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Prologue

These lecture notes were written for a lecture course on constructibility and fine
structure theory at the University of Bonn in the summer term of 2007.
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Chapter 1
Introduction
After the bround-breaking independence results of Paul J . Cohen , foundational
set theory is axiomatic set theory - the study of various axiomatic systems for sets
and of models of these systems. The Zermelo-Fraenkel axioms ( ZF) are usu-
ally taken as a base system adequate for most mathematical purposes. By the
Gödel incompleteness theorems , this system cannot decide certain questions.
Gödel and Cohen showed that the incompleteness phenomenon is not restricted
to artificial, e. g. , self-referential statement, but it extends to core mathematical
properties like the axiom of choice ( AC) and Cantor ’ s continuum hypothesis
( CH) , in spite of the general mathematical strength of ZF.

One of the most important results of axiomatic set theory is Kurt Gödel ’ s
proof of the unprovability of the negation of the continuum hypothesis, i. e. , its
( relative ) consistency , in notes and articles published between 1 938 and 1 940 [ 3] ,
[ 5 ] , [ 4] , [ 6] . Gödel presented his results in various forms which we can subsume
as follows: there is a set-theoretic term L , called the constructib le universe or the
class of constructib le sets , such that

ZF ` “(L , ∈ ) � ZF + the axiom of choice (AC) + CH”.

So the Zermelo-Fraenkel axiomatic system ZF “sees” a model for the stronger
theory ZF + AC + CH. If the system ZF is consistent, then so is ZF+AC+CH.
The potentially problematic axioms AC and CH may be assumed without
increasing the danger of contradictions. Later, Paul Cohen has complemented
these results by showing the relative consistencies of ZF + AC + ¬CH and ZF + ¬
AC. The axioms AC and CH are thus independent of ZF in way which is similar
to the independence of the parallel postulate from the basic geometric axioms.

In ZF, the constructible universe has many remarkable properties. L is the ⊆ -
minimal inner model of ZF, i. e. , the ⊆ -smallest model of ZF which is transitive
and contains the class Ord of ordinals. It has a very uniform structure and heuris-
tically it appears that “ordinary” mathematical statements ϕ are decided in L , i . e. ,

ZF ` “(L , ∈ ) � ϕ” or ZF ` “(L , ∈ ) � ¬ϕ”.
L satisfies strong combinatorial principles which can be used for the construc-

tion of specific structures. Ronald Jensen developed a fine structural analysis
of L to prove novel principles like ♦ or � . The study of L also has global conse-
quences outside the model L . The famous Jensen covering theorem states that if
the set theoretical universe deviates much from L then there must be inner
models with large cardinals .
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The construction of the constructible universe is motivated by the idea of
recursively constructing a minimal model of ZF. The central ZF-axiom is Zer-
melo ’ s comprehension schema ( axiom of subsets ) : for every ∈ -formula ϕ ( v , w

�

)
postulate

∀x∀p� {v ∈ x | ϕ ( v , p
�

) } ∈ V.
This requires closing up under operations like

(x , p
�

) � {v ∈ x | ϕ ( v , p
�

) } ,
but with the difficulty where to evaluate the formula ϕ . This instance of compre-
hension has to be satisfied in the model to be built eventually, and the quantifiers
of ϕ may have to range about sets which have not yet been included in the con-
struction. To avoid circularities, one evaluates the formula in the sets already con-
structed and considers modified definability operations

(x , p
�

) � {v ∈ x | (x , ∈ ) � ϕ ( v , p
�

) } .

The set {v ∈ x | (x , ∈ ) � ϕ ( v , p
�

) } is determined by the parameters x , ϕ , p
�

. We shall
later view {v ∈ x | (x , ∈ ) � ϕ ( v , p

�

) } as the interpretation of the name ( x , ϕ , p
�

) and
base our fine structure theory on this perspective.

These lecture notes present a comprehensive constructibility theory from the
definition of the constructib le hierarchy to advanced combinatorial principles like
� and morass and some applications. We follow the further development of con-
structibility theory via the Jensen covering theorem up to the core model of
Tony Dodd and Jensen . The treatment is based on the hyperfine structure
theory of Sy Friedman and the present author. Roughly speaking, hyperfine
structure theory refines Gödel ’ s constructible hierarchy so that it can be used
like a Silver machine . Such machines were defined by Jack Silver to simplify
applications of Jensen ’ s fine structure theory; Silver machines suffer, however,
from their abstract nature which is only connected to the constructible universe
through rather awkward coding. In hyperfine structure theory the uniform combi-
natorics of Silver machines is used in the intuitive context of Gödel ’ s canonical
hierarchy.

This book owes a great deal to previous presentations of constructibility
theory:

− Keith Devlin. Constructibility. Springer

− Sy Friedman and Peter Koepke. An elementary approach to the fine struc-
ture of L . Bulletin on Symbolic Logic, 1 997

− Kurt Gödel. The consistency of the axiom of choice and of the generalized
continuum-hypothesis. Proc. of the Nat. Acad. of Sciences USA , 24: 556–
557, 1 938.

− Ronald Jensen. The fine structure of the constructible hierarchy. Annals of
Mathematical Logic , 1 972
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Chapter 2
The Language of Set Theory
The intuitive notion of set was described by Georg Cantor :

Unter einer Menge verstehen wir jede Zusammenfassung M von
bestimmten, wohlunterschiedenen Objekten m unsrer Anschauung
oder unseres Denkens (welche die , , Elemente“ von M genannt
werden) zu einem Ganzen. [Cantor , S . 282 ; By a set we under-
stand every col lection M of definite , distinguished objects m of our
perceptions or thoughts (which are called the “elements” ofM) into a
whole . ]

The idea of a col lection ( “Zusammenfassung”) is usually formalized by class
terms :

M = {m | ϕ (m) } .
M is the class of all m which satisfy the (mathematical) property ϕ . The transfer
from the definining property ϕ to the corresponding collection M = {m | ϕ (m) }
corresponds to the view of working with abstract “objects”, namely classes ,
instead of “immaterial” properties . How such classes, including the problematic
Russell class {m | m �

m} can reasonably and consistently be treated as mathe-
matical objects is a matter of set theoretical and foundational concern. It is usu-
ally answered by the Zermelo-Fraenkel axioms of set theory which we shall
introduce in the next chapter.

One can develop a class theory , describing properties of class terms and define
complex terms from given ones. Set theory takes the view that sets are “small”
classes. The language of class terms is thus also the language of set theory — or
even of mathematics, if we think of all of mathematics as formalized within set
theory.

2. 1 Class Terms
Classes or collections may be queried for certain elements: m is an element of
M = {m | ϕ (m) } if it satisfies the defining property ϕ . In symbols:

m ∈ M if and only if ϕ (m) .

So in m ∈ {m | ϕ (m) } the class term may be eliminated by just writing the prop-
erty or formula ϕ . Carrying out this kind of elimination throughout mathematics
shows that all mathematical terms and properties may be reduced to basic for-
mulas without class terms. The basic language can be chosen extremely small,
but we may also work in a very rich language employing class terms.
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The set theoretic analysis of mathematics shows that the following basic lan-
guage is indeed sufficient:

Definition 2. 1 . The (basic) ���������	�
����������������	������ has variab les v0 , v1 , � .
The ����� "!$#%�&��' (�)����� of the language are the formulas x = y (“x equals y”) and
x ∈ y (“x is an element of y”) where x and y are variab les. The col lection of �&��'*
 (�)����� of the language is the smallest col lection L ( ∈ ) which contains the atomic
formulas and is closed under the following rules:

− ifϕ is a formula then ¬ϕ (“not ϕ”) is a formula;

− ifϕ and ψ are formulas then ϕ ∨ ψ (“ϕ or ψ”) is a formula;

− if ϕ is a formula and x is a variab le then ∃x ϕ (“there is x such that ϕ”) is
a formula.

A formula is also cal led an ∈ -formula. As usual we understand other proposi-
tional operators or quantifiers as abbreviations. So ϕ ∧ ψ, ϕ→ ψ, ϕ↔ ψ and ∀x ϕ
stand for ¬ (¬ϕ ∨ ¬ψ) , ¬ϕ ∨ ψ, ( ϕ→ ψ) ∧ ( ψ→ ϕ ) and ¬∃x¬ϕ respectively. Also
the formula ϕ y+

x+ is obtained from ϕ by �,�	-&�.��!��$�)�$!/��� the variab les x
�

by y
�

.

This is a first-order language. If an ∈ -formula ϕ is a logical consequence of a
collection Φ of ∈ -formulas (Φ ` ϕ ) then there is a finite formal derivation of ϕ
from Φ in a first-order calculus . Such a calculus may consist of equality rules,
propositional rule and substitution rules together with quantifier rules for the
introduction and elimination of existential quantifiers.

We now introduce a rich language involving class terms.

Definition 2. 2 . A #��0���,�1�2���' is a symbol sequence of the form

{x | ϕ } ( “the class of x such that ϕ” )

where x is one of the variab les v0 , v1 , � and ϕ is an ∈ -formula. A �3���. is a
variab le or a class term. We now allow arbitrary terms to be used in (atomic) for-
mulas. A �����4�������5!768��9:����� (!;#<����' "����� is a formula of the form s = t or s ∈ t
where s and t are terms. Form the �����=���>���?!76
��9@�&��' (�)����� from the generalized
atomic formulas by the same rules as in the previous definition.

Generalized formulas can be translated into strict ∈ -formulas according to the
above intuition of class and collection. It suffices to define the elimination of class
terms for generalized atomic formulas. So we recursively translate

y ∈ {x | ϕ } into ϕ
y

x
,

{x | ϕ } = { y | ψ } into ∀z ( z ∈ {x | ϕ } ↔ z ∈ { y | ψ } ) ,
x = { y | ψ } into ∀z ( z ∈ x↔ z ∈ { y | ψ } ) ,
{ y | ψ } = x into ∀z ( z ∈ { y | ψ } ↔ z ∈ x ) ,

{x | ϕ } ∈ { y | ψ } into ∃z ( ψ
z

y
∧ z = {x | ϕ } ) ,

{x | ϕ } ∈ y into ∃z ( z ∈ y ∧ z = {x | ϕ } ) .

1 0 The Language of Set Theory



The translation of the equalities corresponds to the intuition that a class is deter-
mined by its extent rather by the specific formula defining it. If at least one of s
and t is a class term, then by the elimination procedure

s = t iff ∀z ( z ∈ s↔ z ∈ t) .
We also have x = { y | y ∈ x } where we assume a reasonale choice of variables. In
this case this means that x and y are different variables. Under the natural
assumption that our term calculus satisfies the usual laws of equality, we get

x = y iff {v | v ∈ x } = {v | v ∈ y}
iff ∀z ( z ∈ {v | v ∈ x } ↔ z ∈ {v | v ∈ y} )
iff ∀z ( z ∈ x↔ z ∈ y) .

This is the axiom of extensionality for sets, which will later be part of the set-the-
oretical axioms. We have obtained it here assuming that = for class terms is
transitive. In our later development of set theory from the Zermelo-Fraenkel
axioms one would rather have to show these axioms imply the equality laws for
class terms.

2. 2 Extending the Language

We introduce special names and symbols for important class terms and formulas.
Naming and symbols follow traditions and natural intuitions. In principle, all
mathematical notions could be interpreted this way, but we restrict our attention
to set theoretical notions. We use also many usual notations and conventions, like
x � x instead of ¬ x = x .

Definition 2. 3. Define the following class terms and formulas:

a ) ∅ : = {x | x � x } is the �� �� �;�@#������,� ;
b ) x ⊆ y : = ∀z ( z ∈ x→ z ∈ y) denotes that x is a �,�	-,#������.� of y;
c ) {x } � { y | y = x } is the �,!/�)��� �&�2�� of x ;

d ) {x , y } � {z | z = x ∨ z = y} is the ���=���9 ��� �,9�����!/� of x and y;

e ) (x , y) � { {x } , {x , y } } is the � ���9 �'����9�������!/� of x and y;

f) {x0 , � , xn− 1} � { y | y = x0 ∨ � ∨ y = xn− 1 } ;
g ) x ∩ y � {z | z ∈ x ∧ z ∈ y} is the ! � �2��������#��;!$�� of x and y;

h ) x ∪ y � {z | z ∈ x ∨ z ∈ y} is the ��� !;�� of x and y;

i ) x \ y � {z | z ∈ x ∧ z �
y} is the 9�!
	 �������=#�� of x and y;

j) x � { y | y ∈ x } is the #�� �� � �� ��� � of x;
k )

⋂
x � {z | ∀y ( y ∈ x→ z ∈ y) } is the ! � �3�������,#���!$�� of x ;

l )
⋃

x � {z | ∃ y ( y ∈ x ∧ z ∈ y) } is the �)� !$�� of x ;

2 . 2 Extending the Language 1 1



m ) P(x ) � { y | y ⊆ x } is the �)�� ��� of x;

n ) V � {x | x = x } is the ��� !���������� or the #��0���,��������/� �����$� ;
o ) x !/�<� ���&� � x ∈ V.

Strictly speaking, these notions are just syntactical objects. Nevertheless they cor-
respond to certain intuitive expectations, and the notation has been chosen
accordingly. The axioms of Zermelo-Fraenkel set theory will later ensure,
that the notions do have the expected properties.

Note that we have now formally introduced the notion of set . The variables of
our language range over sets, terms which are equal to some variable are sets. If t
is a term then

t is a set iff t ∈ V iff ∃ x (x = x ∧ x = t) iff ∃x x = t .

Here we have inserted the term t into the formula “x is a set”. In general, the sub-
stitution of terms into formulas is understood as follows: the formula is translated
into a basic ∈ -formula and then the term is substituted for the appropriate vari-
able. In a similar way, terms t0 , � , tn− 1 may be substituted into another terms
t(x0 , � , xn− 1 ) : let t(x0 , � , xn− 1 ) be the class term {x | ϕ (x , x0 , � , xn− 1 ) } ; then

t( t0 , � , tn− 1 ) = {x | ϕ (x , t0 , � , tn− 1 ) }
where the right-hand side substitution is carried out as before. This allows to
work with complex terms and formulas like

{ ∅} , {∅ , { ∅} } , x ∪ ( y ∪ z ) , x ∩ y ⊆ x ∪ y , ∅ is a set .

A few natural properties can be checked already on the basis of the laws of first-
order logic. We give some examples:

Theorem 2.4.

a ) For terms t we have ∅ ⊆ t and t ⊆ V.
b ) For terms s , t , r with s ⊆ t and t ⊆ r we have s ⊆ r.
c ) For terms s , t we have s ∩ t = t ∩ s and s ∪ t= t ∪ s .

Proof. b) Assume s ⊆ t and t ⊆ r . Let z ∈ s . Then z ∈ t, since s ⊆ t . z ∈ r , since
t ⊆ r . Thus ∀z ( z ∈ s→ z ∈ r) , i . e. , s ⊆ r .

The other properties are just as easy. �

Russell ’ s antinomy is also just a consequence of logic:

Theorem 2. 5. The class {x | x �
x } is not a set.

Proof. Assume for a contradiction that {x | x �
x } ∈ V = {x | x = x } . This trans-

lates into ∃z ( z = z ∧ z = {x | x �
x } ) . Take z such that z = {x | x �

x } . Then

z ∈ z↔ (x
�
x )
z

x
↔ z

�
z .

Contradiction. �
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2.3 Relations and Functions

Apart from sets, relations and functions are the main building blocks of mathe-
matics. As usual, relations are construed as sets of ordered pairs. Again we note
that the subsequent notions only attain all their intended properties under the
assumption of sufficiently many set theoretical axioms.

Definition 2. 6. Let t be a term and ϕ be a formula, where x
�

is the sequence of
variab les which are both free in t and in ϕ . Then write the generalized class term

{ t | ϕ } instead of { y | ∃x� ( y = t(x
�

) ∧ ϕ (x
�

) ) } .

Definition 2. 7.

a ) x × y = { (u , v ) | u ∈ x ∧ v ∈ y} is the ( #����������,!���� ) �	��&9�� #�� of x and y.

b ) x is a � ���0���$!��� � x ⊆ V × V.
c ) x is a � ���0���$!��� �� y � x ⊆ y × y.
d ) x ry � (x , y) ∈ r is the usual !/� ��� notation for relations.

e ) dom( r) � {x | ∃ y x ry} is the 9�� ��! � of r.

f) ran( r) � { y | ∃x x ry} is the � ���)��� of r.

g ) field( r) � dom( r) ∪ ran( r) is the
� ����9 of r.

h ) r � a � { (x , y) | (x , y) ∈ r ∧ x ∈ a } is the �����'�;�'!$#��;!$�� of r to a .

i ) r [a ] � { y | ∃x (x ∈ a ∧ (x , y) ∈ r } is the !/ �
��� of a under r.

j) r− 1 [ b] � {x | ∃ y ( y ∈ b ∧ ( x , y) ∈ r } is the � ���'!/ �8��� of b under r.

k ) r ◦ s � { (x , z ) | ∃ y (x ry ∧ ys z ) } is the #�� �����,!/�$!$�� of r and s .

l ) r− 1 � { ( y , x ) | (x , y) ∈ r } is the !/� �����'��� of r.

Definition 2. 8.

a ) f is a �'���=#���!$�� � f is a relation ∧ ∀x∀y∀z (x fy ∧ x fz→ y = z ) .

b ) f (x ) =
⋃ { y | x fy } is the �8���5�	� of f at x .

c ) f is a �.���=#&��!$�� from a into b � f : a→ b � f is a function ∧ dom( f ) =
a ∧ ran( f ) ⊆ b .

d ) ab � { f | f : a→ b} is the space of all functions from a into b .

e ) × g � { f | dom( f ) = dom( g) ∧ ∀x (x ∈ dom( g) → f ( x) ∈ g(x ) ) } is the
� #������3���.!;��� ��� �� 9��	#&� of g.

Note that the product of g consists of choice functions f , where for every argu-
ment x ∈ dom( g) the value f (x ) chooses an element of g(x ) .

2 . 3 Relations and Functions 1 3





Chapter 3
The Zermelo-Fraenkel Axioms
Russell ’ s antinomy can be seen as a motivation for the axiomatization of set
theory: not all classes can be sets, but we want many classes to be sets. We for-
mulate axioms in the term language introduced above. Most of them are set exis-
tence axioms of the form t ∈ V . In writing the axioms we omit all initial universal
quantifiers, i . e. , ϕ stands for ∀x� ϕ where {x� } is the set of free variables of ϕ .

Definition 3. 1 .

1 . Axiom of extensionality: x ⊆ y ∧ y ⊆ x→ x = y.

2. Pairing axiom: {x , y } ∈ V.
3. Union axiom:

⋃
x ∈ V.

4 . Axiom of infinity: ∃x ( ∅ ∈ x ∧ ∀y ( y ∈ x→ y ∪ { y} ∈ x ) ) .

5. Axiom ( schema) of subsets : for all terms A postulate: x ∩ A ∈ V.
6. Axiom ( schema) of replacement : for all terms F postulate:

F is a function → F [x ] ∈ V.
7. Axiom ( schema) of foundation: for all terms A postulate:

A � ∅ → ∃x (x ∈ A ∧ x ∩ A = ∅ ) .
8. Powerset axiom: P(x ) ∈ V.
9. Axiom of choice (AC):

f is a function ∧ ∀x (x ∈ dom( f ) → f (x ) � ∅ ) → × f � ∅ .
1 0. The Zermelo-Fraenkel axiom system ZF consists of the axioms 1 - 8.

1 1 . The axiom system ZF− consists of the axioms 1 - 7.

1 2. The axiom system ZFC consists of the axioms 1 - 9.

Remarkably, virtually all of mathematics can be developed naturally in the axiom
system ZFC: one formalizes the systems of natural, integer, rational, and real
numbers; all further notions of mathematics can be expressed by set operations
and properties. This is usually presented in introductory texts on set theory.

Note that the set theoretical axioms possess very different characters. There
are seemingly week axioms like the pairing or union axiom which postulate the
existence of concretely specified sets. On the other hand, a powerset seems to be
a vast object which is hard to specify other than by its general definition. The
theory ZF− avoids the problematic powerset axiom as well as the axiom of choice.
We shall carry out most of our initial development within ZF− . Assume ZF− for
the following exercises.
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Exercise 3. 1 . Show: a)
⋃
V = V . b)

⋂
V = ∅ . c) ⋃ ∅ = ∅ . d) ⋂ ∅ = V .

Exercise 3. 2 . Show that the term (x , y) has the fundamental properties of an ordered pair:

a) ∀x∀y∃z z = ( x , y) ;

b) ( x , y) = ( x ′ , y ′) → x = x ′ ∧ y = y ′ .

Exercise 3.3.

a) Show that 〈 x , y 〉 � { {x , ∅} , { y, { ∅} } } also satisfies the fundamental property of
ordered pairs (F. Hausdorff) .

b) Can {x , { y , ∅} } be used as an ordered pair?

Exercise 3.4. Give a set-theoretical formalization of an ordered- triple operation.

Exercise 3.5 . Define a relation ∼ on V by

x ∼ y � ∃ f f : x↔ y .

One say that x and y are equinumerous or equipol lent . Show that ∼ is an equivalence rela-
tion on V . What is the equivalence class of ∅ ? What is the equivalence class of { ∅} ?
Exercise 3.6. Consider functions F : A→ B and F ′ : A→ B . Show that

F = F ′ iff ∀a ∈ A F( a ) = F ′( a ) .

1 6 The Zermelo-Fraenkel Axioms



Chapter 4
Induction, recursion and numbers

4. 1 ∈ -induction
We work in the theory ZF− . Let us first introduce some notation:

Definition 4. 1 . Write

∃x ∈ s ϕ instead of ∃x (x ∈ s ∧ ϕ ) ,

∀x ∈ s ϕ instead of ∀x (x ∈ s→ ϕ ) ,

and

{x ∈ s | ϕ } instead of {x | x ∈ s ∧ ϕ } .
These notations use x as a bounded variable , the quantifiers ∃x ∈ s and ∀x ∈ s
are called bounded quantifiers .

