va,y€field(R)(xRyVyRxVa=y).
) R is an equivalence relation iff R is reflexive, symmetric and transitive.
)

Let R be an equivalence relation. Then [z]g : = {y|yRx} is the equivalence class of x
modulo R .

It is possible that an equivalence class [z]g is not a set: [z]g ¢ V . Then the formation of the col-
lection of all equivalence classes modulo R may lead to contradictions. Another important
family of relations is given by order relations.

Definition 19. Let R be a relation.

a) R is a partial order iff R is reflexive, transitive and antisymmetric.
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b) R is a linear order iff R is a connex partial order.

c) Let A be a term. Then R is a partial order on A iff R is a partial order and field(R) =
A.

d) R is a strict partial order iff R is transitive and irreflezive.
e) R is a strict linear order iff R is a connez strict partial order.

Partial orders are often denoted by symbols like <, and strict partial orders by <. A common
notation in the context of (strict) partial orders R is to write

IpRqp and VpRqyp for Ip(pRg A ¢) and Vp(pRqg— ¢) resp.

One of the most important notions in mathematics is that of a function.

Definition 20. Let F be a term. Then F is a function if it is a relation which satisfies
Ve, y,y (tFyheFy' —y=1y’).
If Fis a function then
F(z):={ulVy(zFy—uecy)}
s the value of F at x.
If Fis a function and x Fy then y = F(z). If there is no y such that x Fy then F(z) =V;

the “value” V at x may be read as “undefined”. A function can also be considered as the
(indexed) sequence of its values, and we also write

(F(x))zea or (Fi)zeca instead of F: A—V.

We define further notions associated with functions.

Definition 21. Let F', A, B be terms.

a) F is a function from A to B, or F: A — B, iff F is a function, dom(F) = A, and
range(F)C B.

b) Fis a partial function from A to B, or F: A — B, iff F is a function, dom(F) C A, and
range(F)C B.

¢) Fis a surjective function from A to B iff F: A— B and range(F)=B.
d) Fis an injective function from A to B iff F: A— B and
Ve, o' e A(x+ a2’ — F(x)+# F(z'))
e) Fis a bijective function from A to B, or F: A< B, iff F: A— B is surjective and injec-
tive.

f) AB:={f|f: A— B} is the class of all functions from A to B.

One can check that these functional notions are consistent and agree with common usage:
Exercise 4. Define a relation ~ on V by
r~ye——3If fizeoy.

One say that = and y are equinumerous or equipollent. Show that ~ is an equivalence relation on V. What
is the equivalence class of §? What is the equivalence class of {0} ?

Exercise 5. Consider functions F: A— B and F’: A— B. Show that
F=F'iff Va€ A F(a)=F'(a).

2.4 Unions
The union azxiom reads

VedyVz(z € y— Jw(w ez Az € w)).



THE ZERMELO-FRAENKEL AXIOMS 11

Lemma 22. The union aziom is equivalent to Yz | ) z € V.

Proof. Observe the following equivalences:
Vel zeV
=Vedy(y=yry=U z)
—VrdyVz(zey—zel )
—VeIyVz(zey—Jwerzew)
which is equivalent to the union axiom:. O

Note that the union of z is usually viewed as the union of all elements of x:

Uz=UJ

weT

U ta)={z1Fac Az et(a)}.

acA

where we define

Combining the axioms of pairing and unions we obtain:
Lemma 23. Vxo,...,2n—1{Z0,...,Zn—1} EV.

Note that this is a schema of lemmas, one for each ordinary natural number n . We prove
the schema by complete induction on n .

Proof. For n =0, 1,2 the lemma states that 0 € V, Vz {z} € V, and Vz, y {z, y} € V resp., and
these are true by previous axioms and lemmas. For the induction step assume that the lemma
holds for n, n>1. Consider sets zg, ..., z,. Then

{zo, ..oy zn}={x0,..., 2n_1} U{xn}.

The right-hand side exists in V' by the inductive hypothesis and the union axiom. O

2.5 Separation

It is common to form a subset of a given set consisting of all elements which satisfy some condi-
tion. This is codified by the separation schema. For every € -formula ¢(z,x1,...,2,) postulate:

Vry.. Ve, VeIywWz(z e y— zex Ap(z, 21, ..., Tp)).