The axiom of foundation is equivalent to an induction schema for the ∈ -rela-
tion: if a property is inherited from the ∈ -predecessors, it holds everywhere.

Theorem 4. 2 . Let ϕ (x , y
�

) be an ∈ -formula such that

∀x (∀z ∈ x ϕ ( z , y
�

) → ϕ (x , y
�

) ) .

Then

∀x ϕ (x , y
�

) .

Proof. Assume not. Then A � {x | ¬ϕ (x , y
�

) } � ∅ . By the foundation schema for
A take some x ∈ A such that x ∩ A = ∅ , i . e. , ∀z ∈ x x �

A . By the definition of A

¬ϕ (x , y
�

) and ∀z ∈ x ϕ ( z , y
�

) .

This contradicts the assumption of the theorem. �

4.2 Transitive Sets and Classes
Definition 4. 3. The class s is transitive iff ∀x ∈ s ∀y ∈ x y ∈ s . We write
Trans( s ) if s is transitive .

Theorem 4.4. s is transitive iff ∀x ∈ s x ⊆ s iff ∀x ∈ s x = x ∩ s .
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A transitive class is an ∈ -initial segment of the class of all sets.

Theorem 4.5.

a ) ∅ and V are transitive .

b ) If ∀x ∈ A Trans(x) then
⋂

A and
⋃

A are transitive .

c ) If x is transitive then x ∪ {x } is transitive .

Proof. Exercise . �

Exercise 4. 1 . Show that arbitrary unions and intersections of transitive sets are again
transitive.

4.3 ∈ -recursion
We prove a recursion principle which corresponds to the principle of ∈ -induction.

Theorem 4.6. Let G : V→ V. Then there is a class term F such that

F : V→ V and ∀xF(x ) = G(F � x ) .

The function F is uniquely determined: if F ′ : V → F and ∀x F ′(x ) = G (F ′ � x) .
Then

F = F ′ .

The term F is defined explicitely in the subsequent proof and is cal led the canon-
ical term defined by ∈ *3����#��)�'�,!$���-�� F(x ) = G(F � x ) .

Proof. We construct F as a union of approximations to F . Call a function f ∈ V
a G-approximation if

− f : dom( f ) → V ;

− dom( f ) is transitive;

− ∀x f (x ) = G( f � x ) .

We prove some structural properties for the class of G-approximations:
( 1 ) If f and f ′ are G-approximations then ∀x ∈ dom( f ) ∩ dom( f ′) f (x ) = f ′(x ) .
Proof. Assume not and let x ∈ dom( f ) ∩ dom( f ′) be ∈ -minimal with f (x ) �
f ′(x ) . Since dom( f ) ∩ dom( f ′) is transitive, x ⊆ dom( f ) ∩ dom( f ′) . By the ∈ -
minimality of x , f � x = f ′ � x . Then

f (x ) = G( f � x ) = G( f ′ � x) = f ′(x ) ,

contradiction. qed ( 1 )
( 2) ∀x∃f ( f is a G-approximation ∧ x ∈ dom( f ) ) .
Proof. Assume not and let x be an ∈ -minimal counterexample. For y ∈ x define

fy=
⋂
{ f | f is a G-approximation ∧ y ∈ dom( f ) } .

By the minimality of x , there at least one f such that

f is a G-approximation ∧ y ∈ dom( f ) .
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The intersection of such approximations is an approximation itself, so that

fy is a G-approximation ∧ y ∈ dom( fy) .

Then define

fx = (
⋃

y∈ x
fy) ∪ { (x , G ( (

⋃

y∈ x
fy) � x ) ) .

One can now check that fx is a G-approximation with x ∈ dom( fx) . Contradic-
tion. qed ( 2)

Now set

F =
⋃
{ f | f is a G-approximation} .

Then F satisfies the theorem. �

.

Definition 4. 7. Let TC be the canonical term defined by ∈ -recursion by

TC(x ) = x ∪
⋃

y∈ x
TC ( y) .

TC (x) is cal led the transitive closure of x .

Theorem 4.8. For all x ∈ V:
a ) TC (x) is transitive and TC (x ) ⊇ x;
b ) TC (x) is the ⊆ -smallest transitive superset of x .

Proof. By ∈ -induction. Let x ∈ V and assume that a) and b) hold for all z ∈ x .
Then
( 1 ) TC(x ) ⊇ x is obvious from the recursive equation for TC.
( 2) TC(x ) is transitive.
Proof. Let u ∈ v ∈ TC (x ) .
Case 1 : v ∈ x . Then

u ∈ v ⊆ TC ( v) ⊆
⋃

y∈ x
TC ( y) ⊆ TC (x ) .

Case 2 : v
�
x . Then take y ∈ x such that v ∈ TC ( y) . TC ( y) is transitive by

hypothesis, hence

u ∈ TC ( y) ⊆
⋃

y∈ x
TC ( y) ⊆ TC(x ) .

qed ( 2)
b) Let w ⊇ x be transitive. Let y ∈ x . Then y ∈ w , y ⊆ w . By hypothesis, TC ( y) is
the ⊆ -minimal superset of y , hence TC ( y) ⊆ w . Thus

⋃

y∈ x
TC ( y) ⊆ w

and

TC( x) = x ∪
⋃

y∈ x
TC( y) ⊆ w �

4. 3 ∈ -recursion 1 9



4.4 Ordinals
The number system of ordinal numbers is particularly adequate for the study of
the infinite. We present the theory of von Neumann -ordinals based on the
notion of transitivity.

Definition 4. 9. A set x is an ordinal if Trans(x ) ∧ ∀y ∈ x Trans( y) . Let

Ord= {x | x is an ordinal }
be the class of all ordinals.

We show that the ordinals are a generalization of the natural numbers into the
transfinite.

Theorem 4. 1 0. The class Ord is strictly well-ordered by ∈ .

Proof. ( 1 ) ∈ is a transitive relation on Ord.
Proof. Let x , y , z ∈ Ord, x ∈ y , and y ∈ z . S ince z is a transitive set, x ∈ z . qed ( 1 )
( 2) ∈ is a linear relation on Ord, i. e. , ∀x , y ∈ Ord (x ∈ y ∨ x = y ∨ y ∈ x ) .
Proof. Assume not. Let x be ∈ -minimal such that

∃y (x
�
y ∧ x � y ∧ y �

x ) .

Let y be ∈ -minimal such that

x
�
y ∧ x � y ∧ y �

x. ( 4. 1 )

Let x ′ ∈ x . Then by the minimality of x we have

x ′ ∈ y ∨ x ′ = y ∨ y ∈ x ′ .
If x ′ = y then y = x ′ ∈ x , contradicting ( 4. 1 ) . If y ∈ x ′ then y ∈ x ′ ∈ x and y ∈ x ,
contradicting ( 4. 1 ) . Thus x ′ ∈ y . This shows x ⊆ y .

Conversely let y ′ ∈ y . Then by the minimality of y we have

x ∈ y ′ ∨ x = y ′ ∨ y ′ ∈ x.
If x ∈ y ′ then x ∈ y ′ ∈ y and x ∈ y , contradicting ( 4. 1 ) . If x = y ′ then x = y ′ ∈ y , con-
tradicting ( 4. 1 ) . Thus y ′ ∈ x . This shows y ⊆ x .

Hence x = y , contradicting ( 4. 1 ) . qed ( 2)
( 3) ∈ is an irreflexive relation on Ord, i. e. , ∀x ∈ Ord x

�
x .

Proof. Assume for a contradiction that x ∈ x . By the foundation scheme
applied to the term A = {x } � ∅ let y ∈ {x } with y ∩ {x } = ∅ . Then y = x , x ∈ x =
y , x ∈ y ∩ {x } which contradicts the choice of y . qed ( 3)
( 4) ∈ is a well-order on Ord, i . e. , for every non-empty A ⊆ Ord there exists
α ∈ A such that ∀β ∈ α β �

A .
Proof. By the foundation scheme applied to A let α ∈ A with α ∩ A = ∅ . Then
∀β ∈ α β �

A . �

By this theorem, ∈ is the canonical order on the ordinal numbers. We use
greek letters α , β , γ , � as variables for ordinals and write α < β instead of α ∈ β .
When we talk about smallest or largest ordinals this is meant with respect to the
ordering < .
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Theorem 4. 1 1 .

a ) ∅ is the smallest element of Ord. We write 0 instead of ∅ when ∅ is used
as an ordinal.

b ) Ifα ∈ Ord then α ∪ {α } is the smallest element of Ord which is larger than
α , i . e . , α ∪ {α } is the successor of α . We write α + 1 instead of α ∪ {α } .
Every ordinal of the form α + 1 is called a successor ordinal .

Proof. b) Let α ∈ Ord.
( 1 ) α ∪ {α } is transitive.
Proof. Let u ∈ v ∈ α ∪ {α } .
Case 1 . v ∈ α . Then u ∈ α ⊆ α ∪ {α } since α is transitive.
Case 2 . v ∈ {α } . Then u ∈ v = α ⊆ α ∪ {α } . qed ( 1 )
( 2) ∀y ∈ α ∪ {α } Trans( y) .
Proof. Let y ∈ α ∪ {α } .
Case 1 . y ∈ α . Then Trans( y) , since α is an ordinal.
Case 2 . y ∈ {α } . Then y = α , and Trans( y) , since α is an ordinal. qed ( 2)

So α ∪ {α } is an ordinal, and α ∪ {α } > α .
( 3) α ∪ {α } is the smallest ordinal > α .
Proof. Let β < α ∪ {α } . Then β ∈ α or β = α . Hence β 6 α and β ≯ α . �

Theorem 4. 1 2.

a ) Ord is transitive .

b ) ∀x ∈ Ord Trans(x) .

c ) Ord
�
V, i . e . , Ord is a proper class.

Proof. a) Let x ∈ y ∈ Ord.
( 1 ) Trans(x ) , since every element of the ordinal y is transitive.
( 2) ∀u ∈ x Trans(u) .
Proof. Let u ∈ x . S ince y is transitive, u ∈ y . Since every element of y is transi-
tive, Trans(u) . qed ( 2)

Thus x ∈ Ord.
b) is part of the definition of ordinal.
c) Assume Ord ∈ V . By a) and b) , Ord satisfies the definition of an ordinal,
and so Ord ∈ Ord. This contradicts the foundation scheme. �

Exercise 4. 2 .

a) Let A ⊆ Ord be a term, A
� ∅ . Then ⋂ A ∈ Ord .

b) Let x ⊆ Ord be a set. Then
⋃
A ∈ Ord .

4.5 Natural numbers

One can construe the common natural numbers as those ordinal numbers which
can be reached from 0 by the + 1 -operation. Consider the following term:
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Definition 4. 1 3. ω = {α ∈ Ord | ∀β ∈ α + 1 ( β = 0 ∨ β is a successor ordinal ) } is
the class of natural numbers .

Theorem 4. 1 4. ω is transitive .

Proof. Let x ∈ α ∈ ω .
( 1 ) x ∈ Ord, since Ord is transitive.
( 2) x ⊆ α , since α is transitive.
( 3) x + 1 ⊆ α ⊆ α + 1 .
( 4) ∀β ∈ x + 1 ( β = 0 ∨ β is a successor ordinal) , since α ∈ ω and x + 1 ⊆ α + 1 .

Then ( 1 ) and ( 4) imply that x ∈ ω . �

Theorem 4. 1 5. ω ∈ V, i . e . , ω is the set of natural numbers .

Proof. By the axiom of infinity, take a set x such that

( 0 ∈ x ∧ ∀y ( y ∈ x→ y ∪ { y} ∈ x) ) .

( 1 ) ω ⊆ x .
Proof. Assume for a contradiction that ω * x . By foundation take z ∈ ω ∈ -min-
imal such that z

�
x . By the definition of ω we have z = 0 or z is a successor

ordinal. The case z = 0 is impossible by the choice of x . Hence z is a successor
ordinal. Take y ∈ Ord such that z = y + 1 . Then y ∈ z ∈ ω and y ∈ ω by the transi-
tivity of ω . By the ∈ -minimal choice of z we have y ∈ x . By the choice of x we
have z = y + 1 = y ∪ { y} ∈ x . This contradicts the choice of z . qed ( 1 )

The subset schema implies that ω = x ∩ ω ∈ V . �

Theorem 4. 1 6. ω is a limit ordinal , i . e . , an ordinal � 0 which is not a successor
ordinal. Indeed, ω is the smallest limit ordinal:

ω =
⋂
{α | α is a limit ordinal } .

Proof. First note that ω is an ordinal, since it is a transitive set and each of its
elements is transitive.

Obviously 0 ∈ ω , hence ω � 0 . Assume for a contradiction that ω is a successor
ordinal. Take some α ∈ Ord such that ω = α + 1 . Then α ∈ ω and

∀β ∈ α + 1 ( β = 0 ∨ β is a successor ordinal) .

ω + 1 = (α + 1 ) ∪ {ω } . S ince ω is assumed to be a successor ordinal

∀β ∈ ω + 1 ( β = 0 ∨ β is a successor ordinal) .

Hence ω ∈ ω . But this contradicts the foundation schema.
Thus ω is a limit ordinal.
Let γ be ( another) limit ordinal. Since all elements of ω are 0 or successor

ordinals, we cannot have γ < ω . Therefore ω 6 γ . �

Let us justify this formalization of the set of natural numbers by

Theorem 4. 1 7. The structure (ω , + 1 , 0) satisfies the Peano axioms:

a ) 0 ∈ ω;
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b ) ∀n ∈ ω n + 1 ∈ ω;
c ) ∀n ∈ ω n + 1 � 0 ;

d ) ∀m, n ∈ ω (m + 1 = n + 1 →m = n) ;

e ) ∀x ⊆ ω ( ( 0 ∈ x ∧ ∀m ∈ x m + 1 ∈ x ) → x = ω) .

Proof. Axioms a) to d) are immediate from the definition of ω or from the gen-
eral properties of ordinals. For e) consider a set x ⊆ ω such that

0 ∈ x ∧ ∀m ∈ x m + 1 ∈ x.
Assume for a contradiction that x � ω . By foundation take z ∈ ω ∈ -minimal such
that z

�
x . By the definition of ω we have z = 0 or z is a successor ordinal. The

case z = 0 is impossible by the properties of x . Hence z is a successor ordinal.
Take y ∈ Ord such that z = y + 1 . Then y ∈ z ∈ ω and y ∈ ω by the transitivity of
ω . By the ∈ -minimal choice of z we have y ∈ x . By the inductive property of x
we have z = y + 1 = y ∪ { y} ∈ x . This contradicts the choice of z . �

4.6 Cardinal numbers
Cardinal numbers, ℵ ’ s, regular, singular
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Chapter 5
Closed unbounded and stationary
sets
We notions of “large” subsets of a regular uncountable cardinal κ : closed
unbounded and stationary sets.

Definition 5. 1 . Let κ be a regular uncountable cardinal.

a ) C ⊆ κ is closed unbounded in κ ifC is cofinal in κ and

∀α < κ (C ∩ α is cofinal in α→ α ∈ C) .

b ) Cκ = {X ⊆ κ | ∃C ⊆ XC is closed unbounded in κ } is the closed unbounded
filter on κ .

c ) S ⊆ κ is stationary in κ if ∀C ∈ Cκ S ∩ C � ∅ .
Theorem 5. 2 . Let κ > ω be a regular cardinal. Then Cκ is a non-trivial filter on
κ which is < κ-complete , i. e . ,

∀β < κ∀{Xξ | ξ < β} ⊆ Cκ
⋂

ξ< β

Xξ ∈ Cκ .

Proof. Exercise. �
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Chapter 6
Transitive ∈ -models

Axiomatic set theory studies the axiom systems ZF and ZFC. By the Gödel
incompleteness theorem, these systems are incomplete. So one is lead to consider
extensions of these systems of the form ZF + ϕ or ZFC + ϕ for various ϕ . Even
some simple questions of the arithmetic of infinite cardinals like Cantor ’ s con-
tinuum hypothesis are not decided by ZFC and present an ongoing challenge to
set theoretical research.

To show that a theory like ZFC + ϕ is consistent one constructs models of that
theory (making some initial assumptions) . Usually these models will be an ∈ -
model of the form (M, ∈ ) , where M is some class.

6. 1 Relativizations of Formulas and Terms

Evaluating an ∈ -formula ϕ in a model (M, ∈ ) amount to bounding the range of
quantifiers in ϕ to M .

Definition 6. 1 . Let M be a term. For ϕ an ∈ -formula define the � �������;!��
!76&���;!;��
ϕM ofϕ to M by recursion on the complexity of ϕ :

− (x ∈ y)M : = x ∈ y
− (x = y)M : = x = y

− (¬ϕ )M � ¬ ( ϕM)

− ( ϕ ∨ ψ)M � ϕM ∨ ψM

− ( ∃xϕ )M � ∃x ∈ MϕM

Definition 6. 2 . Let M be a term and let Φ be a (metatheoretical) set of for-
mulas. Then the (metatheoretical) set

ΦM = { ϕM | ϕ ∈ Φ}
is the ���������;! � !76 ���$!;�� of Φ to M.

The relativizations ϕM and ΦM correspond to the model-theoretic satisfaction
relations (M, ∈ ) � ϕ and (M, ∈ ) � Φ . This is illustrated by
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Theorem 6.3. Let Φ be a finite set of ∈ -formulas and let ϕ be an ∈ -formula
such that Φ ` ϕ in the calculus of first-order logic . Let M be a transitive term,
M � ∅ , which has no common free variab les with Φ or ϕ . Then

∀x� ∈ M ( (
∧

Φ)M→ ϕM) ,

where x
�

includes al l the free variab les of Φ and ϕ .

Proof. By induction on the lengths of derivations it suffices to prove the theorem
for the case that Φ ` ϕ is derivable by a single application of a rule of the first-
order calculus. We check this for the various rules.

The theorem is obvious in case ϕ is an element of Φ .
In case ϕ = ( x = x ) , the relativization (x = x )M = (x = x ) holds in any case.
The theorem is easy to show for all propositional rules and the substitution

rule.
So let us now consider the quantifier rules. Assume that ϕ (x , y

�

)M where x ,
y

� ∈ M . Then ∃x ( x ∈ M ∧ ϕ (x , y
�

)M) and

( ∃x ϕ (x , y
�

) )M

as required.
For the ∃ -introduction in the antecedens suppose that

∀x , y� ∈ M ( (
∧

Φ)M ∧ ψM(x , y
�

) → ϕM( y
�

) ) , ( 6. 1 )

where the variable x does not occur in Φ or ϕ . Now let y
� ∈ M and assume that

(
∧

Φ)M ∧ ( ∃xψ)M( y
�

) . Then ∃x ∈ MψM(x , y
�

) . Take x ∈ M such that ψM(x , y
�

) .
By ( 4. 1 ) we get ϕM( y

�

) . Hence

∀y� ∈ M ( (
∧

Φ)M ∧ ( ∃xψ)M( y
�

) → ϕM( y
�

) ) . �

We shall later construct models M such that ZFCM holds and obtain relative con-
sistency results.

Theorem 6.4. Assume that the theory ZF is consistent. Let M be a class term
such that ZF ` M � ∅ and ZF ` ϕM for every ZFC-axiom ϕ . Then ZFC is consis-
tent.

Proof. Assume that ZFC is inconsistent, i. e. , ZFC ` x � x . By the finiteness of
formal proofs take a finite collection Φ of ZFC-axioms such that Φ ` x � x . By
assumption ZF ` (

∧
Φ)M . By the previous theorem

ZF ` ∀x ∈ M ( (
∧

Φ)M→ (x � x )M) .

Hence ZF ` ∀ ∈ Mx � x . Together with ZF ` M � ∅ this leads to ZF ` x � x , i . e. ,
ZF is inconsistent. �

Definition 6. 5 . Let M be a term. For a class term s = {x | ϕ } define the rela-
tivization sM of s to M by:

sM � {x ∈ M | ϕM} .
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If s is a variab le , s = x , then let sM = s .

sM is the term s as evaluated in M . We show that evaluating a formula with
class terms ( a generalized formula) in a transitive class M is the same as rela-
tivizing the basic formula without class terms and then inserting the relatived
class terms. This will make many notions absolute between M and V .

Note that the relativization of a bounded quantifier ∃x ∈ y to a transitive class
M with y ∈ M has no effect:

∃x ∈ yϕ↔ ∃x ∈ y ∩Mϕ.

Theorem 6.6. Let M be a transitive class. Let ϕ (x0 , � , xn− 1 ) be a basic formula
and t0 , � , tn− 1 be terms. Then

∀w� ∈ M ( ( χ( t0 , � , tn− 1 ) )
M ↔ χM( t0

M , � , tn− 1
M ) ) ,

where {w� } is the set of free variab les of χ( t0 , � , tn− 1 ) .

Proof. By induction on the complexity of χ . Let w
� ∈ M .

Let χ be an atomic formula of the form u ∈ v or u = v . If t0 and t1 are vari-
ables there is nothing to show. The other cases correspond to the following equiv-
alences:

( y ∈ {x | ϕ } )M ↔ ( ϕ
y

x
)M

↔ ϕM
y

x
↔ (x ∈ M ∧ ϕM)

y
x

↔ y ∈ {x | x ∈ M ∧ ϕM} = {x ∈ M | ϕM}
↔ yM ∈ {x | ϕ }M .

This equivalence is already used in:

( {x | ϕ } = { y | ψ } )M ↔ (∀z ( z ∈ {x | ϕ } ↔ z ∈ { y | ψ } ) )M
↔ ∀z ∈ M ( z ∈ {x | ϕ }M↔ z ∈ { y | ψ }M)

↔ ∀z ( z ∈ {x | ϕ }M↔ z ∈ { y | ψ }M) , since {x | ϕ }M ⊆ M,

↔ {x | ϕ }M = { y | ψ }M .
Note, that x ⊆ M by the transitivity of M :

(x = { y | ψ } )M ↔ (∀z ( z ∈ x ↔ z ∈ { y | ψ } ) )M
↔ ∀z ∈ M ( z ∈ x ↔ z ∈ { y | ψ }M)

↔ ∀z ( z ∈ x↔ z ∈ { y | ψ }M) , since x ⊆ M,

↔ xM = { y | ψ }M .
( {x | ϕ } ∈ { y | ψ } )M ↔ ( ∃z ( ψ

z

y
∧ z = {x | ϕ } ) )M

↔ ∃z ∈ M ( ψM
z

y
∧ z = {x | ϕ }M)

↔ ∃z ( z ∈ M ∧ ψM z
y
∧ z = {x | ϕ }M)

↔ {x | ϕ }M ∈ { y | y ∈ M ∧ ψM } = { y | ψ }M .
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( {x | ϕ } ∈ y)M ↔ ( ∃z ( z ∈ y ∧ z = {x | ϕ } ) )M
↔ ∃z ∈ M ( z ∈ y ∧ z = {x | ϕ }M)

↔ ∃z ( z ∈ y ∧ z = {x | ϕ }M) , since y ⊆ M,

↔ {x | ϕ }M ∈ y = yM .

Now assume that χ is a complex formula and the theorem holds for all proper
subformulas. If χ = ¬ψ and w

� ∈ M then

( χ( t0 , � , tn− 1 ) )
M↔ ¬ (ψ( t0 , � , tn− 1 ) )

M↔ ¬ψM( t0
M , � , tn− 1

M ) ↔ χM( t0
M , � , tn− 1

M ) .

If χ = ϕ ∨ ψ and w
� ∈ M then

( χ( t0 , � , tn− 1 ) )
M ↔ ( ϕ ( t0 , � , tn− 1 ) )

M ∨ ( ψ( t0 , � , tn− 1 ) )
M

↔ ϕM( t0
M , � , tn− 1

M ) ∨ ψM( t0
M , � , tn− 1

M )

↔ χM( t0
M , � , tn− 1

M ) .

If χ = ∃x ϕ and w
� ∈ M then

( χ( t0 , � , tn− 1 ) )
M ↔ ∃x ∈ M ( ϕ (x , t0 , � , tn− 1 ) )

M

↔ ∃x ∈ MϕM(x , t0
M , � , tn− 1

M )

↔ χM( t0
M , � , tn− 1

M ) .

�

Theorem 6.7. Let M be a non-empty transitive term. Assume that M satisfies
the following closure properties:

a ) ∀x , y ∈ M {x , y} ∈ M;

b ) ∀x ∈ M ⋃
x ∈ M;

c ) ω ∈ M;

d ) for all terms A : ∀x ∈ Mx ∩ AM ∈ M;

e ) for all terms F: ifFM is a function then ∀x FM [x ] ∈ M.

Then ZF− holds in M.

Proof. ( 1 ) The axiom of extensionality holds in M .
Proof. Consider x , y ∈ M . By the axiom of extensionality in V

x ⊆ y ∧ y ⊆ x→ x = y.

Since M is transitive, x ∩M = x , y ∩M = y and

x ∩M ⊆ y ∧ y ∩M ⊆ x→ x = y.

This is equivalent to

(∀z ∈ M ( z ∈ x→ z ∈ y) ∧ ∀z ∈ M ( z ∈ y→ z ∈ x) ) → x = y

and

(x ⊆ y ∧ y ⊆ x→ x = y)M .
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Thus

(∀x , y (x ⊆ y ∧ y ⊆ x→ x = y) )M .

( 2) The pairing axiom holds in M .
Proof. Observe that for x , y ∈ M

{x , y }M = {z ∈ M | z = x ∨ z = y} = {x , y} .

Moreover VM = {x ∈ M | x = x } = M . By assumption a) ,

∀x , y ∈ M {x , y} ∈ M
∀x , y ∈ M {x , y}M ∈ VM

(∀x , y {x , y } ∈ V )M ,

i. e. , the pairing axiom holds in M .
( 3) The union axiom holds in M .
Proof. Observe that for x ∈ M ,

(
⋃

x)M = {z ∈ M | ∃ y ∈ M ( y ∈ x ∧ z ∈ y) }
= {z ∈ M | ∃ y ( y ∈ x ∧ z ∈ y) } , since x ⊆ M,

= {z | ∃ y ( y ∈ x ∧ z ∈ y) } , since ∀y ∈ x∀z ∈ y z ∈ M,

=
⋃

x

By assumption b) ,

∀x ∈ M
⋃

x ∈ M
∀x ∈ M (

⋃
x )M ∈ VM

(∀x
⋃

x ∈ V )M ,

i. e. , the union axiom holds in M .
( 4) The axiom of infinity holds in M .
Proof. Let x = ω ∈ M . Then

∅ ∈ x ∧ ∀y ( y ∈ x→ y ∪ { y} ∈ x) .

The universal quantifier may be restricted to M :

∅ ∈ x ∧ ∀y ∈ M ( y ∈ x→ y ∪ { y} ∈ x) .

Since ( y ∪ { y} )M = y ∪ { y} this formula is equivalent to

( ∅ ∈ x ∧ ∀y( y ∈ x→ y ∪ { y} ∈ x ) )M .

Then

∃x ∈ M ( ∅ ∈ x ∧ ∀y( y ∈ x→ y ∪ { y} ∈ x) )M ,

i. e. , the axiom of infinity holds in M .
( 5) The axiom schema of subsets holds in M .
Proof. Let A( y

�

) be a term and x , y
� ∈ M . By assumption,

x ∩ AM( y
�

) ∈ M.

6 . 1 Relativizations of Formulas and Terms 31



Note that

x ∩ AM( y
�

) = {v | v ∈ x ∧ v ∈ AM( y
�

) }
= {v | ( v ∈ x ∧ v ∈ A( y

�

) )M}
= {v ∈ M | ( v ∈ x ∧ v ∈ A( y

�

) )M} , since x ⊆ M,

= {v | v ∈ x ∧ v ∈ A( y
�

) }M
= (x ∩ A)M .

So

(x ∩ A)M ∈ M = VM .

This proves

∀x , y� ∈ M ( x ∩ A ∈ V )M ,

i. e. , the axiom scheme of subsets holds relativized to M .
( 6) The axiom scheme of replacement holds relativized to M .
Proof. Let F( y

�

) be a term, and let x , y
� ∈ M such that (F is a function)M . Note

that

FM [x ] = {v | ∃u ∈ x (u, v ) ∈ FM }
= {v ∈ M | ∃u (u ∈ x ∧ (u , v ) ∈ FM) } , since FM ⊆ M and M is transitive ,
= {v ∈ M | ∃u ∈ M (u ∈ x ∧ (u, v ) ∈ F)M

= {v | ∃u (u ∈ x ∧ (u , v ) ∈ F) }M
= (F [x ] )M .

The assumption implies

FM [x ] ∈ M
FM [x ] ∈ M = VM

(F [x ] ∈ V )M

Thus

∀x , y� ∈ M (F is a function → F [x ] ∈ V )M , and
(∀x , y� (F is a function → F [x ] ∈ V ) )M ,

as required.
( 7) The axiom schema of foundation holds in M .
Proof. Let A( y

�

) be a term and let y
� ∈ M such that (A � ∅ )M . Then AM � ∅ . By

the replacement schema in V , take x ∈ AM such that x ∩ AM = ∅ . We have seen
before that x ∩ AM = (x ∩ A)M . So (x ∩ A)M = ∅ and (x ∩ A = ∅ )M . Hence

∃x ∈ M (x ∈ AM ∧ (x ∩ A = ∅ )M)

( ∃x (x ∈ A ∧ x ∩ A = ∅ )M

Thus

(A � ∅ → ∃x (x ∈ A ∧ x ∩ A = ∅ )M ,
i. e. , the foundation schema holds in M . �
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The converse to this theorem will be shown later.

Theorem 6.8. Let M be a non-empty transitive term such that

∀x ∈ MP(x ) ∩M ∈ M.

Then the power set axiom holds in M.

Proof. Note that for x ∈ M

(P(x ) )M = { y | y ⊆ x }M
= { y ∈ M | ( y ⊆ x )M }
= { y ∈ M | ( y ⊆ x )M }
= { y ∈ M | (∀z ( z ∈ y→ z ∈ x ) )M}
= { y ∈ M | ∀z ∈ M ( z ∈ y→ z ∈ x ) }
= { y ∈ M | ∀z ( z ∈ y→ z ∈ x ) } , da y ⊆ M,

= { y ∈ M | y ⊆ x } = P(x ) ∩M.

The assumption yields

∀x ∈ MP(x) ∩M ∈ M
∀x ∈ MP(x)M ∈ VM

(∀x P(x ) ∈ V )M ,

i. e. , the power set axiom holds in M . �
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Chapter 7
Definite formulas and terms

7. 1 Definiteness
In the set existence axioms of the theory ZF− every element of a term whose exis-
tence is postulated is determined by some parameters of the axiom. In the
replacement scheme, e. g. , every element

v ∈ {F(x ) | x ∈ z }
is of the form v = F(x ) and is thus definable from the “simpler” parameter x by
the term F . In contrast, there is no way to define an arbitrary element of an
infinite power set from simple parameters; this impression can be made more
formal by using Cantor ’ s diagonal argument. The axiom of choice also is a pure
existence statement. There exists a choice functions, but it is in general not defin-
able from the parameters of the situation at hand.

The notion of defineteness aims to capture the concrete nature of ZF− as com-
pared to full ZFC. It will be seen that most basic notions of set theory are defi-
nite and that these notions can be decided in ZF− independently of the specific
transitive model of ZF− . The definition of definite term tries to capture
the “absolute” part of the theory ZF− .

Definition 7. 1 . Define the col lections of definite formulas and definite terms by
a common recursion on syntactic complexities:

a ) the atomic formulas x ∈ y and x = y are definite;

b ) ifϕ and ψ are definite formulas then ϕ ∨ ψ and ¬ϕ are definite;

c ) ifϕ is a definite formula then ∀x ∈ y ϕ and ∃x ∈ y ϕ are definite formulas;

d ) x , {x , y} , ⋃ x and ω are definite terms;

e ) if s (x0 , � , xn− 1 ) and t0 , � , tn− 1 are definite terms then s ( t0 , � , tn− 1 ) is a
definite term;

f) if ϕ (x0 , � , xn− 1 ) is a definite formula and t0 , � , tn− 1 are definite terms
then ϕ ( t0 , � , tn− 1 ) is a definite formula;

g ) ifϕ is a definite formula then {x ∈ y | ϕ (x , z
�

) } is a definite term;

h ) if t( x , z
�

) is a definite term then { t(x , z� ) | x ∈ y} is a definite term;

i ) if G is a definite term then the canonical term F defined by ∈ -recursion
with F(x) = G(F � x ) is definite .
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The majority of basic notions of set theory ( and of mathematics) are definite.
The following theorems list some representative examples.

Theorem 7. 2 . The following terms are definite:

a ) x \ y
b ) (x , y)

c ) x × y
d ) {

x , ifϕ
y, if ¬ϕ ,

where ϕ is a definite formula (“definition by cases”)

Proof. a) x \ y = {z ∈ x | z �
y} .

b) (x , y) = { {x } , {x , y } } .
c) x × y =

⋃ {x × {v } | v ∈ y} =
⋃ { { (u , v) | u ∈ x } | v ∈ y} .

d)
{
x , if ϕ
y , if ¬ϕ can be defined definitely by

{u ∈ x | ϕ } ∪ {u ∈ y | ¬ϕ } . �

Theorem 7.3. The following formulas are definite:

a ) x is transitive

b ) x is an ordinal

c ) x is a successor ordinal

d ) x is a limit ordinal

e ) x is a natural number

Proof. All these formulas are equivalent to Σ 0-formulas. �

Recursion on the ordinals is a special case of ∈ -recursion which also leads to
definite terms.

Theorem 7.4. Let G0 , G succ and G limit be definite terms defining a term F :
Ord→ V by the following recursion:

− F( 0) = G0 ;

− F(α + 1 ) = G succ(F � (α + 1 ) ) ;

− F(λ ) = G limit(F � λ ) for limit ordinals λ .

Then the term F(α) is definite .

Proof. Let F ′ be the canonical term defined by the ∈ -recursion

F ′(x ) =





0 , if x = 0 ,
G succ(F

′ � x ) , if x is a successor ordinal,
G limit(F

′ � x) , if x is a limit ordinal ,
0 , if x

�
Ord .
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By ( an extension of) Theorem 7. 2 d) on definition by cases, the recursion condi-
tion is definite and so is F ′(x ) . Then F = F ′ � Ord. �

Exercise 7. 1 . Show that the terms nx , Vn , Vω are definite.

7.2 Absoluteness
Definition 7. 5. Let W be a transitive non-empty class. Let ϕ (x

�

) be an ∈ -for-
mula and t(x

�

) be a term. Then

a ) ϕ is W-absolute iff ∀x� ∈ W ( ϕW(x
�

) ↔ ϕ (x
�

) ) ;

b ) t is W-absolute iff ∀x� ∈ W ( tW(x
�

) ∈ W ↔ t(x
�

) ∈ V ) and ∀x� ∈ W tW(x
�

) =
t(x

�

) .

Theorem 7.6. Let W be a transitive model of ZF− . Then

a ) if t( x
�

) is a definite term then ∀x� t( x� ) ∈ V;
b ) every definite formula is W-absolute;

c ) every definite term is W-absolute .

Proof. a) may be proved by induction on the complexity of the definite term t.
Most cases are immediate from the ZF− -axioms; if t is a canonical term defined
by recursion with a definite recursion rule then the existence of t(x

�

) follows from
the recursion principle.

The properties b) and c) are proved by a common induction along the genera-
tion rules of Definition 7. 1 for definite formulas and terms. If t(x

�

) is a definite
term, then by a)

(∀x� t(x� ) ∈ V )W→ ∀x� ∈ WtW(x
�

) ∈ W
so that always

∀x� ∈ W ( tW(x
�

) ∈ W↔ t(x
�

) ∈ V ) .

Thus for the W-absoluteness of t one only has to check

∀x� ∈ WtW(x
�

) = t(x
�

) .

We now begin the induction. The cases 7. 1 a) and b) are trivial.
7. 1 c) : Let ϕ (x , z

�

) be definite and assume that ϕ (x , z
�

) is W-absolute. Let y ,
z

� ∈ W . Then y ⊆ W and y ∩W = y , since W is transitive.

(∀x ∈ y ϕ (x , z
�

) )W ↔ (∀x (x ∈ y→ ϕ (x , z
�

) ) )W

↔ ∀x ∈ W (x ∈ y→ ϕW(x , z
�

) )

↔ ∀x (x ∈ y ∩W→ ϕW( x , z
�

) )

↔ ∀x (x ∈ y→ ϕ (x , z
�

) ) , since ϕ is W-absolute,
↔ ∀x ∈ y ϕ (x , z

�

) .

Thus ∀x ∈ y ϕ (x , z
�

) is W-absolute. Similarly, ∃x ∈ y ϕ (x , z
�

) is W -absolute.
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Let us remark that cases 7. 1 a) to c) imply that every ∈ -formula in which
every quantifier is bounded is W-absolute. Such formulas are called Σ 0 -formulas.
7. 1 d) : The only non-trivial case is the term

ω = {α ∈ Ord | ∀β ∈ α + 1 ( β = 0 ∨ β is a successor ordinal) } .
( 1 ) The formula α ∈ ω is W-absolute.
Proof. By the remark above it suffices to see that the formula α ∈ ω is equivalent
to a Σ 0 -formula.

α ∈ ω ↔ α ∈ Ord ∧ ∀β ∈ α + 1 ( β = 0 ∨ β is a successor ordinal)
↔ Trans(α) ∧ ∀y ∈ α Trans( y) ∧ ∀β ∈ α (∀x ∈ βx � x ∨
∃γ ∈ β β = γ + 1 ) ∧ (∀x ∈ α x � x ∨ ∃γ ∈ α α = γ + 1 )

↔ ∀u ∈ α∀v ∈ u v ∈ α ∧ ∀y ∈ α∀u ∈ y∀v ∈ u v ∈ y ∧
∀β ∈ α (∀x ∈ βx � x ∨ ∃γ ∈ β (∀u ∈ β (u ∈ γ ∨ u = γ) ∧
∀u ∈ γu ∈ β ∧ γ ∈ β) ) ∧ (∀x ∈ α x � x ∨
∃γ ∈ α (∀u ∈ α (u ∈ γ ∨ u = γ) ∧ ∀u ∈ γu ∈ α ∧ γ ∈ α) )

qed ( 1 )
( 2) ω ⊆ W .
Proof. By complete induction. 0 ∈ W since W is a non-empty transitive term.
Assume that n ∈ ω and n ∈ W . Then, since (ZF− )W , (n ∪ {n} )W ∈ W .

(n ∪ {n} )W = {x ∈ W | ( x ∈ n ∨ x ∈ {n} )W }
= {x ∈ W | (x ∈ n ∨ x = n)W }
= {x ∈ W | x ∈ n ∨ x = n}
= {x | x ∈ n ∨ x = n} , since n ∪ {n} ⊆ W,

= n ∪ {n} .

Hence n + 1 ∈ W . qed ( 2)
( 3) ωM = ω .
Proof.

ωM = {x ∈ M | (x ∈ ω)M}
= {x ∈ M | x ∈ ω } , since x ∈ ω is W-absolute,
= {x | x ∈ ω } , since ω ⊆ M,

= ω.

qed ( 3)
By our previous remarks this concludes case 7. 1 d) .

7. 1 e) : Let y
�

be the free variables of the terms t0 , � , tn− 1 and let y
� ∈ W . Then

by the inductive assumption

( s ( t0 , � , tn− 1 ) )
W( y

�

) = sW( t0
W( y

�

) , � , tn− 1
W ( y

�

) )

= sW( t0( y
�

) , � , tn− 1 ( y
�

) )

= s ( t0( y
�

) , � , tn− 1 ( y
�

) )

= s ( t0 , � , tn− 1 ) ( y
�

) .
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7. 1 f) : Let y
�

be the free variables of the terms t0 , � , tn− 1 and let y
� ∈ W . Then by

the inductive assumption

( ϕ ( t0 , � , tn− 1 ) )
W( y

�

) ↔ ϕW( t0
W( y

�

) , � , tn− 1
W ( y

�

) )

↔ ϕW( t0( y
�

) , � , tn− 1 ( y
�

) )

↔ ϕ ( t0( y
�

) , � , tn− 1 ( y
�

) )

↔ ϕ ( t0 , � , tn− 1 ) ( y
�

) .

7. 1 g) : Let y , z
� ∈ W . Then y ⊆ W since W is transitive. By the inductive assump-

tion

{x ∈ y | ϕ ( x , z
�

) }W = {x | x ∈ y ∧ ϕ (x , z
�

) }W
= {x ∈ W | x ∈ y ∧ ϕW(x , z

�

) }
= {x ∈ W | x ∈ y ∧ ϕ (x , z

�

) }
= {x | x ∈ y ∧ ϕ (x , z

�

) } , since y ⊆ W,

= {x ∈ y | ϕ (x , z
�

) } .
7. 1 h) : Let y , z

� ∈ W . Then y ⊆ W since W is transitive, and

{ t(x , z� ) | x ∈ y}W = {z | ∃x ∈ y z = t(x , z
�

) }W
= {z | ∃x (x ∈ y ∧ z = t(x , z

�

) }W
= {z ∈ W | ∃x ∈ W ( x ∈ y ∧ z = tW(x , z

�

) }
= {z | ∃x ∈ W (x ∈ y ∧ z = tW(x , z

�

) } , since ∀x ∈ WtW(x , z
�

) ∈ W,

= {z | ∃x ∈ W (x ∈ y ∧ z = t(x , z
�

) } , by inductive assumption,
= {z | ∃x (x ∈ y ∧ z = t(x , z

�

) } , since y ⊆ W,

= { t(x , z� ) | x ∈ y} .
7. 1 i) : Let G = G ( z , y

�

) with all free variables displayed and let F be the canonical
term with

F(x , y
�

) = G (F � x , y� ) .

Let y
� ∈ W . We show that ∀x ∈ WFW(x , y

�

) = F(x , y
�

) . Assume the contrary and
let x ∈ W be ∈ -minimal such that FW( x , y

�

) � F(x , y
�

) . Then by the recursion
theorem in W ,

FW(x , y
�

) = GW(FW � x , y� )

= G (FW � x , y� ) , since FW � x ∈ W and G is definite,
= G (F � x , y� ) , by the minimality of x ,
= F(x , y

�

) , contradiction.

�

Recursion can be used to show that certain terms involving finiteness are defi-
nite.

Definition 7. 7. Define Pn(x ) = { y ⊆ x | card( y) < n} for n 6 ω recursively by
induction on n:

− P0(x) = ∅ ;
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− P1 (x) = { ∅} ;
− Pn+1 (x) = { y ∪ {z } | y ∈ Pn(x ) ∧ z ∈ x } ;
− Pω(x) =

⋃
n<ω
Pn(x) .

Since this is an ∈ -recursion with a definite recursion rule the terms Pn(x ) and
Pn(x ) are definite .

We define a finitary version of the von Neumann -hierarchy which agrees
with the usual Vα-hierarchy for α 6 ω .

Definition 7. 8. Define Vαfin for α ∈ Ord recursively:

− V0
fin = ∅ ,

− Vα+1
fin = Pω(Vα

fin) ,

− Vλ
fin =

⋃
α< λ

Vα
fin for limit ordinals λ .

Note that Vωfin = Vω and that the term Vα
fin is definite . Hence Vω is a definite term.