Using class terms the schema can be reformulated as: for every term A postulate
VeANnzeV.

The crucial point is the restriction to the given set . The unrestricted, FREGEan version A € V
for every term A leads to the RUSSELL antinomy. We turn the antinomy into a consequence of
the separation schema:

Theorem 24. V¢ V.

Proof. Assume that V € V. Then Jdzxxz =V. Take z such that x =V. Let R be the RUSSELLian
class:

R:={z|r¢z}.
By separation, y:= RNz € V. Note that RNz=RNV =R. Then
yey—yeR—ydy,
contradiction. 0

This simple but crucial theorem leads to the distinction:

Definition 25. Let A be a term. Then A is a proper class iff A¢ V.
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Set theory deals with sets and proper classes. Sets are the favoured objects of set theory, the
axiom mainly state favorable properties of sets and set existence. Sometimes one says that a
term A exists if A € V. The intention of set theory is to construe important mathematical
classes like the collection of natural and real numbers as sets so that they can be treated set-the-
oretically. ZERMELO observed that this is possible by requiring some set existences together
with the restricted separation principle.

Exercise 6. Show that the class {{z}|x € V'} of singletons is a proper class.

2.6 Power Sets
The power set axiom in class term notation is
VeP(x)eV.

The power set axiom yields the existence of function spaces.

Definition 26. Let A, B be terms. Then
AxB:={(a,b)jac ANbe B}
is the cartesian product of A and B.

Exercise 7.

By the specific implementation of KURATOWSKI ordered pairs:
Lemma 27. Ax BCP(P(AUB)).

Proof. Let (a,b) € A x B. Then

a,b € AUB
{a},{a,b} C AUB
{a},{a,b} € P(AUB)
(a,b) = {{a},{a,b}} C P(AUB)
(a,0) = {{a}, {a,0}} € P(P(AUB))

Theorem 28.
a) Ve, yxxyeV.
b) Ve, y *yeV.

Proof. Let x, y be sets. a) Using the axioms of pairing, union, and power sets, P(P(z U y)) €
V. By the previous lemma and the axiom schema of separation,

rxy=(@xy)NPPxUy))eV.
b) *y CP(x X y) since a function f:x— y is a subset of x x y. By the separation schema,
Ty="yNPlxxy)eV. O
Note that to “find” the sets in this theorem one has to apply the power set operation repeatedly.
We shall see that the universe of all sets can be obtained by iterating the power set operation.

The power set axiom leads to higher cardinalities. The theory of cardinalities will be devel-
oped later, but we can already prove CANTOR’s theorem:

Theorem 29. Let z € V.
a) There is an injective map f:x— P(x).

b) There does not exist an injective map g: P(x) = x .
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Proof. a) Define the map f:x— P(z) by u— {u}. This is a set since
f={(u,{u)juezr}CaxPx)eV.
f is injective: let u,u’ €z, u#u'. By extensionality,
fu)={u}#{u'} = f(u).
b) Assume there were an injective map g: P(x) — x. Define the CANTORean set
c={ulucxzAud¢ g~ (u)} € P(z).
Let up=g(c). Then g~ (ug) =c and

up € cugd g H(ug) =c.

Contradiction. O

2.7 Replacement

If every element of a set is definably replaced by another set, the result is a set again. The
schema of replacement postulates for every term F :

F is a function — Vz F[z] €V .

Lemma 30. The replacement schema implies the separation schema.

Proof. Let A be a term and z€ V.
Case 1. ANz =0. Then ANz €V by the axiom of set existence.
Case 2. ANz +#(. Take up€ ANx. Define a map F:z— x by

F(u):{ u,ifue ANz
ug , else
Then by replacement

ANx=Fx]eV

as required. O

2.8 Infinity

All the axioms so far can be realized in a domain of finite sets, see exercise 777. The true power
of set theory is set free by postulating the existence of one infinite set and continuing to assume
the axioms. The aziom of infinity expresses that the set of “natural numbers” exists. To this
end, some ‘“number-theoretic” notions are defined.
Definition 31.

a) 0:=0 is the number zero.

b) For any term t, t+1:=1tU{t} is the successor of t.
These notions are reasonable in the later formalization of the natural numbers. The axiom of
infinity postulates the existence of a set which contains 0 and is closed under successors

Jzx(0exAVnexzn+1lex).