Definition 7. 9. Define a well-order < n of Vn for n 6 ω recursively by induction
on n:

− < 0 = ∅ ;
− < n+1 = < n ∪ (Vn × (Vn+1 \ Vn) ) ∪

∪ { (x , y) ∈ Vn+1 × Vn+1 | ∃v ∈ y \ x∀u ∈ Vn (u > n v→ (u ∈ x↔ u ∈ y) ) } ;
− < ω=

⋃
n<ω

< n .

The terms < n for n 6 ω are definite .

We shall next give a definite definition of the set of finite sequences from a
given set x which will later be used as the set of assignments in x .

Definition 7. 1 0. Define nx = { f | f : n→ x } for n ∈ ω by recursion on n:

− 0x = { ∅} ;
− n+1x = { f ∪ { (n, u) } | f ∈ n x ∧ u ∈ x } ;
− <ωx =

⋃
n<ω

nx .

Call <ωx the set of assigments in x .

There are natural operations on assignments:

Definition 7. 1 1 . For f ∈ <ω x , a ∈ x and k ∈ dom( f ) let

f
a

k
= ( f \ { ( k , f ( k ) } ) ∪ { ( k , a ) }

be the substitution of a into f at k .
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Chapter 8
Formalizing the logic of set theory

8. 1 First-order logic
The theory ZF− is able to formalize most basic mathematical notions. This gen-
eral formalization principle also applies to first-order logic. For the definition of
the constructible universe we shall be particularly interested in formalizing the
logic of set theory within ZF− , i . e. , the logic of syntax and semantics of the lan-
guage { ∈ } . Given some experience with definite formalizations the definite for-
malizability of first-order logic is quite obvious. For the sake of completeness we
shall employ a concrete formalization as described in the monograph Set Theory
by Frank Drake .

Standard first-order logic can be embedded into its formalized counterpart. So
for every formula ϕ of the language of set theory we shall have a term d ϕ e which
is a formalization of ϕ . Let us motivate the intended formalization by defining
d ϕ e inductively over the complexity of ϕ .

Definition 8. 1 . For each concrete ∈ -formula ϕ define its Gödel set d ϕ e by
induction on the complexity of ϕ :

− d vi = vj e = ( 0 , i , j) ;

− d vi ∈ vj e = ( 1 , i , j) ;

− d ϕ ∧ ψ e = ( 2 , d ϕ e , d ψ e ) ;
− d ¬ϕ e = ( 3 , d ϕ e ) ;
− d ∃vi ϕ e = ( 4 , i , d ϕ e ) .

Definition 8. 2 . The formula Fm(u , s , n) describes that a formula u is con-
structed along a finite sequence s of length n + 1 according to the construction
principles of the previous definition:

Fm(u , s , n) ↔ n ∈ ω ∧ s ∈ n+1Vω ∧ u = s (n) ∧
∧ ∀k < n + 1

( ∃ i , j < ω s ( k ) = ( 0 , i , j) ∨
∨ ∃ i , j < ω s ( k ) = ( 1 , i , j) ∨
∨ ∃ l , m < k s ( k ) = ( 2 , s ( l ) , s (m) ) ∨
∨ ∃ l < k s ( k ) = ( 3 , s ( l ) ) ∨
∨ ∃ l < k ∃ i < ω s ( k ) = ( 4 , i , s ( l ) ) ) .
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Inspection of this definition shows that Fm(u, s , n) is definite.

Definition 8. 3. The formula Fmla(u) describes that u is a formalized ∈ -for-
mula:

Fmla(u) ↔ ∃n < ω ∃s ∈ Vω Fm(u , s , n) .

The formula Fmla is also definite.
We formalize the Tarskian satisfaction relation for the formulas u defined by

Fmla. For each member of a construction sequence leading to u we consider the
set of assignments in an ∈ -structure ( a , ∈ ) which make the formula true.

Definition 8. 4. The formula S( s , a , r , t) describes that s builds an ∈ -formula as
in Definition 8. 2, and that t is a sequence of assignments of the variab les v0 , � ,
vr− 1 in the ∈ -structure ( a , ∈ ) which make the corresponding ∈ -formula of the
sequence s true:

S( s , a , r , t) ↔ ∃u , n ∈ Vω Fm(u, s , n) ∧ a � ∅ ∧ r < ω ∧ t : dom( s ) → Vω ∧
∧ ∀k ∈ dom( s )

( ( ∃ i , j < ω s ( k ) = ( 0 , i , j) ∧ t( k ) = {b ∈ r a | b( i) = b( j) } ) ∨
∨ ( ∃ i , j < ω s ( k ) = ( 1 , i , j) ∧ t( k ) = { b ∈ r a | b( i) ∈ b( j) } ) ∨
∨ ( ∃ l , m < k s ( k ) = ( 2 , s ( l ) , s (m) ) ∧ t( k ) = t( l ) ∩ t(m) ) ∨
∨ ( ∃ l < k s ( k ) = ( 3 , s ( l ) ) ∧ t( k ) = r a \ t( l ) ) ∨
∨ ( ∃ l < k ∃ i < ω s ( k ) = ( 4 , i , s ( l ) ) ) ∧
∧ t( k ) = { b ∈ r a | ∃x ∈ a ( b \ { ( i , b( i) ) } ) ∪ { ( i , x) } ∈ t( l ) } ) ) .

Then define the satisfaction relation a � u[ b] by b belonging to the assignments sat-
isfying u:

a � u [ b] ↔ a � ∅ ∧ Fmla(u) ∧ b ∈ <ω a ∧
∧ ∃s , r , t ∈ Vω (S( s , a , r , t) ∧ r = rk(u) ∧ u = s (dom( s ) − 1 ) ∧
∧ b ∈ t(dom( s ) − 1 ) ) .

Note that

Theorem 8. 5. For each ∈ -formula ϕ ( v0 , � , vn− 1 ) :

∀a∀x0 , � , xn− 1 ∈ a ( ϕa(x0 , � , xn− 1 ) ↔ a � d ϕ e [ (x0 , � , xn− 1 ) ] .

On the right-hand side, (x0 , � , xn− 1 ) is the term

{ ( 0 , x0) , � , (n − 1 , xn− 1 ) } .

Proof. By induction on the formula complexity of ϕ . �

8.2 Definable power sets
With these notions we can define a notion of definable power set crucial for the
constructible hierarchy.
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Definition 8. 6.

a ) For x ∈ V, ϕ ∈ Fml , and a
� ∈ <ω x define the interpretation of (x , ϕ , a

�

) by

I(x , ϕ , a
�

) = {v ∈ x | x � ϕ [a
� v

0
] }

b ) Def(x ) = {I(x , ϕ , p
�

) | ϕ ∈ Fml , p
� ∈ x } is the definable power set of x .

The terms I(x , ϕ , a
�

) and Def(x) are definite .
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Chapter 9
The Gödel hierarchy
Gödel ’ s hierarchy of constructible sets is obtained by iterating the Def-operation
along the ordinals.

Definition 9. 1 . Define the Gödel hierarchy Lα , α ∈ Ord by recursion on α :

L0 = ∅
Lα+1 = Def(Lα)

Lλ =
⋃

α< λ

Lα , for λ a limit ordinal .

The constructible universe L is the union of that hierarchy:

L =
⋃

α∈Ord

Lα .

The Gödel hierarchy satisfies natural hierarchical laws.

Theorem 9. 2 .

a ) α 6 β implies Lα ⊆ Lβ
b ) Lβ is transitive

c ) Lβ ⊆ Vβ
d ) α < β implies Lα ∈ Lβ
e ) Lβ ∩ Ord = β

f) β 6 ω implies Lβ = Vβ

g ) β > ω implies card(Lβ) = card( β)

Proof. By induction on β ∈ Ord. The cases β = 0 and β a limit ordinal are easy
and do not depend on the specific definition of the Lβ-hierarchy.

Let β = γ + 1 where the claims hold for γ .
a) It suffices to show that Lγ ⊆ Lβ . Let x ∈ Lγ . By b) , Lγ is transitive and
x ⊆ Lγ . Hence
x = {v ∈ Lγ | v ∈ x } = {v ∈ Lγ | (Lγ , ∈ ) � ( v ∈ w)

x

w
} = I(Lγ , v ∈ w, x ) ∈ Lγ+1 = Lβ .

b) Let x ∈ Lβ . Let x = I(Lγ , ϕ , p
�

) . Then by a) x ⊆ Lγ ⊆ Lβ .
c) By induction hypothesis,

Lβ = Def(Lγ) ⊆ P(Lγ) ⊆ P(Vγ) = Vγ+1 = Vβ .
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d) It suffices to show that Lγ ∈ Lβ .

Lγ = {v ∈ Lγ | v = v } = {v ∈ Lγ | (Lγ , ∈ ) � v = v } = I(Lγ , v = v , ∅ ) ∈ Lγ+1 = Lβ .

e) Lβ ∩ Ord ⊆ Vβ ∩ Ord = β . For the converse, let δ < β . If δ < γ the inductive
hypothesis yields that δ ∈ Lγ ∩ Ord ⊆ Lβ ∩ Ord. Consider the case δ = γ . We have
to show that γ ∈ Lβ . There is a formula ϕ ( v) which is Σ 0 and formalizes being an
ordinal. This means that all quantifiers in ϕ are bounded and if z is transitive
then

∀v ∈ z ( v ∈ Ord↔ ( z , ∈ ) � ϕ ( v) ) .

By induction hypothesis

γ = {v ∈ Lγ | v ∈ Ord}
= {v ∈ Lγ | (Lγ , ∈ ) � ϕ ( v) }
= I(Lγ , ϕ , ∅ )
∈ Lγ+1 = Lβ .

f) Let β < ω . By c) it suffices to see that Vβ ⊆ Lβ . Let x ∈ Vβ . By induction
hypothesis, Lγ= Vγ . x ⊆ Vγ = Lγ . Let x = {x0 , � , xn− 1} . Then

x = {v ∈ Lγ | v = x0 ∨ v = x 1 ∨ � ∨ v = xn− 1 }
= {v ∈ Lγ | (Lγ , ∈ ) � ( v = v0 ∨ v = v1 ∨ � ∨ v = vn− 1 )

x0 x 1 � xn− 1

v0 v1 � vn− 1
}

= I(Lγ , ( v = v0 ∨ v = v1 ∨ � ∨ v = vn− 1 ) , x0 , x 1 , � , xn− 1 )

∈ Lγ+1 = Lβ .

g) Let β > ω . By induction hypothesis card(Lγ) = card( γ) . Then

card( β) 6 card(Lβ)

6 card( {I(Lγ , ϕ , p
�

) | ϕ ∈ Fml , p
� ∈ Lγ} )

6 card(Fml) · card( <ωLγ)

6 card(Fml) · card(Lγ)
<ω

= ℵ 0 · card( γ) <ω

= ℵ 0 · card( γ) , since γ is infinite,
= card( γ)

= card( β) .

�

The properties of the Gödel hierarchy immediately imply the following proper-
ties of the constructible universe.

Theorem 9.3.

a ) L is transitive .

b ) Ord ⊆ L .

Theorem 9.4. (L , ∈ ) is a model of ZF .
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Proof. We have to show criterion 5. 7. instead! ! ! By a previous theorem it suffices
that L is transitive, almost universal and closed under definitions .
( 1 ) L is almost universal, i. e. , ∀x ⊆ L ∃y ∈ L x ⊆ y .
Proof. Let x ⊆ L . For each u ∈ L let rk(u) = min {α | u ∈ Lα} be its constructib le
rank . By replacement in V let β =

⋃ { rk(u) | u ∈ x } ∈ Ord. Then

x ⊆ Lβ ∈ L .
( 2) L is closed under definition, i. e. , for every ∈ -formula ϕ (x , y

�

) holds

∀a , y� ∈ L {x ∈ a | ϕL(x , y
�

) } ∈ L .

Proof. Let ϕ (x , y
�

) be an ∈ -formula and a , y
� ∈ L . Let a , y

� ∈ Lθ0 . By the Levy
reflection theorem there is some θ > θ0 such that ϕ is Lθ-L-absolute, i. e. ,

∀u , v� ∈ Lθ ( ϕLθ(u, v
�

) ↔ ϕL(u, v
�

) ) .

Then

{x ∈ a | ϕL(x , y
�

) } = {x ∈ Lθ | x ∈ a ∧ ϕL(x , y
�

) }
= {x ∈ Lθ | x ∈ a ∧ ϕLθ(x , y

�

) }
= {x ∈ Lθ | (x ∈ a ∧ ϕ (x , y

�

) ) Lθ }
= I(Lθ , (x ∈ z ∧ ϕ (x , v

�

) ) ,
a y

�

z v
� ) ∈ Lθ+1 ⊆ L .

�

The recursive and definite definition of the Lα-hierarchy implies immediately:

Theorem 9. 5. The term Lα is definite .

9. 1 Wellordering L

We shall now prove an external choice principle and also an external continuum
hypothesis for the constructible sets. These will later be internalized through the
axiom of constructib ility . Every constructible set x is of the form

x = I(Lα , ϕ , p
�

) ;

(Lα , ϕ , p
�

) is a name for x .

Definition 9. 6. Define the class of ( constructible) names or locations as

L̃ = { (Lα , ϕ , p
�

) | α ∈ Ord, ϕ ( v , v
�

) ∈ Fml , p
� ∈ Lα , length( p

�

) = length( v
�

) } .
This class has a natural stratification

L̃α = { (Lβ , ϕ , p
�

) ∈ L̃ | β < α } for α ∈ Ord .

A location of the form (Lα , ϕ , p
�

) is cal led an α- location .
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Definition 9. 7. Define wellorders < α ofLα and <̃
α
of L̃α by recursion on α .

− < 0 = <̃ 0 = ∅ is the vacuous ordering on L0 = L̃0 = ∅ ;
− if < α is a wellordering ofLα then define <̃

α+1
on L̃α+1 by:

(Lβ , ϕ , x
�

) <̃ α+1 (Lγ , ψ , y
�

) iff
( β < γ) or ( β = γ ∧ ϕ < ψ) or
( β = γ ∧ ϕ = ψ ∧ x� is lexicographical ly less than y

�

with
respect to < α ) ;

− if <̃
α+1

is a wellordering on L̃α+1 then define < α+1 on Lα+1 by:
y< α+1 z iffthere is a name for y which is <̃ α+1 -smaller then every name for z .

− for limit λ , let < λ =
⋃
α< λ

< α and <̃ λ =
⋃
α< λ

<̃ α . ~

This defines two hierarchies of wellorderings linked by the interpretation function
I .

Theorem 9.8.

a ) < α and <̃ α are well-defined

b ) <̃ α is a wellordering of L̃α

c ) < α is a wellordering ofLα

d ) β < α implies that <̃ β is an initial segment of <̃ α

e ) β < α implies that < β is an initial segment of < α

Proof. By induction on α ∈ Ord. �

We can thus define wellorders < L and <̃ of L and L̃ respectively:

< L =
⋃

α∈Ord

< α and <̃ =
⋃

α∈Ord

<̃ α

Theorem 9.9. < L is a wellordering ofL .

The above recursions are definite and yield:

Theorem 9. 1 0. The terms < α and <̃ α are definite .

9.2 An external continuum hypothesis

Theorem 9. 1 1 . P(ω) ∩ L ⊆ Lℵ1 .

“Proof”. Let m ∈ P(ω) ∩ L . By the downward Löwenheim Skolem theorem let
K ≺ L be a “sufficiently elementary” substructure such that

m ∈ K and card(K ) = ℵ 0 .
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Let π : (K, ∈ ) � (K ′, ∈ ) be the Mostowski transitivisation of K defined by

π(u) = {π( v) | v ∈ u ∧ v ∈ K } .
π � ω = id � ω and

π(m) = {π( i) | i ∈ m ∧ i ∈ X } = {π( i) | i ∈ m} = { i | i ∈ m} = m.

A condensation argument will show that there is η ∈ Ord with
K ′= Lη . card( η) 6 card(L η) = card(K) = ℵ 0 and η < ℵ 1 . Hence

m ∈ K ′= L η ⊆ Lℵ1 .
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Chapter 10
The Axiom of Constructibility

If V = L holds then every set is constructible, and the above external arguments
become internal. We shall show that (V = L ) L .

Definition 10. 1 . The axiom of constructibility is the property V = L .

Theorem 10. 2 . (ZF− ) The axiom of constructib ility holds in L . This can be also
written as (V = L ) L or L = LL .

Proof. By Theorem 9. 5 , the term Lα is definite. Thus the formula x ∈ Lα is abso-
lute for the transitive ZF− -model L . Since L =

⋃
α∈Ord Lα we have

∀x ∈ L ∃α ∈ Ord x ∈ Lα
∀x ∈ L ∃α ∈ L (α ∈ Ord ∧ x ∈ Lα)
∀x ∈ L ∃α ∈ L ( (α ∈ Ord) L ∧ ( x ∈ Lα) L)

∀x ∈ L ∃α ∈ L ( (α ∈ Ord) L ∧ ( x ∈ Lα) L)

(∀x ∃α x ∈ Lα) L

(∀x x ∈ L) L

(V = L) L . �

Theorem 10. 3. (ZF− ) The axiom of choice holds in L : ACL .

Proof. Work in L . By the previous theorem, V = L . The relation < L is a
wellordering of L , hence it is a wellordering of V . �

By previous discussions of relative consistency this yields:

Theorem 10. 4. (Gödel ) If the theory ZF is consistent then the theory ZFC is
also consistent.

Theorem 10. 5. L is the ⊆ -minimal inner model of ZF− , i . e . , ifM is a transi-
tive model of ZF− which contains all the ordinals then L ⊆ M.

Proof. Consider x ∈ Lα . Since α ∈ M and since Lα is definite, Lα ∈ M . By the
transitivity of M , x ∈ M . �
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Chapter 11

Constructible Operations and con-
densation

There are various ways of ensuring the condensation property for the structure K
as used in the above argument for the continuum hypothesis. We shall only
require closure under some basic operations of constructibility theory, in partic-
ular the interpretation operator I . An early predecessor for this approach to con-
densation and to hyperfine structure theory can be found in Gödel ’ s 1 939 paper
[4] :

Proof: Define a set K of constructible sets, a set O of ordinals and a
set F of Skolem functions by the following postulates I-VII:

I. Mωµ ⊆ K and m ∈ K .

II. If x ∈ K , the order of x belongs to O .

III. If x ∈ K , all constants occuring in the definition of x belong
to K .

IV. If α ∈ O and φα(x ) is a propositional function over Mα all of
whose constants belong to K , then:

1 . The subset of Mα defined by φα belongs to K .

2 . For any y ∈ K · Mα the designated Skolem functions
for φα and y or ∼ φα and y ( according as φα( y) or ∼
φα( y) ) belong to F .

V. If f ∈ F , x 1 , � , xn ∈ K and (x 1 , � , xn) belongs to the domain
of definition of f , then f (x1 , � , xn) ∈ K .

VI. If x , y ∈ K and x − y � Λ the first element of x − y belongs
to K .

VII. No proper subsets of K, O , F satisfy I–VI.

. . . . . . .

. . . . . . .
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Theorem 5. There exists a one-to-one mapping x ′ of K on Mη such
that x ∈ y≡ x ′ ∈ y ′ for x , y ∈ K and x ′ = x for x ∈ Mωµ .

Proof: The mapping x ′ ( . . . . ) is defined by transfinite induction on
the order, . . . .

In our approach, Mωµ is denoted by Lωµ and K is the constructib le hull of
Mωµ ∪ {m} = Lωµ ∪ {m} . The hull K is isomorphic to a level Mη = L η of the
Gödel hierarchy, i . e. , the Gödel hierarchy is closed with respect to isomorphism
types of constructible hulls. This fundamental closure property is called condensa-
tion . We shall prove condensation theorems for the constructib le hierarchy which
is basically equivalent to the Gödel hierarchy and for a refined fine hierarchy .

1 1 . 1 Constructible operations

A substructure of the kind considered by Gödel may be obtained as a closure
with respect to certain constructib le operations .

Definition 1 1 . 1 . Define the constructible operations I , N , S by:

a ) Interpretation: for a name (Lα , ϕ , x
�

) let
I(Lα , ϕ , x

�

) = { y ∈ Lα
�
(Lα , ∈ ) � ϕ ( y , x

�

) } ;

b ) Naming: for y ∈ L let
N ( y) = the <̃ - least name (Lα , ϕ , x

�

) such that I(Lα , ϕ , x
�

) = y.

c ) Skolem function: for a name (Lα , ϕ , x
�

) let
S(Lα , ϕ , x

�

) = the < L - least y ∈ Lα such that Lα � ϕ ( y , x
�

) if such a y exists;
set S(Lα , ϕ , x

�

) = 0 if such a y does not exist.

Definition 1 1 . 2 . For α ∈ Ord we set

(Lα , ∈ , < L , I , N , S ) = (Lα , ∈ ∩ (Lα) 2 , < L ∩ (Lα)
2 , I � L̃α , N � Lα , S � L̃α)

and call (Lα , ∈ , < L , I , N , S ) a constructible level . The constructible hierarchy
consists of all constructib le levels. Sometimes we write Lα instead of (Lα , ∈ , < L ,
I , N , S) .

A map π : Lα→ Lβ is cal led constructible iff

π : (Lα , ∈ , < L , I , N , S ) → (Lβ , ∈ , < L , I , N , S )

is a structure preserving embedding, i. e . , an injective homomorphism.

For α a successor ordinal, Lα is not closed under pairing, and we introduce the
following convention.
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For X ⊆ L , (Lα , ϕ , x
�

) a name we write (Lα , ϕ , x
�

) ∈ X to mean that Lα and
each component of x

�

is an element of X .

Definition 1 1 . 3. X ⊆ L is constructibly closed , X / L , iffX is closed under I ,
N , S:

(Lα , ϕ , x
�

) ∈ X � I(Lα , ϕ , x
�

) ∈ X and S(Lα , ϕ , x
�

) ∈ X,

y ∈ X � N( y) ∈ X.

For X ⊆ L , L {X } = the ⊆ -smallest Y ⊇ X such that Y / L is cal led the con-
structible hull ofX.

The constructible hull L {X } of X can be obtained by closing X under the
functions I , N , S in the obvious way. Hulls of this kind satisfy certain “algebraic”
laws which will be stated later in the context of fine hulls. Clearly each Lα is con-
structibly closed.

Theorem 11 . 4. ( Condensation Theorem) Let X be constructib ly closed and let π :
X � M be the Mostowski col lapse ofX onto the transitive set M. Then there is
an ordinal α such that M = Lα , and π preserves I , N , S and < L :

π : (X, ∈ , < L , I , N , S ) � (Lα , ∈ , < L , I , N , S ) .

Proof. We first show the legitimacy of performing a Mostowski collapse.
( 1 ) (X, ∈ ) is extensional.
Proof. Let x , y ∈ X , x � y . Let N (x ) = (Lα , ϕ , p

�

) ∈ X and N ( y) = (Lβ , ψ , q
�

) ∈ X .
Case 1 . α < β. Then x ∈ Lβ and (Lβ , ∈ ) � ∃v( v ∈ x= ψ( v , q

�

) ) . Let

z = S(Lβ , ( v ∈ u= ψ( v , w
�

) ) ,
x q

�

u w
� ) ∈ X

Then z ∈ x= z ∈ y . qed ( 1 )
We prove the theorem for X ⊆ Lγ, by induction on γ . There is nothing to

show in case γ = 0 . For γ a limit ordinal observe that

π =
⋃

α< γ

π � (X ∩ Lγ)

where each π � (X ∩ Lγ) is the Mostowski collapse of the constructibly closed set
X ∩ Lγwhich by induction already satisfies the theorem.

So let γ = β + 1 , X ⊆ Lβ+ 1 , X * Lβ , and the theorem holds for β . Let

π : (X, ∈ ) � ( X̄ , ∈ )

be the Mostowski collapse of X . X ∩ Lβ is an ∈ -initial segment of X , hence
π � X ∩ Lβ is the Mostowski collapse of X ∩ Lβ . X ∩ Lβ is constructibly closed
and so by the inductive assumption there is some ordinal β̄ such that

π � X ∩ Lβ: (X ∩ Lβ , ∈ , < L , I , N , S ) � (L β̄ , ∈ , < L , I , N , S ) .
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Note that the inverse map π− 1 : L β̄ → Lβ is elementary since X ∩ Lβ is closed
under Skolem functions for Lβ .
( 2) Lβ ∈ X .
Proof. Take x ∈ X \ Lβ . Let N (x) = (Lγ , ϕ , p

�

) . Then Lγ ∈ X and Lγ = Lβ since
x

�
Lβ . qed ( 2)

( 3) π(Lβ) = L β̄ .
Proof. π(Lβ) = {π(x) | x ∈ Lβ ∧ x ∈ X } = {π(x ) | x ∈ X ∩ Lβ} = L β̄ .
( 4) X = {I(Lβ , ϕ , p

�

) | p� ∈ X ∩ Lβ} .
Proof. ⊇ is clear. For the converse let x ∈ X .
Case 1 . x ∈ Lβ . Then x = I(Lβ , v ∈ v1 ,

x

v1
) is of the required form.

Case 2 . x ∈ L \ Lβ . Let N (x ) = (Lβ , ϕ , p
�

) , noting that the first component
cannot be smaller than Lβ . p

� ∈ X and x = I(N (x ) ) = I(Lβ , ϕ , p
�

) is of the
required form. qed ( 4)
( 5) Let x

� ∈ X . Then π( I (Lβ , ϕ , x
�

) ) = I(L β̄ , ϕ , π(x
�

) ) .
Proof.

π( I(Lβ , ϕ , x
�

) ) = {π( y) | y ∈ π( I(Lβ , ϕ , x
�

) ) ∧ y ∈ X }
= {π( y) | (Lβ , ∈ ) � ϕ ( y , x

�

) ∧ y ∈ X }
= {π( y) | (L β̄ , ∈ ) � ϕ (π( y) , π(x

�

) ) ∧ y ∈ X }
= {z ∈ L β̄ | (L β̄ , ∈ ) � ϕ ( z , π(x

�

) ) }
= I (L β̄ , ϕ , π(x

�

) ) .

qed ( 5)
( 6) X̄ = L β̄ +1 .
Proof. By ( 4, 5) ,

L β̄ +1 = {I(L β̄ , ϕ , x
�

) | x� ∈ L β̄ }
= {I(L β̄ , ϕ , π( p

�

) ) | p� ∈ X ∩ Lβ} , since π � X ∩ Lβ: X ∩ Lβ � L β̄ ,

= {π( I(Lβ , ϕ , p
�

) ) | p� ∈ X ∩ Lβ}
= π ′′{I (Lβ , ϕ , p

�

) | p� ∈ X ∩ Lβ}
= π ′′X = X̄ .

qed ( 6)
( 7) Let y ∈ X . Then π(N( y) ) = N(π( y) ) . This means: if N ( y) = (Lδ , ϕ , x

�

) then
N (π( y) ) = (π(Lδ) , ϕ , π(x

�

) ) = (Lπ( δ) , ϕ , π(x
�

) ) .

Proof. Let N ( y) = (Lδ , ϕ , x
�

) . Then y = I(Lδ , ϕ , x
�

) and by ( 5) we have π( y) =
I(Lπ( δ) , ϕ , π(x

�

) ) . Assume for a contradiction that (Lπ( δ) , ϕ , π(x
�

) ) � N (π( y) ) . Let
N (π( y) ) = (L η , ψ , y

�

) . By the minimality of names we have (L η , ψ , y
�

) <̃ (Lπ( δ) , ϕ ,

π(x
�

) ) . Then (Lπ− 1 ( η) , ψ , π
− 1 ( y

�

) ) <̃ (Lδ , ϕ , x
�

) . By the minimality of (Lδ , ϕ , x
�

) =

N ( y) , I(Lπ− 1 ( η) , ψ , π
− 1 ( y

�

) ) � I(Lδ , ϕ , x
�

) = y . Since π is injective and by ( 5) ,

π( y) � π( I(Lπ− 1 ( η) , ψ , π
− 1 ( y

�

) ) )

= I(Lη , ψ , y
�

)

= I(N( y) ) = y .
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Contradiction. qed ( 7)
( 8) Let x , y ∈ X . Then x < L y iff π(x) < L π( y) .
Proof. x < L y iff N (x ) <̃N ( y) iff π(N (x ) ) <̃ π(N ( y) ) ( since inductively π preserves
< L on X ∩ Lβ and <̃ is canonically defined from < L ) iff N(π(x) ) <̃ N(π( y) ) iff
π(x ) < L π( y) . qed ( 8)
( 9) Let (Lδ , ϕ , x

�

) ∈ X . Then π(S(Lδ , ϕ , x
�

) ) = S (Lπ( δ) , ϕ , π(x
�

) ) .
Proof. We distinguish cases according to the definition of S(Lδ , ϕ , x

�

) .
Case 1 . There is no v ∈ I(Lδ , ϕ , x

�

) , i . e. , I(Lδ , ϕ , x
�

) = ∅ and S(Lδ , ϕ , x
�

) = ∅ . Then
by ( 5) ,

I(Lπ( δ) , ϕ , π(x
�

) ) = π( I(Lδ , ϕ , x
�

) ) = π( ∅ ) = ∅

and S(Lπ( δ) , ϕ , π(x
�

) ) = ∅ . So the claim holds in this case.
Case 2 . There is v ∈ I(Lδ , ϕ , x

�

) , and then S(Lδ , ϕ , x
�

) is the < L -smallest element
of I(Lδ , ϕ , x

�

) . Let y = S(Lδ , ϕ , x
�

) . By ( 5) ,

π( y) ∈ π( I(Lδ , ϕ , x
�

) ) = I(Lπ( δ) , ϕ , π(x
�

) ) .

So S(Lπ( δ) , ϕ , π(x
�

) ) is well-defined as the < L -minimal element of I(Lπ( δ) , ϕ ,

π(x
�

) ) . Assume for a contradiction that S(Lπ( δ) , ϕ , π(x
�

) ) � π( y) . Let z = S(Lπ( δ) ,

ϕ , π(x
�

) ) ∈ I(Lπ( δ) , ϕ , π(x
�

) ) . By the minimality of Skolem values, z < L π( y) . By
( 8) , π− 1 ( z) < L y . Since π is ∈ -preserving, π− 1 ( z ) ∈ I(Lδ , ϕ , x

�

) . But this contra-
dicts the < L -minimality of y = S(Lδ , ϕ , x

�

) �
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Chapter 12
GCH in L
Theorem 12. 1 . (L , ∈ ) � GCH .

Proof. (L , ∈ ) � V = L . It suffices to show that

ZFC + V = L ` GCH .

Let ωµ > ℵ 0 be an infinite cardinal.
( 1 ) P(ωµ) ⊆ Lωµ+ .
Proof. Let m ∈ P(ωµ) . Let K = L {Lωµ ∪ {m} } be the constructible hull of Lωµ ∪
{m} . By the Condensation Theorem take an ordinal η and and the Mostowski
isomorphism

π : (K, ∈ ) � (L η , ∈ ) .

Since Lωµ ⊆ K we have π(m) = m .

η < card( η) + = card(L η)
+ = card(K) + = card(Lωµ)

+ = ωµ
+ .

Hence m ∈ L η ⊆ Lωµ+ . qed ( 1 )

Thus ωµ
+ 6 card(P(ωµ) ) 6 card(Lωµ+) = ωµ

+ . �
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Chapter 13
Trees
Throughout these lectures we shall prove combinatorial principles in L and apply
them to construct specific structures that cannot be proved to exist in ZFC alone.
We concentrate on the construction of infinite trees since they are purely combi-
natorial objects which are still quite close to ordinals and cardinals. One could
extend these considerations and also construct unusual topological spaces or
uncountable groups.

Definition 13. 1 . A tree is a strict partial order T = (T, < T ) , such that ∀t ∈
T { s ∈ T | s < T t} is well-ordered by < T . For t ∈ T let htT( t) = otp( { s ∈ T | s < T t} )
be the height of t in T. For X ⊆ Ord let TX be the set of points in the tree whose
heights lie in X:

TX = { t ∈ T | htT( t) ∈ X } .
In particular, T{α } is the α- th level of the tree and Tα is the initial segment of T
below α . We let

ht(T) = min {α | T = Tα }
be the height of the tree T.

A chain in T is a linearly ordered subset of T. An ⊆ -maximal chain is cal led
a branch .

Definition 13. 2 . A tree T of cardinality λ all of whose levels and branches are of
cardinality < λ is cal led a λ -Aronszajn tree. If λ = ω1 , T is cal led an Aronszajn
tree.

Theorem 13. 3. Let κ be regular and ∀λ < κ 2λ 6 κ . Then there is a κ+-Aron-
szajn tree .

Hence in ZFC one can show the existence of an (ω1 -)Aronszajn tree. The gen-
eralized continuum hypothesis implies the assumption ∀λ < κ 2λ 6 κ , so in L there
are κ+-Aronszajn trees for every regular κ .

Theorem 13. 4. Let κ be an infinite cardinal. Then there is a linear order (Q , ≺
) such that card(Q ) = κ and every α < κ+ can be order-embedded into every proper
interval ofQ .

Proof. Let Q = {a ∈ ω κ | ∃m ∈ ω ∀n ∈ ω (n > m → a(n) = 0} be the set of ω-
sequences from κ which are eventually zero and define the lexicographic linear
order ≺ on Q by:

a ≺ b↔ ∃n ∈ ω( a � n = b � n ∧ a(n) < b(n) ) .
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We first prove the embedding property for α = κ :
( 1 ) If a ≺ b then there is an order-preserving embedding

f : (κ , < ) → ( ( a , b) , ≺ )

into the interval ( a , b) = { c | a ≺ c ≺ b} .
Proof. Take n ∈ ω such that

a � n = b � n ∧ a(n) < b(n) .

Then define f : (κ , < ) → ( ( a , b) , ≺ ) by

f ( i) = ( a � n + 1 ) ∪ { (n + 1 , a(n + 1 ) + 1 + i) } ∪ ( 0 | n + 2 6 l < ω) .

qed ( 1 )
We prove the full theorem by induction on α < κ+ . Let α < κ+ and assume

that the theorem holds for all β < α . Let ( a , b) be a proper interval of Q , a ≺ b .
Case 1 : α = β + 1 is a successor ordinal. By ( 1 ) take b ′ ∈ ( a , b) . By the induc-
tive assumption take an order-preserving map f ′ : ( β, < ) → ( a , b ′) . Extend f ′ to an
order-preserving map f : (α , < ) → ( a , b) by setting f ( β) = b ′.
Case 2 : α is a limit ordinal. Since α < κ+ let α =

⋃
i< κ

α i such that ∀i <
κ α i < α . By ( 1 ) let f : (κ , < ) → ( ( a , b) , ≺ ) order-preservingly. By the inductive
assumption choose a sequence ( gi | i < κ ) of order-preserving embeddings

gi : (α i , < ) → ( ( f ( i) , f ( i + 1 ) ) , ≺ ) .

Then define an order-preserving embedding

h : (α , < ) → ( ( a , b) , ≺ )

by h ( β) = gi( β) , where i < κ is minimal such that β ∈ α i . �

Proof of Theorem 1 3. 3. Let (Q , ≺ ) be a linear order as in Theorem 1 3. 4. We
define a tree

T ⊆ { t | ∃α < κ+ t : (α , < ) → (Q , ≺ ) is order-preserving}
with strict inclusion ⊂ as the tree order such that:

a) T is closed under initial segments, i . e. , ∀t ∈ T∀ξ ∈ Ord t � ξ ∈ T ;
b) for all α < κ+ , T{α } = { t ∈ T | dom( t) = α } has cardinality 6 κ ;
c) for all limit ordinals α < κ+ with cof(α) < κ

T{α } = { t | t : α→ Q ∧ ∀β < α t � β ∈ T{β}} .

d) for all α < β < κ+ , t ∈ T{α } , a ≺ b ∈ Q such that ∀ξ ∈ α t( ξ) ≺ a there exists
t ′ ∈ T{β} such that t ⊂ t ′ and ∀ξ ∈ β t ′( ξ) ≺ b .

We define the levels T{α } by recursion on α < κ+ .
Let T{0} = { ∅} .
Let α = β + 1 and assume that T{β} is defined according to a) - d) . For any t ∈
T{b } and a ≺ b ∈ Q such that ∀ξ ∈ β t( ξ) ≺ a choose an extension ta , b′ such that

− ta , b
′ : (α , < ) → (Q , ≺ ) is order-preserving;
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− ta , b
′ ⊃ t;

− ∀ξ ∈ α ta , b
′ ( ξ) ≺ b .

One could for example set ta , b′ ( β) = a . Then set

T{α } = { ta , b′ | t ∈ T{β} , a ≺ b , ∀ξ ∈ β t( ξ) ≺ a } .

Obviously, conditions a) - d) are satisfied.
Let α < κ+ be a limit ordinal so that for all β < α T{β} is defined according to a) -
d) . These are the levels of the tree Tα .
Case 1 : cof(α) < κ . Let the sequence (α i | i < cof(α) ) be continuous and cofinal in
α with cof(α) < α0 . By c) we must set

T{α } = { t | t : α→ Q ∧ ∀β < α t � β ∈ T{β}} .
Let us check that properties a) - d) hold for this definition. a) is immediate. For
b) , note that every t ∈ T{α } is determined by ( t � β | β ∈ C ) :

card(T{α } ) 6 card( cof(α ) (Tα) )

6 card( cof(α )
⋃

β< α

T{β})

6 card( cof(α )κ · κ)

= κcof(α)

6
∑

ν< κ

ν cof(α)

6
∑

ν< κ

2ν · cof(α)

6
∑

ν< κ

κ , by the assumption ∀λ < κ 2λ 6 κ ,

= κ .

For d) , let t ∈ Tα and a ≺ b ∈ Q such that ∀ξ ∈ dom( s ) t( ξ) ≺ a . By Theorem 1 3. 4
there is an order-preserving embedding f : ( cof(α) , < ) → ( ( a , b) , ≺ ) . We may
assume that ht( t) < α0 . We may recursively choose sequences ti ∈ T{αi } such that

− ∀i < j < cof(α) t ⊂ ti ⊂ tj ;
− ∀i < cof(α) ∀ξ ∈ α i ti( ξ) ≺ f ( i) .

For non-limit ordinals i < cof(α) use the extension property d) . For limit ordinals
i < cof(α) note that α i is the limit of (α j | j < i) and is thus singular with cof(α i) 6
i < cof(α) < κ . We can then take ti =

⋃
j< i

tj which is an element of T{α i } by c) .
Then take t ′ =

⋃
i< cof(α )

ti . t ′ ∈ T{α } by the definition of T{α } . t ′ is an exten-
sion of t and ∀ξ ∈ α t ′( ξ) ≺ b as required.
Case 2 : cof(α) = κ . Let the sequence (α i | i < κ ) be continuous and cofinal in α .
For each t ∈ Tα and a ≺ b ∈ Q with ∀ξ ∈ dom( t) t( ξ) ≺ a we shall construct an
extension ta , b

′ in T appropriate for the extension property d) : By Theorem 1 3. 4
there is an order-preserving embedding f : (κ , < ) → ( ( a , b) , ≺ ) . We may assume
that ht( t) < α0 . Recursively choose sequences ti ∈ T{α i } such that

− ∀i < j < κ t ⊂ ti ⊂ tj ;
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− ∀i < κ∀ξ ∈ α i ti( ξ) ≺ f ( i) .

For non-limit ordinals i < cof(α) use the extension property d) . For limit ordinals
i < cof(α) note that α i is the limit of (α j | j < i) and is thus singular with cof(α i) 6
i < κ . We can then take ti =

⋃
j< i

tj which is an element of T{α i } by c) .
Then set ta , b′ =

⋃
i< κ

ti . ta , b′ is an extension of t and ∀ξ ∈ α ta , b
′ ( ξ) ≺ b as

required in c) .
Now define

T{α } = { ta , b′ | t ∈ Tα , a ≺ b , ∀ξ ∈ dom( t) t( ξ) ≺ a } .

The properties a) - d) are easily checked. a) follows by construction. For b) note
that

card(T{α } ) 6 card(Tα) · card(Q ) · card(Q )

6 ( card(α) · κ ) · κ · κ
6 κ · κ · κ · κ 6 κ .

c) does not apply for T{α } and d) holds by construction.
This defines the tree T =

⋃
α< κ+ T{α } . We show that T is a κ+-Aronszajn

tree.
( 1 ) ht(T) = κ+ .
Proof. Property d) ensures that ∀α < κ+ T{α } � ∅ . By construction, T{κ+} = ∅ ,
hence ht(T) = κ+ . qed ( 1 )
( 2) card(T) = κ+ , since by property b) κ+ = ht(T) 6 card(T) 6 κ+ · κ = κ+ .
( 3) ∀α < ht(T) card(T{α } ) 6 κ , by property b) .
( 4) Every branch of T has cardinality 6 κ .
Proof. Let B ⊆ T be a branch of T . Then

⋃
B : ( θ , < ) → (Q , ≺ ) is an order-

preserving embedding for some θ ∈ Ord. Since
⋃

B is an injection from θ into Q ,
card( θ) 6 κ . Then card(B ) 6 θ 6 κ . �
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Chapter 14
The principle ♦
We shall study a principle which was introduced by Ronald Jensen and may be
seen as a strong form of a continuum hypothesis. We shall use the principle to
construct Aronszajn trees with stronger properties.

Definition 14. 1 . Let κ be a regular uncountable cardinal. Then ♦κ is the prin-
ciple: there is a sequence (Sα | α < κ) such that

∀S ⊆ κ {α < κ | S ∩ α = Sα } is stationary in κ .

Theorem 14. 2 . Assume ♦κ+ . Then 2κ = κ+ .

Proof. Let (Sα | α < κ) be a sequence satisfying ♦κ+ . Consider x ⊆ κ . By the
♦κ+-property there is α ∈ (κ , κ+) such that x = x ∩ α = Sα . Hence

P(κ) ⊆ {Sα | α < κ+}
and

2κ = card(P(κ) ) 6 κ+ . �

Theorem 14. 3. Assume V = L . Then ♦κ holds for all regular uncountable cardi-
nals κ .

Proof. Define (Sα | α < κ) by recursion on α . Consider β < κ and let (Sα | α < β)
be appropriately defined. If β is not a limit ordinal, set Sβ = ∅ . If β is a limit
ordinal, let (Sβ , Cβ) be the < L -minimal pair such that Cβ is closed unbounded in
β , Sβ ⊆ β and ∀α ∈ Cβ Sβ ∩ α � Sα , if this exists; otherwise let Sβ= ∅ .

We show that (Sα | α < κ) satisfies ♦κ . Assume not. Then there is a set S ⊆ κ
such that {α < κ | S ∩ α = Sα } is not stationary in κ . Hence there is a closed
unbounded set C ⊆ κ such that

{α < κ | S ∩ α = Sα } ∩ C = ∅ ,
i. e. ,

∀α ∈ C S ∩ α � Sα .
We may assume that (S , C ) is the < L -minimal pair such that C is closed
unbounded in κ and ∀α ∈ C S ∩ α � Sα .
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Take a level Lθ such that (ZF− ) Lθ and κ , (Sα | α < κ ) , S , C ∈ Lθ .
( 1 ) There is X C L such that Lθ , κ , (Sα | α < κ) , S , C ∈ X , and β = X ∩ κ is a
limit ordinal < κ .
Proof. Define sequence X0 ⊆ X1 ⊆ � and β0 < β1 < � < κ by recursion so that
card(Xn) < κ and Xn ∩ κ ⊆ βn . Let

X0 = L { {Lθ , κ , (Sα | α < κ) , S , C } } C L .