Intuitively this says that there is a set which contains all natural numbers. Let us define set-the-
oretic analogues of the standard natural numbers:

Definition 32. Define
a) :=0+1;
b) 2:=1+1;
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c) 3:=2+1; ...

From the context it will be clear, whether “3”, say, is meant to be the standard number “three”
or the set theoretical object

3 = 20{2}
= (1+1D)Uu{1+1}
= ({0ruf{orhu{{o}u{{0}}}
= {0.{0}, {0} U {{0}}}.

The set-theoretic axioms will ensure that this interpretation of “three” has all important
number-theoretic properties of “three”.

2.9 Foundation

The azxiom schema of foundation provides structural information about the set theoretic uni-
verse V. It can be reformulated by postulating, for any term A:

A£)—Fze AANz=0.

Viewing € as some kind of order relation this means that every non-empty class has an € -min-
imal element x € A such that the € -predecessors of x are not in A. Foundation excludes circles
in the €-relation:

Lemma 33. Let n be a natural number >1. Then there are no xg, ..., T, _1 such that

TpEX1E...€ETHL_1E€ET).

Proof. Assume not and let zp€x1€...€x,,_1E€Ex9. Let
A:{:L'o,...,l'n_l}.

A=+{ since n>1. By foundation take x € A such that ANz =1.
Case 1. x=1z¢. Then x,,_1 € ANz =0, contradiction.
Case 2. x=uxz;,1>0. Then z;,_1€ANx=0, contradiction. O

Exercise 8. Show that £z +1.
Exercise 9. Show that the successor function z+— z + 1 is injective.

Exercise 10. Show that the term {z,{z,y}} may be taken as an ordered pair of = and y.

Theorem 34. The foundation scheme is equivalent to the following, PEANO-type, induction
scheme: for every term B postulate

Ve(xCB—z€B)—B=V.

This says that if a “property” B is inherited by x if all elements of x have the property B, then
every set has the property B.

Proof. (— ) Assume B were a term which did not satisfy the induction principle:
Ve(r CB—xz€B) and B+V.
Set A=V \ B#0. By foundation take z € A such that ANz =0. Then
uer—u¢ A—u€eB,

i.e.,, x C B. By assumption, B is inherited by x: = € B. But then 2 ¢ A, contradiction.
(«) Assume A were a term which did not satisfy the foundation scheme:

A+PandVee AANz+0.

Set B=V \ A. Consider x C B. Then ANz = (). By assumption, x ¢ A and z € B . Thus
Vz(z C B—x € B). The induction principle implies that B=V. Then A =0, contradiction. O
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This proof shows, that the induction principle is basically an equivalent formulation of the
foundation principle. The € -relation is taken as some binary relation without reference to
specific properties of this relation. This leads to:

Exercise 11. A relation R on a domain D is called wellfounded, iff for all terms A
0+FANACD—3zc AAN{y|yRz}=0.

Formulate and prove a principle for R-induction on D which coressponds to the assumption that R is well-
founded on D.

2.10 Axiom Systems
Using class terms, the ZF can be formulated concisely:

Theorem 35. The ZF axioms are equivalent to the following system; we take all free variables
of the axioms to be universally quantified:

a) Ez: DeV.

=

) Ext: x CyhyCr—x=y.

) Pair: {z,y}eV.

) Union: |J ze€V.

) Sep: ANz eV.

) Pow: P(z)eV.

) Rep: Fis a function — Flz]€V.
h) Inf: Ix(0€exAVnexn+1ex).

i) Found: A0 —3zxc AANz=0.

Q@ - o & o

This axiom system can be used as a foundation for nearly all of mathematics. Axiomatic set
theory considers various axiom systems of set theory.

Definition 36. The axiom system ZF~ consists of the ZF-axioms except the power set axiom.
The system EML (“elementary set theory”) consists of the axioms Ex, Ext, Pair, and Union.