X0 is countable and so card(X0) < κ .
Let Xn be defined such that card(Xn) < κ . Since κ is a regular cardinal, Xn ∩

κ is bounded below κ . Take βn < κ such that Xn ∩ κ ⊆ βn . Then let

Xn+1 = L {Xn ∪ ( βn+ 1 ) } .

card(Xn+1 ) 6 card(Xn) + card( βn) + ℵ 0 < κ .

Let X =
⋃
n<ω

Xn and β =
⋃
n<ω

βn . S ince κ is regular uncountable, β is a limit
ordinal and β < κ . By construction,

X =
⋃

n<ω

Xn=
⋃

n<ω

L {Xn ∪ ( βn+ 1 ) } = L {
⋃

n<ω

(Xn ∪ ( βn+ 1 ) ) } C L .

β =
⋃

n<ω

βn ⊆ (
⋃

n<ω

Xn+1 ) ∩ κ ⊆ X ∩ κ ⊆
⋃

n<ω

Xn ∩ κ ⊆
⋃

n<ω

βn= β .

qed ( 1 )
By the condensation theorem let

π : (X, ∈ , < L , I , N , S ) � (Lδ , ∈ , < L , I , N , S )

for some δ ∈ Ord. We compute the images of various sets.
( 2) π � β = id � β , since β = X ∩ κ ⊆ X is transitive.
( 3) π(κ) = β , since π(κ) = {π( ξ) | ξ ∈ κ ∧ ξ ∈ X } = {π( ξ) | ξ ∈ β} = { ξ | ξ ∈ β} = β .
( 4) π(S) = S ∩ β , since

π(S) = {π( ξ) | ξ ∈ S ∧ ξ ∈ X }
= {π( ξ) | ξ ∈ S ∩ X }
= {π( ξ) | ξ ∈ S ∩ β}
= { ξ | ξ ∈ S ∩ β}
= S ∩ β .

Similarly
( 5) π(C) = C ∩ β .
( 6) π( (Sα | α < κ) ) = (Sα | α < β) .
Proof.

π( (Sα | α < κ) ) = π( { (α , Sα) | α ∈ κ } )
= {π( (α , Sα) ) | α ∈ β}
= { (π(α) , π(Sα) ) | α ∈ β}
= { (α , Sα) | α ∈ β}
= (Sα | α < β) .
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qed ( 6)
( 7) X ∩ Lθ is an elementary substructure of (Lθ , ∈ ) .
Proof. Since Lθ ∈ X , the initial segment X ∩ Lθ is closed with respect to the
Skolem functions S(Lθ , _ , _ ) for Lθ . qed ( 7)

Let θ̄ = π( θ) . Then
( 8) π− 1 � L θ̄ : (L θ̄ , ∈ ) → (Lθ , ∈ ) is an elementary embedding.

Now we use elementarity and absoluteness to derive a contradiction.
( 9) C ∩ β is closed unbounded in β , S ∩ β ⊆ β and ∀α ∈ C ∩ β S ∩ α � Sα .
Proof. C is closed unbounded in κ . S ince this is a definite property, (Lθ , ∈
) � C is closed unbounded in κ . By elementarity, (L θ̄ , ∈ ) � C ∩ β is closed
unbounded in β . By the absoluteness of being closed unbounded, C ∩ β is closed
unbounded in β .

The other properties follow by the assumptions on C and S . qed ( 9)
( 1 0) (S ∩ β, C ∩ β) = (Sβ , Cβ) .
Proof. Assume not. By the minimality of (Sβ , Cβ) and ( 9) , we get

(Sβ , Cβ) < L (S ∩ β, C ∩ β) .

Since L θ̄ is an initial segment of < L we have (Sβ , Cβ) ∈ L θ̄ . The defining proper-
ties for (Sβ , Cβ) are absolute for (L θ̄ , ∈ ) :

(L θ̄ , ∈ ) � Cβ is closed unbounded in β , Sβ ⊆ β and ∀α ∈ Cβ Sβ ∩ α � Sα .
By the elementarity of π− 1 � L θ̄ :

(Lθ , ∈ ) � π− 1 (Cβ) is cl. unb. in κ , π− 1 (Sβ) ⊆ κ , ∀α ∈ π− 1 (Cβ) π
− 1 (Sβ) ∩ α � Sα .

By the absoluteness of these properties for transitive ZF− -models,

π− 1 (Cβ) is cl. unb. in κ , π− 1 (Sβ) ⊆ κ , ∀α ∈ π− 1 (Cβ) π
− 1 (Sβ) ∩ α � Sα ,

i . e. , the pair (π− 1 (Sβ) , π
− 1 (Cβ) ) satisfies the defining property for (S , C) . S ince

π− 1 preserves < L ,

(π− 1 (Sβ) , π
− 1 (Cβ) ) < L (π− 1 (S ∩ β) , π− 1 (C ∩ β) ) = (S , C) .

This contradicts the < L -minimal cloice of (S , C) . qed ( 1 0)
By ( 9) , β is a limit point of C and hence β ∈ C . By ( 1 0) , S ∩ β = Sβ . This

contradicts the choice of the pair (S , C ) , i . e. , there is no counterexample against
the ♦κ-property of the sequence (Sα | α < κ) . �
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Chapter 15
Combinatorial principles and Suslin
trees

Definition 15. 1 . Let T = (T, < T ) be a tree .

a ) A set A ⊆ T is an antichain in T if ∀s , t ∈ A ( s � t→ ( s ≮ Tt ∧ t ≮ Ts ) ) .
b ) Let κ be a cardinal. T is cal led a κ -Suslin tree if card(T) = κ and every

chain and antichain in T has cardinality < κ .

Obviously every level of a tree is an antichain. Hence a κ-Suslin tree is also a κ-
Aronszajn tree.

Theorem 15. 2 . Let κ be an infinite cardinal. Let T = (T, < T ) be a tree with
card(T) = κ such that every antichain in T has cardinality < κ and T is
branching , i . e .

∀s ∈ T∃ t , t ′ ∈ T ( s < Tt ∧ s < Tt
′ ∧ htT( t) = htT( t ′) = htT( s ) + 1 ∧ t � t ′) .

Then T is a κ -Suslin tree .

Proof. It suffices to see that every chain in T has cardinality < κ . Let C ⊆ T be
a chain. For every s ∈ C choose t , t ′ ∈ T such that

s < Tt ∧ s < Tt
′ ∧ htT( t) = htT( t ′) = htT( s ) + 1 ∧ t � t ′

Then at least one of t , t ′ is not an element of C . So for each s ∈ C we can choose
s ∗ > Ts such that s ∗

�
C and htT( s ∗ ) = htT( s ) + 1 .

( 1 ) If s , t ∈ C and s � t then s ∗ ≮ Tt
∗ ∧ t∗ ≮ Ts ∗ .

Proof. Assume not. Without loss of generality assume s ∗ < T t
∗ . Since t is the

immediate < T -predecessor of t∗ we have s ∗ 6 Tt and s ∗ ∈ C . Contradiction. qed ( 1 )
Hence { s ∗ | s ∈ C } is an antichain in T . By assumption card( { s ∗ | s ∈ C } ) < κ .

S ince the assignment s � s ∗ is injective, we have card(C) < κ . �

Theorem 15. 3. Assume ♦ω1 . Then there exists an ω1 -Suslin tree .

Proof. Let (Sα | α < ω1 ) be a ♦ω1
-sequence. We construct a tree T = (T, < T ) of

the form T =
⋃
α< ω1

T{α } such that every level Tα is countable. We can arrange
that

T{0} = {0} and ∀α ∈ [ 1 , ω1 ) T{α } = ω · (α + 1 ) \ ω · α .
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By recursion on α < ω1 we shall determine the < T -predecessors of x ∈ T{α } . We
shall also ensure the following recursive condition which guarantees that the tree
can always be continued:
( 1 ) for all ξ < ζ 6 α and s ∈ T{ ξ} there exists t ∈ T{ ζ} such that s < Tt .

For α = 0 there is nothing to determine.
For α = 1 , let every element of T{ 1 } be a < T -successor of 0 ∈ T{0} .
Let α = β + 1 > 1 and let < T � Tα be determined so that ( 1 ) is satisfied. We let

every s ∈ T{β} have two immediate successors in T{α } : if s = ω · β + m ∈ T{β} and
t = ω · α + n ∈ T{α } then set

s < Tt iff n = 2 · m or n = 2 · m + 1 .

Since < T has to be a transitive partial order, this determines all < T -predecessors
of x ∈ T{α } . Also ( 1 ) holds for < T � Tα+1 .

Let α be a limit ordinal and let < T � Tα be determined so that ( 1 ) is satisfied.
( 2) For every s 0 ∈ Tα there is a branch B of the tree Tα = (Tα , < T � Tα) such
that s 0 ∈ B and otp(B ) = α .
Proof. Choose an ω-sequence

htT( s ) = α0 < α1 < � < αn < � < α

which is cofinal in α . Using ( 1 ) choose a sequence

s 0 < Ts 1 < T � < Tsn < T �
such that ∀n < ω htT( sn) = αn . Then

B = { t ∈ Tα | ∃n < ω t < Tsn}
satisfies the claim. qed ( 2)

Define a set Sα′ ⊆ Tα as follows: if Sα is a maximal antichain in the tree Tα =
(Tα , < T � Tα) then set

Sα
′ = {r ∈ Tα | ∃s ∈ Sα s 6 Tr } ;

otherwise set Sα′ = Tα . The set Sα′ is countable. Let Sα′ = { s i | i < ω } be an enumer-
ation of Sα′ . For each i < ω use ( 2) to choose a branch Bi of Tα with s i ∈ Bi and
otp(Bi) = α . For x = ω · α + i ∈ T{α } and s ∈ Tα define

s < Tx iff s ∈ Bi .

( 3) Property ( 1 ) holds for Tα+1 .
Proof. Let s ∈ Tα . It suffices to find t ∈ T{α } such that s < Tt.
Case 1 : Sα′ = Tα . Then s = s i for some i < ω , s i ∈ Bi , and s i < T ω · α + i ∈ T{α } .
Case 2 : Sα′ = {r ∈ Tα | ∃s ∈ Sα s 6 T r } , where Sα is a maximal antichain in Tα =
(Tα , < T � Tα) . By the maximality of Sα there is s ′ ∈ Sα which is comparable with
s :

s 6 Ts ′ or s ′ 6 Ts .

Case 2. 1 : s 6 Ts ′. Then s ′ ∈ Sα′ , say s ′= s i , s ∈ Bi , and s < T ω · α + i ∈ T{α } .
Case 2. 2 : s ′ 6 Ts . Then s ∈ Sα′ , say s = s i , s ∈ Bi , and s < T ω · α + i ∈ T{α } . qed ( 3)
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This concludes the recursive definition of the tree T = (T, < T ) . It is straight-
forward to check, that the predetermined sets T{α } are indeed the α-th levels of
the tree. By the construction at successors, the tree is branching. By the previous
theorem it suffices to show that every antichain in T has cardinality < ω1 .

Let A ⊆ T be an antichain in T . Using the lemma of Zorn we may assume
that A is maximal with respect to ⊆ .
( 4) The set C = {α < ω1 | A ∩ α is a maximal antichain in Tα } is closed
unbounded in ω1 .
Proof. Let us first show unboundedness. Let α0 < ω1 . Construct an ω-
sequence

α0 < α1 < � < ω1

as follows. Let αn < ω1 be defined. By the maximality of A every s ∈ Tαn is < T -
comparable to some t ∈ A . By the regularity of ω1 one can take αn+1 ∈ (αn , ω1 )
such that

∀s ∈ Tαn ∃ t ∈ A ∩ αn+1 ( s 6 Tt ∨ t 6 Ts ) .

Let α =
⋃
n<ω

αn < ω1 . A ∩ α is an antichain in T , since it consists of pairwise
incomparable elements. So A ∩ α is an antichain in Tα . For the maximality con-
sider s ∈ Tα . Let s ∈ Tαn . By construction there is t ∈ A ∩ αn+1 such that s 6 T t ∨
t 6 Ts . So every element of Tα is comparable with some element of A ∩ α .

For the closure property consider some α < ω1 such that C ∩ α is cofinal in α .
To show that α ∈ C it suffices to show that A ∩ α is a maximal antichain in Tα .
Consider s ∈ Tα . Take β ∈ C ∩ α such that s ∈ Tβ . Then A ∩ β is a maximal
antichain in Tβ and there exists t ∈ A ∩ β ⊆ A ∩ α which is comparable with s .
Thus for every s ∈ Ta there exists t ∈ A ∩ α which is comparable with s . Thus α ∈
C . qed ( 4)

By the ♦ω1
-property, {α < ω1 | A ∩ α = Sα } is stationary in ω1 . Take α ∈ C

such that A ∩ α = Sα . Then A ∩ α = Sα is a maximal antichain in Tα .
( 5) A = A ∩ α .
Proof. Let t ∈ A . We show that every r ∈ T is comparable with some s ∈ A ∩
α . Since A ∩ α is a maximal antichain in Tα this is clear for r ∈ Tα and we may
assume that r ∈ T \ Tα . Then htT( r) > α and we can take the unique r̄ ∈ T{α }
such that r̄ 6 Tr . By construction of T{α } there is some s ∈ Sα = A ∩ α such that

s < T r̄ 6 T r
qed ( 5)

By ( 5) , A = A ∩ α is countable. Since T is a branching tree all whose
antichains are countable, T is a Suslin tree. �

We shall now study generalizations from ω1 -Suslin trees to κ+-Suslin trees for
κ > ω . We first consider the case when κ is regular. There are now different kinds
of limit cases α in the construction: cof(α) < κ and cof(α) = κ . To ensure the ana-
logue of property ( 1 ) of the previous proof, we

− extend all paths through Tα when cof(α) < κ ;

− use the set Sα of the ♦ -sequence as above when cof(α) = κ .
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In the first case one assumes that κcof(α ) 6 κ< κ = κ which is a consequence of
GCH. For the second case to yield the desired result a ♦ -principle for ordinals of
cofinality κ is needed. Note that the set Cofκ = {α < κ+ | cof(α) = κ } is stationary
in κ+ .

Definition 1 5. 4. Let κ be a regular uncountable cardinal and let D ⊆ κ be sta-
tionary in κ . Then ♦κ(D ) is the principle: there is a sequence (Sα | α < κ) such
that

∀S ⊆ κ {α ∈ D | S ∩ α = Sα } is stationary in κ .

Theorem 15. 5. Assume V = L . Let κ be a regular uncountable cardinal and D ⊆
κ be stationary. Then ♦κ(D ) holds.

This is very much proved like ♦κ = ♦κ(κ ) . We only indicate the necessary
changes in the previous proof.

Proof. Let β < κ and let (Sα | α < β) be appropriately defined. If β is not a limit
ordinal or β

�
D , set Sβ = ∅ . If β is a limit ordinal and β ∈ D , let (Sβ , Cβ) be the

< L -minimal pair such that Cβ is closed unbounded in β , Sβ ⊆ β and ∀α ∈ D ∩
Cβ Sβ ∩ α � Sα , if this exists; otherwise let Sβ = ∅ .

Assume that (Sα | α < κ) does not satisfy ♦κ . Then there is a set S ⊆ κ such
that {α ∈ D | S ∩ α = Sα } is not stationary in κ . Let (S , C ) be the < L -minimal
pair such that C is closed unbounded in κ and ∀α ∈ D ∩ C S ∩ α � Sα .

Take a level Lθ such that (ZF− ) Lθ and κ , D , (Sα | α < κ) , S , C ∈ Lθ .
( 1 ) There is X C L such that Lθ , κ , D , (Sα | α < κ) , S , C ∈ X , β = X ∩ κ is a
limit ordinal, and β ∈ D .
Proof. We basically show that the set of β < κ with the first two properties is
closed unbounded in κ . Let

A = {β < κ | β = L {β ∪ {Lθ , κ , D , (Sα | α < κ) , S , C } } ∩ κ } .
We first show the unboundedness of A . Let β0 < κ and define an ω-sequence β0 <
β1 < � < κ by recursion: if βn < κ is defined, let βn+1 < κ be minimal such that
βn+1 > βn and

L {βn ∪ {Lθ , κ , D , (Sα | α < κ) , S , C } } ∩ κ < βn+1 .

βn+1 exists, since

card(L {βn ∪ {Lθ , κ , D , (Sα | α < κ) , S , C } } ) 6 card( βn) + ℵ 0 < κ

and since κ is regular.
Let β =

⋃
n<ω

βn . Since κ is regular uncountable, β is a limit ordinal and β <

κ . By construction,

β ⊆ L {β ∪ {Lθ , κ , D , (Sα | α < κ) , S , C } } ∩ κ
=

⋃

n<ω

(L {βn ∪ {Lθ , κ , D , (Sα | α < κ ) , S , C } } ∩ κ)

⊆
⋃

n<ω

βn+1

= β,
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hence β ∈ A .
A similar argument shows that A is closed in κ . Since D is stationary in κ

take β ∈ D ∩ A . Then
X = L {β ∪ {Lθ , κ , D , (Sα | α < κ) , S , C } }

has the required properties. qed ( 1 )
By the condensation theorem let

π : (X, ∈ , < L , I , N , S ) � (Lδ , ∈ , < L , I , N , S )

for some δ ∈ Ord. The proof then follows the previous proof of ♦κ . �

Theorem 15. 6. Let κ be a regular cardinal such that κ< κ = κ . Assume ♦κ+( {α <
κ+ | cof(α) = κ } ) . Then there exists a κ+-Suslin tree .

Proof. Let (Sα | α < κ+) be a ♦κ+( {α < κ+ | cof(α) = κ } ) -sequence. We construct
a tree T = (T, < T ) of the form T =

⋃
α< κ+ T{α } such that every level Tα has cardi-

nality 6 κ . We can arrange that

T{0} = {0} and ∀α ∈ [ 1 , κ+) T{α } = κ · (α + 1 ) \ κ · α .

By recursion on α < κ+ we shall determine the < T -predecessors of x ∈ T{α } . We
shall also ensure the following two recursive conditions which guarantee that the
tree can always be continued:
( 1 ) for all ξ < ζ 6 α and s ∈ T{ ξ} there exists t ∈ T{ ζ} such that s < Tt ;
( 2) if α ′ < α is a limit ordinal with cof(α ′) < κ and B is a branch through Tα ′ with
otp(B ) = α ′ then there is t ∈ T{α ′} such that ∀s ∈ B s < Tt .

For α = 0 there is nothing to determine.
For α = 1 , let every element of T{ 1 } be a < T -successor of 0 ∈ T{0} .
Let α = β + 1 > 1 and let < T � Tα be determined so that ( 1 ) , ( 2) are satisfied.

We let every s ∈ T{β} have two immediate successors in T{α } : if s = κ · β + µ + m ∈
T{β} and t = ω · α + ν + n ∈ T{α } with limit ordinals µ , ν < κ and m, n < ω then set

s < Tt iff µ = ν and (n = 2 · m or n = 2 · m + 1 ) .

Since < T has to be a transitive partial order, this determines all < T -predecessors
of x ∈ T{α } . Also ( 1 ) and ( 2) hold for < T � Tα+1 .

Let α be a limit ordinal and let < T � Tα be determined so that ( 1 ) is satisfied.
( 2) For every s 0 ∈ Tα there is a branch B of the tree Tα = (Tα , < T � Tα) such
that s 0 ∈ B and otp(B ) = α .
Proof. Let γ = cof(α) . Take a γ-sequence

htT( s ) = α0 < α1 < � < α i < � < α , i < γ

which is cofinal in α and continuous, i. e. , if i < γ is a limit ordinal then

α i =
⋃

j< i

α j .

Recursively choose a γ-sequence

s 0 < Ts 1 < T � < Ts i < T � , i < γ
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such that ∀i < γ htT( s i) = α i . The recursive construction is possible at successor
ordinals i < γ by ( 1 ) . If i < γ is a limit ordinal then

cof(α i) 6 i < γ = cof(α) 6 κ .

Let Bi = { t ∈ Tαi | ∃ j < i t < T s j} be the branch through Tαi determined so far.
Then s i ∈ T{αi } can be found by property ( 2) . Then

B = { t ∈ Tα | ∃ i < γ t < Ts i}
satisfies the claim. qed ( 2)
Case 1 : cof(α) < κ . Then
( 3) card( {B | B is a branch through Tα of ordertype α } ) = κ .
Proof. Let γ = cof(α) . Take a γ-sequence

htT( s ) = α0 < α1 < � < α i < � < α , i < γ

which is cofinal in α . A branch B through Tα of ordertype α is determined by the
set {B ∩ Tαi | i < γ } . The letter is basically a function from γ into κ . Hence

κ 6 card( {B | B is a branch through Tα of ordertype α } 6 card( γκ) 6 κ< κ 6 κ .

qed ( 3)
Let (Bi | i < κ) be an injective enumeration of all branches through Tα of order-

type α . For x = κ · α + i ∈ T{α } , i < κ and s ∈ Tα define

s < Tx iff s ∈ Bi .

Obviously properties ( 1 ) and ( 2) hold for α .

Case 2 : cof(α) = κ .
Define a set Sα′ ⊆ Tα as follows: if Sα is a maximal antichain in the tree Tα =

(Tα , < T � Tα) then set

Sα
′ = {r ∈ Tα | ∃s ∈ Sα s 6 Tr } ;

otherwise set Sα′ = Tα . Obviously card(Sα
′ ) = κ . Let Sα′ = { s i | i < κ } be an enumer-

ation of Sα′ . For each i < κ use ( 2) to choose a branch Bi of Tα with s i ∈ Bi and
otp(Bi) = α . For x = κ · α + i ∈ T{α } and s ∈ Tα define

s < Tx iff s ∈ Bi .

( 3) Property ( 1 ) holds for Tα+1 .
Proof. Let s ∈ Tα . It suffices to find t ∈ T{α } such that s < Tt.
Case 1 : Sα′ = Tα . Then s = s i for some i < κ , s i ∈ Bi , and s i < T κ · α + i ∈ T{α } .
Case 2 : Sα′ = {r ∈ Tα | ∃s ∈ Sα s 6 T r } , where Sα is a maximal antichain in Tα =
(Tα , < T � Tα) . By the maximality of Sα there is s ′ ∈ Sα which is comparable with
s :

s 6 Ts ′ or s ′ 6 Ts .

Case 2. 1 : s 6 Ts ′. Then s ′ ∈ Sα′ , say s ′= s i , s ∈ Bi , and s < T κ · α + i ∈ T{α } .
Case 2. 2 : s ′ 6 Ts . Then s ∈ Sα′ , say s = s i , s ∈ Bi , and s < T κ · α + i ∈ T{α } . qed ( 3)
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This concludes the recursive definition of the tree T = (T, < T ) . It is straight-
forward to check, that the predetermined sets T{α } are indeed the α-th levels of
the tree. By the construction at successors, the tree is branching. By the previous
theorem it suffices to show that every antichain in T has cardinality 6 κ .

Let A ⊆ T be an antichain in T . Using the lemma of Zorn we may assume
that A is maximal with respect to ⊆ . As before one can show
( 4) The set C = {α < κ+ | A ∩ α is a maximal antichain in Tα } is closed
unbounded in κ+ .

By the ♦κ+-property, {α < κ+ | A ∩ α = Sα } is stationary in κ+ . Take α ∈ C
such that A ∩ α = Sα . Then A ∩ α = Sα is a maximal antichain in Tα .
( 5) A = A ∩ α .
Proof. Let t ∈ A . We show that every r ∈ T is comparable with some s ∈ A ∩
α . Since A ∩ α is a maximal antichain in Tα this is clear for r ∈ Tα and we may
assume that r ∈ T \ Tα . Then htT( r) > α and we can take the unique r̄ ∈ T{α }
such that r̄ 6 Tr . By construction of T{α } there is some s ∈ Sα = A ∩ α such that

s < T r̄ 6 T r
qed ( 5)

By ( 5) , A = A ∩ α has cardinality 6 κ . S ince T is a branching tree all whose
antichains have cardinality 6 κ , T is a κ+-Suslin tree. �

Motivation der Suslin Kostruktion, 1 4. 7. Definition von �κ mit stationärer
Menge. 1 4. 8 . Satz: Wenn � κ und das ensprechende ♦κ+(S) gelten, dann existiert
ein Suslin-Baum. Konstruktion wie vorher, die induktive Bedingung für Limites
ist so, das linkst-mögliche Pfade Forsetzungen haben, wenn das Niveau nicht in S
ist.
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Chapter 16
� -principles and trees
The above construction of a κ+-Suslin tree used strongly that κ was a regular car-
dinal. The discussion of the case when κ is singular will lead to the formulation of
a combinatorial principle � which we shall later prove in the constructible uni-
verse.

In the recursive construction of a κ+-Suslin tree a balance has to be found
between

a) extending enough branches so that the recursion may be continued to all
levels < κ+ , and

b) keeping the cardinalities of levels and antichains below κ+ .

In the recursion, these requirements are distributed between limit stages of var-
ious cofinalities. When κ was regular and cof( β) < κ we continued every branch
through Tβ at level T{β} . This was fine in the recursion, because by assumption

card( [Tβ] ) 6 κ< κ = κ .

If κ is singular, this leads to problems since κ< κ > κ . In general, one cannot con-
tinue every branch through Tβ . Instead we shall only continue “left-most”
branches. Consider, e. g. , an β with cof( β) = ω . Let ( βn | n < ω) be a strictly
increasing ω-sequence which is cofinal in β. For a branch B ⊆ Tβ of ordertype β
define the elements bn to be the unique element of B ∩ T{βn } . Then B is left-most
if, at least for a final segment of the n < ω , bn+1 is the least < T -successor of bn on
level T{βn+ 1 } . The choice of left-most branches depends on the choice of singular-
izing sequences for ordinals.

For cofinalities δ > ω the following coherency problem arises. Let ( βi | i < δ) be
strictly increasing, continuous and cofinal in β and assume one is defining a
sequence ( bi | i < δ) of elements bi ∈ T{ bi } recursively. Then bω should be a left-most
extension of the sequence ( bn | n < ω) so far which means that the branch through
Tβω determined by ( bn | n < ω) should have been extended in the previous stages of
the recursion. So ( βn | n < ω) should have been the singularizing sequence for βω .

These considerations lead to the following combinatorial principle, which pro-
vides singularizing sequences for subtle uncountable constructions.

Definition 16. 1 . Let κ > ω be a cardinal and let E ⊆ κ+ . Then the principle
�κ(E) postulates that there exists a system (Cβ | Lim( β) , β < κ+) such that for all
β

a ) Cβ is closed unbounded in β;

b ) if cof( β) < κ then otp(Cβ) < κ ;
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c ) (coherency) if β̄ is a limit point ofCβ the β̄
�
E and Cβ̄ = Cβ ∩ β̄ .

Write � κ+ for �κ+( ∅ ) .
In applications, the set E will be stationary in κ+ and on E we shall apply the

oracle principle ♦κ+(E) . It is important that limit points of Cβ do not get into
conflict with such points, i. e. , β̄

�
E .

Theorem 16. 2 . Let κ be an infinite cardinal. Let E ⊆ κ+ be stationary such that
�κ(E) and ♦κ+(E) hold. Then there is a κ+-Suslin tree .

Proof. Let (Cα | α < κ+ ∧ lim (α) ) and (Sα | α < κ+) be sequences satisfying �κ(E)
and ♦κ+(E) resp. Again we construct a tree T = (T, < T ) of the form T =⋃

α< κ+ T{α } where

T{0} = {0} and ∀α ∈ [ 1 , κ+) T{α } = κ · (α + 1 ) \ κ · α .
By recursion on α < κ+ we shall determine the < T -predecessors of x ∈ T{α } , i . e. ,
< T ∩ (Tα × T{α } ) . We shall ensure the following two recursive conditions which
guarantee that the tree can always be continued:
( 1 ) for all ξ < ζ 6 α and s ∈ T{ ξ} there exists t ∈ T{ ζ} such that s < Tt ;
( 2) if α ′ < α is a limit ordinal with cof(α ′) < κ and B is a branch through Tα ′ with
otp(B ) = α ′ then there is t ∈ T{α ′} such that ∀s ∈ B s < Tt .

For α = 0 there is nothing to determine.
For α = 1 , let every element of T{ 1 } be a < T -successor of 0 ∈ T{0} .
Let α = β + 1 > 1 and let < T � Tα be determined such that ( 1 ) and ( 2) hold.

We let every s ∈ T{β} have two immediate successors in T{α } : if s = κ · β + µ + m ∈
T{β} and t = ω · α + ν + n ∈ T{α } with limit ordinals µ , ν < κ and m, n < ω then set

s < Tt iff µ = ν and (n = 2 · m or n = 2 · m + 1 ) .

Since < T has to be a transitive partial order, this determines all < T -predecessors
of x ∈ T{α } and ( 1 ) and ( 2) are preserved.

Let α be a limit ordinal and let < T � Tα be already determined so that ( 1 ) and
( 2) are satisfied.

For any x ∈ T � α define a canonical leftmost branch bαx through T � α such that
x ∈ bαx and opt( bαx ) = α as follows: let ( γα( ν ) | ν < λ . . .

We have to argue that the construction of the tree does not break down. The
construction cannot break down for α = 0 or α a successor. At limit α the con-
struction can only break down if the canonical leftmost branches bαx cannot be
constructed. Note that

bα
x = { y ∈ T � α | ∃ν < λα y 6 Tpαx ( ν ) } .

So we have to argue that the recursive construction of pαx ( ν ) for ν < λα does not
break down. This construction cannot break down for ν = 0 and ν a successor
ordinal by property ( 1 ) . For limit ν , ᾱ = γα( ν ) < α is a limit point of Cα . Then
Cᾱ = ᾱ ∩ Cα and ᾱ

�
E . By construction, pαx ( i) = pᾱ

x ( i) for i < ν . S ince ᾱ
�
E the

branch bᾱ
x which contains all the pᾱ

x ( i) for i < ν was extended at level ᾱ of the
tree. This means that pαx ( ν ) is welldefined. Thus the construction of the tree does
not break down.
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To show that T is a Suslin tree it suffices to see that every antichain in T has
cardinality 6 κ . Let A ⊆ T be an ⊆ -maximal antichain in T . The set

C = {α < κ+ | A ∩ α is a maximal antichain in Tα }

is closed unbounded in κ+ . By the ♦κ+-property, {α < κ+ | A ∩ α = Sα } is sta-
tionary in κ+ . Take α ∈ C such that A ∩ α = Sα . Then A ∩ α = Sα is a maximal
antichain in Tα .
( 5) A = A ∩ α .
Proof. Let t ∈ A . We show that every r ∈ T is comparable with some s ∈ A ∩ α .
S ince A ∩ α is a maximal antichain in Tα this is clear for r ∈ Tα and we may
assume that r ∈ T \ Tα . Then htT( r) > α and we can take the unique r̄ ∈ T{α }
such that r̄ 6 Tr . By construction of T{α } there is some s ∈ Sα = A ∩ α such that

s < T r̄ 6 T r
qed ( 5)

By ( 5) , A = A ∩ α has cardinality 6 κ . S ince T is a branching tree all whose
antichains have cardinality 6 κ , T is a κ+-Suslin tree. �

To complete the picture we show

Theorem 16. 3. Assume �κ . Then there exists a stationary E ⊆ κ+ such that
�κ(E) .

Before the proof we state two properties of stationary sets.

Lemma 16. 4. Let θ > ω1 be a regular cardinal. Then

a ) Ifµ < θ is regular then {α ∈ θ | cof(α) = µ} is stationary in θ.

b ) IfW ⊆ θ is stationary and f : W→ η for some η < θ then there is some ν <
η such that {α ∈ W | f (α) = ν } is stationary in θ.

Proof. Exercise. �

We can now prove the theorem. The proof is an example for a combinatorial
construction.

Proof. Let (Aλ | λ < κ+ ∧ lim (λ ) ) be a �κ-sequence. For λ < κ+ ∧ lim (λ ) let Bλ =
{ γ ∈ Aλ | γ is a limit point of Aλ} . Then
( 1 ) Bλ is a closed subset of λ ;
( 2) if cof(λ ) > ω then Bλ is unbounded in λ ;
( 3) γ ∈ Bλ→ Bγ = γ ∩ Bλ ;
( 4) cof(λ ) < κ→ otp(Bλ) < κ .

Let W = {α ∈ κ+ | cof(α) = ω } . W is stationary in κ+ . Define f : W → κ + 1 by
f (α) = otp(Bα) . Take ν 6 κ such that E = {α ∈ W | f (α) = ν } is stationary in κ+ .
We shall show �κ(E) .

For λ < κ+ ∧ lim (λ ) define

Dλ =

{
Bλ , if otp(Bλ) 6 ν
Bλ \ {α ∈ Bλ | otp(Bα) 6 ν } , otherwise.
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The sequence (Dλ | λ < κ+ ∧ lim (λ ) ) satisfies properties ( 1 ) -( 4) above. Also
( 5) Dλ ∩ E) = ∅ .

For λ < κ+ ∧ lim (λ ) define recursively

Cλ =

{ ⋃ {Cγ | γ ∈ Dλ} , if sup (Dλ) = λ⋃ {Cγ | γ ∈ Dλ} ∪ {θnλ | n < ω } , otherwise,

where ( θn
λ | n < ω) is strictly increasing cofinal in λ with θ0

λ = sup (Dλ) . We claim
that (Cλ | λ < κ+ ∧ lim (λ ) ) is a �κ(E) -sequence.
( 6) Each Cλ is unbounded in λ .
Proof. Induction on λ . λ = ω . Then Dω = Bω = ∅ is bounded below ω and Cω is
unbounded in ω by construction. If λ > ω and ( 6) holds for λ ′ < λ then ( 6) holds
at λ by construction. qed
( 7) Let γ ∈ Dλ . Then Cλ = γ ∩ Cλ .
Proof. Assume that ( 7) holds below λ . By definition of Cλ , Cγ ⊆ Cλ and Cγ ⊆ γ ∩
Cλ . For the converse let ξ ∈ γ ∩ Cλ . By the definition of Cλ take δ ∈ Dδ such that
ξ ∈ γ ∩ Cδ . If δ = γ then ξ ∈ Cγ and we are done.

So suppose that δ < γ . Then γ . . .
�

16. 1 Global square

Theorem 16. 5 . ( Jensen ) Assume V = L . Then there exists a system (Cβ | β
singular ) such that

a ) Cβ is closed unbounded in β;

b ) Cβ has ordertype less than β;

c ) (coherency) if β̄ is a limit point ofCβ the β̄ is singular and Cβ̄ = Cβ ∩ β̄ .
The existence of such a system is usually described as global square or � without
a cardinal index.

Theorem 16. 6. Assume � and let κ be an infinite cardinal. Then there is a sta-
tionary set E ⊆ κ+ such that �κ(E) holds.

Theorem 16. 7. Assume V = L . Then for every infinite cardinal κ there exists a
κ+-Suslin tree .
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Chapter 17
Hyperfine structures

The presentation of fine structure theory is guided by ideas for proving the combi-
natorial principle � . One would like to choose a square sequence Cβ for a given β
in a very canonical way, say of minimal complexity or at a minimal place in L .
The coherency property is difficult to arrange, it will come out of an involved con-
densation argument with a structure in which β is still regular but over which
the singularity of β becomes apparent.

Let us consider the process of singularisation of β in L in detail. Let L � β is
singular. Let γ be minimal such that over Lγ we can define a cofinal subset C of
β of smaller ordertype; we can assume that C takes the form

C = {z ∈ β � ∃x < α : z is < L -minimal such that Lγ � ϕ ( z , p
�

, x ) }

where α < β, ϕ is a first order formula, and p
�

is a parameter sequence from Lγ.
Using the Skolem function S we can write this as

C = {S(Lγ , ϕ , p
� _x) | x < α } .

Here the locations (Lγ , ϕ , p
�
_x ) are <̃ -cofinal in the location (Lγ , ϕ , p

� _α) . The
singularization of β may thus be carried out with the Skolem function S
restricted to arguments smaller than (Lγ , ϕ , p

� _α) . This suggests to say that β is
singularised at the location (Lγ , ϕ , p

� _α) and that the adequate singularizing
structure for β is of the form

L (Lγ , ϕ , p+ _α ) = (Lγ , ∈ , < L , I , N , S � (Lγ , ϕ , p
� _α) ) ;

where S � (Lγ , ϕ , p
� _α) means that we have the function S � Lγ available as well as

the Skolem assignments S(Lγ , ψ , q
�

) for (Lγ , ψ , q
�

) <̃ (Lγ , ϕ , p
� _α) .

These structures are indexed by locations and provide us with a fine interpola-
tion between successive Lγ-levels:

Lγ , � , L (Lγ , ϕ , p+ α ) , � , Lγ+ 1 , � .

The interpolated fine hierarchy is very slow-growing but satisfies condensation
and natural hulling properties which will allow the construction of a � -system.
The theory of the fine hierarchy is called hyperfine structure theory and was devel-
oped by Sy Friedman and the present author [ 1 ] .
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17. 1 The fine hierarchy

Definition 17. 1 . For a location s = (Lα , ϕ , x
�

) define the restricted Skolem
function

S � s = S � { t ∈ L̃ | t<̃ s } .
Define the fine level

Ls = (Lα , ∈ , < L , I , N , S � s ) = (Lα , ∈ ∩ (Lα)
2 , < L ∩ (Lα) 2 , I � L̃α , N � Lα , S � s ) .

Then (Ls) s∈ L̃ is the fine hierarchy , it is indexed along the wellorder <̃ .
A map π : Ls→ L t is cal led fine iff

π : Ls = (Lα , ∈ , < L , I , N , S � s ) → L t= (Lβ , ∈ , < L , I , N , S � t)

is a structure preserving embedding, which also respects the restricted Skolem
functions: if (Lα , ϕ , x

�

) <̃ s then

π(S(Lα , ϕ , x
�

) ) = S(Lβ , ϕ , π(x
�

) ) .

This hierarchy is equipped with algebraic hulling operations. To employ the
restricted Skolem function S � s at “top locations” t<̃ s of the form t = (Lα , ϕ , x

�

)
we pretend that Lα itself is a constant of the structure Ls = (Lα , ∈ , < L , I , N , S �
s ) , i . e. considering Ls and some Y ⊆ Lα we write (Lα , ϕ , x

�

) ∈ Y iff x
� ∈ Y .

Definition 1 7. 2 . Let s = (Lα , ϕ , x
�

) be a location. Y ⊆ Lα is closed in Ls , Y C Ls ,
ifY is an algebraic substructure of Ls , i . e . , Y is closed under I, N, and S � s . For
X ⊆ Lα let Ls {X } be the ⊆ -smallest Y C Ls such that Y ⊇ X; Ls {X } is cal led
the Ls-hull ofX.

By our convention, Y C Ls means:

Lβ , x
� ∈ Y � I(Lβ , ϕ , x

�

) ∈ Y and S(Lβ , ϕ , x
�

) ∈ Y,
x

� ∈ Y ∧ (Lα , ϕ , x
�

) <̃ s � S(Lα , ϕ , x
�

) ∈ Y
y ∈ Y ∧ N ( y) = (Lβ , ϕ , x

�

) � Lβ , x
� ∈ Y.

The fine hierarchy with its associated hull operators again satisfies condensation:

Theorem 17. 3. (Condensation ) Let s = (Lα , ϕ , x
�

) be a location and suppose that
X C Ls . Then there is a minimal location s̄ so that there is a fine isomorphism

π : (X, ∈ , < L , I , N , S � s ) � L s̄ = (L ᾱ , ∈ , < L , I , N , S � s̄ ) ;

with respect to locations t ∈ X of the form t = (Lα ,ψ , y
�

) , i . e . ,

a ) π( t) = (L ᾱ , ψ , π( y
�

) ) ;

b ) t<̃ s iffπ( t) <̃ s̄ and then S(π( t) ) = π(S( t) ) .

Since π is the Mostowski col lapse of X the isomorphism π is uniquely deter-
mined.
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Proof. Let

π : (X, ∈ , < L , I , N , S ) � (L ᾱ , ∈ , < L , I , N , S )

be the unique isomorphism given by the “coarse” Condensation Theorem 1 7. 3. Let
S̄ = {π( t) | t ∈ X ∧ t<̃ s } .
( 1 ) S̄ is an initial segment of ( L̃ , <̃ ) .
Proof. Let π( t) ∈ S̄ , t ∈ X , t<̃ s and r<̃ π( t) . Let r = (Lδ , ψ , y

�

) . Since π is surjec-
tive there is a location r ′ ∈ X such that r = π( r ′) . π( r ′) <̃ π( t) . S ince π preserves
< L we have r ′<̃ t<̃ s . Thus r ∈ S̄ . qed ( 1 )

Take s̄ <̃ -minimal such that s̄
�
S̄ . Then S̄ = {r ∈ L̃ | r<̃ s̄ } . We now have to

prove property b) of the theorem. Let t = (Lα ,ψ , y
�

) ∈ X be a top location. Then
( 1 ) and the definition of s̄ imply
( 2) t<̃ s iff π( t) <̃ s̄ .

Assume that t<̃ s .
( 3) S(π( t) ) = π(S( t) ) .
Proof. Let x = S( t) , i . e. , x is the < L -smallest element of Lα such that

(Lα , ∈ ) � ψ(x , y
�

) .

Since X C Ls we have x ∈ X . One can be show by induction on the subformulas of
ψ that the map π− 1 : (L ᾱ , ∈ ) → (Lα , ∈ ) is elementary for every subformula. This
is clear for atomic formulas and for propositional connectives; if the subformula is
of the form ∃vχ then χ < ψ 6 ϕ in Fml and X is closed under the Skolem func-
tion S(Lα , χ , . ) for the formula ∃vχ ; hence π− 1 is elementary for ∃vχ .

Therefore,

(L ᾱ , ∈ ) � ψ(π(x) , π( y
�

) ) ,

and S(π( t) ) = S(L ᾱ , ψ , π( y
�

) ) is defined as the < L -minimal z ∈ L ᾱ such that

(L ᾱ , ∈ ) � ψ( z , π( y
�

) ) .

Assume for a contradiction that z = S(π( t) ) � π(x ) . By minimality, z < L π( x) .
Then π− 1 ( z ) < L x and again by the elementarity of ψ with respect to π− 1 :

(Lα , ∈ ) � ψ(π− 1 ( z) , y
�

) .

But this contradicts the minimal definition of x = S( t) . �

17. 2 Fine hulls
We prove a couple of further laws about the hulling operation Ls { . } which can be
seen as fundamental laws offine structure theory . It is conceivable that these laws
can be strengthened so that they alone capture the combinatorial content of L
and might allow abstract proofs of combinatorial principles. Some of our laws are
well-known for any kind of hull by generating functions. A specific and crucial
law of hyperfine structure theory is the finiteness property ( Theorem 1 7. 8) . It cor-
responds to a similar property in the theory of Silver machines ( [ 8] , see also [ 7] )
which was an older attempt to simplify fine structure theory and which is also
characterized by hulls and condensations.
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Theorem 17.4. (Monotonicity) Consider locations s = (Lα , ϕ , x
�

) 6̃ t = (Lβ , ψ , y
�

)
and a set X ⊆ Lα .

a ) Ifα = β then Ls {X } ⊆ L t{X } .
b ) Ifα < β then Ls {X } ⊆ L t{X ∪ {α } } .

Proof. a) holds, since all hulling functions of Ls are available in L t .
b) Note that Lα ∈ L t{X ∪ {α }} , since N (α) = (Lα , . , . ) . Then the hulling function
of Ls of the form I(Lα , . , . ) and S(Lα , . , . ) are also available in L t{X ∪ {α } } . �

The next two theorems are obvious for hulls generated with finitary functions.

Theorem 17. 5. ( Compactness) Let s = (Lα , ϕ , x
�

) ∈ L̃ and X ⊆ Lα . Then

Ls {X } =
⋃
{Ls {X0} | X0 is a finite subset ofX } .

Theorem 17. 6. ( Continuity in the generators) Let s = (Lα , ϕ , x
�

) ∈ L̃ and let
(Xi) i< λ be a ⊆ - increasing sequence of subsets of Lα . Then

Ls {
⋃

i< λ

Xi} =
⋃

i< λ

Ls {Xi} .

Since the fine hierarchy grows discontinuously at limit locations ( i. e. , limits in <̃ )
of the form (Lα+1 , 0 , ∅ ) , where 0 is the smallest element of Fml, we have to distin-
guish several constellations for the continuity in the locations.

Theorem 17. 7. ( Continuity in the locations)

a ) If s = (Lα , 0 , ∅ ) is a limit location with α a limit ordinal and X ⊆ Lα then

Ls {X } = L {X } =
⋃

β< α

L (Lβ , 0 , ∅ ){X ∩ Lβ} .

b ) If s = (Lα+1 , 0 , ∅ ) is a limit location and X ⊆ Lα then

Ls {X ∪ {α } } ∩ Lα = L {X ∪ {α } } ∩ Lα
=
⋃
{Lr{X } | r is an α- location } .

c ) If s = (Lα , ϕ , x
�

) � (Lα , 0 , ∅ ) is a limit location and X ⊆ Lα then

Ls {X } =
⋃
{Lr{X } | r is an α- location , r<̃ s } .

Proof. a) is clear from the definitions since the hull operators considered only
use the functions I , N , S .
b) The first equality is clear. The other is proved via two inclusions.
( ⊇ ) If z is an element of the right hand side, z is obtained from elements of X
by successive applications of I , N , S and S(Lα , . , . ) . Since Lα ∈ Ls {X ∪ {α } } , z
can be obtained from elements of X ∪ {α } by applications of I , N , S . Hence z is
an element of the left hand side.
( ⊆ ) Consider z ∈ L {X ∪ {α } } ∩ Lα . There is a finite sequence

y0 , y1 , � , yk = z
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which “computes” z in L {X ∪ {α } } . In this sequence each yj is an element of X ∪
{α } or it is obtained from { yi | i < j } by using I , N , S :

yj = I(Lβ , ϕ , y
�

) or yj = S(Lβ , ϕ , y
�

) or yj is a component of N( y) ( 1 7. 1 )

for some Lβ , y
�

, y ∈ { yi | i < j } . We show by induction on j 6 k :

if yj ∈ Lα then yj ∈ U �
⋃
{Lr{X } | r is an α-location} .

Soe assume the claim for i < j and that yj ∈ Lα .
Case 1 . yj ∈ X ∪ {α } . Then the claim is obvious.
Case 2 . yj = I(Lβ , ϕ , y

�

) as in property ( 1 7. 1 ) above. If β < α , then β, y
� ∈ U by

induction hypothesis and hence yj ∈ U .
If β = α then y

� ∈ U by induction hypothesis. Setting

ψ( v , w
�

) = ∀u (u ∈ v↔ ϕ (u , w
�

) )

we obtain yj = S(Lα , ψ ,
y+
w+ ) ∈ U .

Case 3 . yj = S(Lβ , ϕ , y
�

) as in property ( 1 7. 1 ) above. If β < α , then β, y
� ∈ U by

induction hypothesis and hence yj ∈ U . If β = α then y
� ∈ U by induction hypoth-

esis and yj = S(Lα , ϕ , y
�

) ∈ U .
Case 4 . yj is a component of N ( yi) for some i < j as in property ( 1 7. 1 ) above.
Case 4 . 1 . yi ∈ Lα . Then yi ∈ U by induction hypothesis. As U is closed under N ,
we have N ( yi) ∈ U . So each component of N ( yi) and in particular yj is an ele-
ment of U .
Case 4 . 2 . yi ∈ Lα+1 \ Lα . S ince the values of N and S are “smaller” then corre-
sponding arguments, then yi = α or it is generated by the I-function: yi = I(Lα , ψ ,
z

�

) where z
� ∈ { yh | h < i } , z� ∈ Lα , and by inductive assumption z

� ∈ U . Since α =
I(Lα , “v is an ordinal”, ∅ ) we may uniformly assume the case yi = I(Lα , ψ , z

�

) . The
name N ( yi) will be of the form (Lα , χ , ( c0 , � , cm− 1 ) ) .

We claim that c0 ∈ U : if
χ0( v0 , w

�

) ≡ ∃v1 � ∃vm− 1∀u( χ(u , v0 , v1 , � , vm− 1 ) ↔ ψ(u , w
�

) )

with distinguished variable v0 then c0 = S(Lα , χ0 ,
z+
w+ z

�

) ∈ U .
We then obtain c1 in U : if

χ1 ( v1 , w
�

) ≡ ∃v2 � ∃vm− 1∀u( χ(u , v0 , v1 , � , vm− 1 ) ↔ ψ(u , w
�

) )

with distinguished variable v1 then c1 = S(Lα , χ1 ,
c0
_z+
v0
_w+ ) ∈ U .

Proceeding in this fashion we get that yj ∈ U .
c) Note that any element of Ls {X } is generated from X by finitely many
applications of the functions of Ls and thus only requires finitely many values
S( r) with r<̃ s . �

Our final hull property is crucial for fine structural considerations. It states
that the fine hierarchy grows in a “finitary” way. By incorporating information
into finite generators or parameters one can arrange that certain effects can only
take place at limit locations which then allows continuous approximations to that
situation.
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Theorem 17. 8. ( Finiteness Property) Let s be an α- location and let s+ be its
immediate <̃ -successor. Then there exists a set z ∈ Lα such that for any X ⊆ Lα :

Ls+{X } ⊆ Ls {X ∪ {z } } .

Proof. The expansion from Ls to Ls+ means to expand the Skolem function S �
s to S � s+ = (S � s ) ∪ { ( s , S( s ) ) } . So S � s+ provides at most one more possible
value, namely S ( s ) . Then z = S( s ) is as required. �
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Chapter 18
A proof of �
Proposition 18. 1 . ( Jensen) Assume V = L . Then the global square principle �
holds.

In the proof, we have to define a singularizing sequence Cβ for every singular
limit ordinal β . Fix such a β . We shall be particularly interested in closed ordi-
nals β̄ < β where β̄ = β ∩ Ls { β̄ ∪ p} . The transitivization of Ls { β̄ ∪ p} will be
the identity on β̄ and map β to β̄ which means that β̄ inherits some properties
from β . The singularizing set Cβ will be defined from such ordinals. We study the
singularity of β in terms of closed ordinals.

( 1 ) There is a location s = ( γ, ϕ , x
�

) , γ ≥ β, and a finite set p⊆ Lγ such that
{
β̄ < β

∣∣ β̄ = β ∩ Ls { β̄ ∪ p}
}

is bounded in β .
Proof. Let f : α→ β cofinally, α < β . Let f ∈ Lγ and set p= { f } , s = ( γ, ϕn+1 , 0

�

)
where ϕn ≡ v0 = v1 ( v2 ) defines the operation of functional application with distin-
guished variable v0 . If α ≤ β̄ < β then

β ∩ Ls { β̄ ∪ p} ⊇ β ∩ Ls {α ∪ p} ⊇ f ′′α

is cofinal in β and hence β ∩ Ls { β̄ ∪ p}= β̄ . qed ( 1 )

Let s = s ( β) be <̃ –minimal satisfying this lemma with some finite set p ⊆ Lγ.
We show that s is a <̃ –limit which can be nicely approximated from below.

( 2) s is a limit location.
Proof. Assume that s = r+ is the location successor of r . By the finiteness
property there exists a z ∈ Lγ such that for β̄ < β

Ls { β̄ ∪ p} ⊆ Lr{ β̄ ∪ p∪ {z } } .
Then {

β̄ < β
∣∣ β̄ = β ∩ Lr{ β̄ ∪ p∪ {z }

}
⊆
{
β̄ < β

∣∣ β̄ = β ∩ Ls { β̄ ∪ p
}
}

is bounded in β , contradicting the minimality of s . qed ( 2)

( 3) s=( β, ϕ0 , 0
�

) .
Proof. Assume not and let γ0 < β, p⊆ Lγ0 , s 0 = ( γ0 , ϕ0 , 0

�

) . Then
{
β̄ < β

∣∣ β̄ = β ∩ Ls0{ β̄ ∪ p
}
} ⊆

{
β̄ < β

∣∣ β̄ = β ∩ Ls { β̄ ∪ p
} }
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is bounded below β, contradicting the minimality of s . qed ( 3)

( 4) s=( γ, ϕ0 , 0
�

) for limit γ .
Proof. Assume not and let γ0 < γ , p⊆ Lγ0

, s 0 = ( γ0 , ϕ0 , 0
�

) . Then
{
β̄ < β

∣∣ β̄ = β ∩ Ls0{ β̄ ∪ p
}
} ⊆

{
β̄ < β

∣∣ β̄ = β ∩ Ls { β̄ ∪ p}
}

is bounded below β, contradicting the minimality of s . qed ( 4)

In defining Cβ we shall consider three special cases and a generic case. In the
special cases, β will have cofinality ω and we can pick any ω–sequence cofinal in β
as Cβ. The first special case deals with another degenerate type of limit location.

Special case 1 . s = (α + 1 , ϕ0 , 0
�

) for some α .
Note that every element of Lα+1 can be “named” by α and finitely many ele-
ments of Lα . So we may assume that p is of the form p = q ∪ {α } with q ⊆ Lα .
Let

β0 = max
{
β̄ < β

∣∣ β̄ = β ∩ Ls { β̄ ∪ p}
}
< β.

Define β0 < β1 < � recursively: Choose βn+1 > βn least such that

βn+1 = β ∩ L (α , ϕn , 0+ ){βn+1 ∪ q } .

(α , ϕn , 0
�

) <̃ s = (α + 1 , ϕ0 , 0
�

) and by the minimality of s , βn+1 < β exists. Let βω =⋃
n<ω

βn.

β ∩ Ls {βω ∪ p} = β ∩ Ls {βω ∪ q ∪ {α } }
= β ∩

⋃
{Lr{βω ∪ q | ris an α–location}

=
⋃

n<ω

β ∩ L (α , ϕn , 0+ ){βω ∪ q }

=
⋃

n<ω

β ∩ L (α , ϕn , 0+ ){βn+1 ∪ q }

=
⋃

n<ω

βn+ 1 = βω;

the second equality uses a limit property of hulls, and the third and fourth use
the monotonicity property. Now by the definition of β0 we must have βω = β , and
we may define the set

Cβ= {βn | n < ω }
cofinal in β .

Now assume that s = ( γ, ϕ , x
�

) = ( γ, ϕ0 , 0
�

) . Then

( 5) There is a finite p̄ ⊆ Lγ such that Ls {β ∪ p̄ } = Lγ .
Proof. By the condensation theorem there is a unique π such that

π : Ls {β ∪ p} � L s̄ .

Let p̄ = π [ p] . Then L s̄ = L s̄ {β ∪ p̄ } , π � β = id, and so for β̄ < β

β ∩ Ls { β̄ ∪ p} = β ∩ L s̄ { β̄ ∪ p̄ } .
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Hence
{
β̄ < β

∣∣ β̄ = β ∩ L s̄ { β̄ ∪ p̄ }
}

=
{
β̄ < β

∣∣ β̄ = β ∩ Ls { β̄ ∪ p}
}

is bounded below β . The <̃ -minimality of s implies s̄ = s . Thus Ls = Ls {β ∪ p̄ } .
qed ( 5)

Let < ∗ be the canonical wellordering of finite subsets of L induced by < L :

p0 <
∗ p1 iff p0 � p1 and the < L -maximal element of p0M p1 belongs to p1 .

Let p( β) be the < ∗ -minimal p̄ satisfying the previous lemma. Since the original
parameter p is generated by β ∪ p( β) :

( 6)
{
β̄ < β

∣∣ β̄ = β ∩ Ls { β̄ ∪ p( β) }
}

is bounded below β ; let β0 < β be the
maximum element of this set.

By the lemma, we can write p instead of p( β) without danger of confusion.
We examine which locations below s are computed in Ls {X } : we say that Y ⊆ L
is bounded below s , if there is s 0<̃ s such that if r = ( γ, ψ , y

�

) <̃ s , y
� ∈ Y , then r<̃ s 0 .

Special case 2 . Ls {α ∪ p} is bounded below s for every α < β .
Then define β0 < β1 < � < β recursively by

βn+1 =
⋃

( β ∩ Ls { ( βn+ 1 ) ∪ p} ) .
By case assumption,

Ls { ( βn+ 1 ) ∪ p} = Lr{ ( βn+ 1 ) ∪ p}

for some r<̃ s . By the minimality of s , β ∩ Lr{ ( βn + 1 ) ∪ p} cannot be cofinal in
β , and so βn+1 < β exists. Let βω =

⋃
n<ω

βn > β0 .

βω ⊆ β ∩ Ls {βω ∪ p} ⊆
⋃

n<ω

β ∩ Ls { ( βn+ 1 ) ∪ p} ⊆
⋃

n<ω

βn+ 1 = βω.

By the definition of β0 we have βω = β and we may define

Cβ= {βn | n < ω }
cofinal in β .

Now assume that Ls {α0 ∪ p} is cofinal in s for some least α0 = α0( β) < β . We
would like to use α0 to steer the singularisation of β and obtain ordertype Cβ ≤
max {α0 , ω } < β . If α0 is not a limit ordinal or 0 we have to look for another
steering ordinal. If α0 = α0

′ + 1 , then choose α1 = α1 ( β) < α0 least such that

Ls {α1 ∪ p∪ {α0
′ } }

is cofinal in s . If α1 = α1
′ + 1 , then choose α2 = α2 ( β) < α1 least such that

Ls {α2 ∪ p∪ {α0
′ , α1
′ } }

is cofinal in s . Continue this way until α = α( β) = αk( β) is a limit ordinal or 0 .
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Special case 3 . α = 0 .
Then Ls { p ∪ {α0

′ , � , αk− 1
′ } } is a countable set which is <̃ –unbounded in s . So

s has “cofinality ω” in the ordering of locations and we can find γ–locations
s 1 <̃ s 2<̃ s 3<̃ � converging towards s . Let β0 be defined as before and define β0 <
β1 < � < β recursively by: Let βn+1 > βn be minimal such that

βn+1 = β ∩ Lsn+ 1
{βn+1 ∪ p} .

βn+1 exists, since sn+1 <̃ s . Let βω=
⋃
n<ω

βn.

βω =
⋃

n<ω

βn =
⋃

n<ω

β ∩ Lsn+ 1{βn+1 ∪ p} = β ∩ Ls {βω ∪ p} ,

and by the definition of β0 we have βω= β . We may define

Cβ= {βn | n < ω }
cofinal in β .

So finally we arrive at the

Generic case . s = ( γ, ϕ , x
�

) = ( γ, ϕ0 , 0
�

) , and Ls {α ∪ p ∪ {α0
′ , � , αk− 1

′ } } is
unbounded in s with α a limit ordinal < β .

Let β0 < β be defined as in ( 6) . For each 0 < i ≤ α let s i be the <̃ –least strict
upper bound of Ls { i ∪ p ∪ {α0

′ , � , αk− 1
′ } } and βi = βi( β) the least ordinal > β0

such that

βi = β ∩ Lsi {βi ∪ p} .

For i < α , βi < β exists since s i<̃ s ; also sα = s and
( 7) 0 < i < j < α implies s i6̃ s j and βi ≤ βj .
( 8) {βi | i < α } is closed unbounded in β .
Proof. Let j ≤ α be a limit ordinal. We only have to show that βj =

⋃
i< j

βi .
S ince βj ≥ βi for i < j it suffices to see that

⋃

i< j

βi =
⋃

i< j

β ∩ Ls i{βi ∪ p} = β ∩ Ls {
⋃

i< j

βi ∪ p} ,

so that
⋃
i< j

βi satisfies the defining property of βj . qed ( 8)
Cβ will now be defined as an endsegment of such βi ’ s so that important ele-

ments of the preceding construction are visible below βi or s i . Set

I( β) = { i < α | i > 0 , βi > max ( { i } ∪ {α l | l < k } ) ,
s i is a γ–location ,
s i>̃ the <̃ –supremum of Ls {α l′ ∪ p∪ {α0

′ , � , α l− 1
′ } }

for all l < k , and
β < γ � β ∈ Ls i {βi ∪ p} } .

Observe that:
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( 9) βi > α for sufficiently high i < α ,
( 1 0) Ls {α l′ ∪ p∪ {α0

′ , � , α l− 1
′ }} is bounded below s by the definition of α l ,

( 1 1 ) β < γ implies β ∈ Ls {β ∪ p} = Lγ .
So the conditions on i are satisfied for a non-empty final segment of α . Now

define
Cβ= {βi | i ∈ I( β) } .

( 1 2) Cβ is closed unbounded in β and ordertype Cβ ≤ α < β .
This completes the definition of the system (Cβ) , and we are left with proving

the coherence property. Fix β̄ ∈ Lim(Cβ) , β̄ < β. We have to show Cβ̄ = Cβ ∩ β̄ .
β falls under the generic case , as ordertype Cβ > ω . Let β̄ = βᾱ with ᾱ < α min-
imal; ᾱ is a limit ordinal. Since cof( βᾱ ) ≤ ᾱ < βᾱ , β̄ is singular. By condensation
let

π : Ls ᾱ { β̄ ∪ p} � L s̄ and q = π ′′p.

( 1 3) π � β̄ = id . If s is a β-location then s̄ is a β̄ -location; if s is a γ-location
with γ > β the π( β) = β̄ .
Proof. If γ > β then β ∈ Ls ᾱ { β̄ ∪ p} and β̄ = β ∩ Ls ᾱ { β̄ ∪ p} . qed ( 1 3)

( 1 4) s̄ = s ( β̄ ) .
Proof. For δ < β̄ , the condensation property of π implies

δ = β ∩ Ls {δ ∪ p} iff δ = β̄ ∩ L s̄ {δ ∪ q } .
As β0 < β̄ , where β0 was defined in ( 6) ,

max
{
δ < β̄ | δ = β̄ ∩ L s̄ {δ ∪ q }

}
= β0 < β̄ ,

and so s̄ , q satisfy ( 1 ) for β̄ . Suppose that r<̃ s̄ and p̄ satisfy ( 1 ) . We may
assume that s̄ is a γ̄ -location, and, since we are in the generic case , r is without
loss of generality also a γ̄ -location, p̄ ⊆ L γ̄ . We may also assume that p̄ ⊆
Lr{ β̄ ∪ q } by choosing r sufficiently high. Then r and q satisfy ( 1 ) . By the deter-
mination of s̄ in the proof of condensation, π− 1 ( r) <̃ s . Let

r∗ = <̃ − sup
{
π− 1 ( t) | t<̃ r

}
6̃π− 1 ( r) <̃ s .

For δ < β̄ , the condensation property of π implies

δ = β ∩ Lr{δ ∪ q } = β ∩ Lr∗{δ ∪ p} .
Then

{δ < β | δ = β ∩ Lr∗{δ ∪ p} } = {δ < β | δ = β ∩ Lr{δ ∪ q } }
is bounded below β contradicting the minimal choice of s . qed ( 1 4)

( 1 5) β̄ does not fall under special case 1 .
( 1 6) q = p( β̄ ) .
Proof. L s̄ { β̄ ∪ q } = L γ̄ , so q ≥ ∗ p( β̄ ) . Assume q > ∗ p( β̄ ) . By property ( 5) at
β̄ , q ⊆ L s̄ { β̄ ∪ p( β̄ ) } , p = π− 1 ′′q ⊆ Ls { β̄ ∪ π− 1 ′′p( β̄ ) } , and so π− 1 ′′p( β̄ ) < ∗ p =
π− 1 ′′q satisfies ( 5) , contrary to the minimal choice of p= p( β) . qed ( 1 6)
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Ls ᾱ { ᾱ ∪ p} = Ls { ᾱ ∪ p} is cofinal in s ᾱ . Hence L s̄ { ᾱ ∪ q } is cofinal in s̄ , and
ᾱ < α < β . Hence
( 1 7) β̄ does not fall under special case 2 .
( 1 8) For j < k , α j( β) = α j( β̄ ) .
Proof. By induction on j < k . Remember that α j( k ) = the smallest ν s. t.

Ls {ν ∪ p∪ {α i′ | i < j }}
is cofinal in s . Now

Ls { ᾱ ∪ p∪ {α0
′ , � , αk− 1

′ } }
is cofinal in s ᾱ , hence

L s̄ { ᾱ ∪ q ∪ {α0
′ , � , αk− 1

′ } }
is cofinal in s̄ and

L s̄ {α j( β) ∪ q ∪ {α0
′ , � , αk− 1

′ } }
is cofinal in s̄ .

Now let α j( β) = α j
′ + 1 . Then

Ls {α j′ ∪ p∪ {α0
′ , � , αk− 1

′ } }

is bounded below s by some s i<̃ s ᾱ . Hence

Ls ᾱ {α j′ ∪ p∪ {α0
′ , � , αk− 1

′ } }

is bounded below s ᾱ by some s i<̃ s ᾱ , and so by some location in Ls ᾱ { β̄ ∪ p} .
Hence

L s̄ {α j′ ∪ q ∪ {α0
′ , � , αk− 1

′ }}

is bounded below s̄ by some location <̃ s̄ . So α j( β) = α j( β̄ ) . qed ( 1 8)

( 1 9) αk( β̄ ) = ᾱ .
Proof. As above,

L s̄ { ᾱ ∪ q ∪ {α0
′ , � , αk− 1

′ } }

is cofinal in s̄ . If we take α ′ < ᾱ , then

Ls ᾱ {α ′ ∪ p∪ {α0
′ , � , αk− 1

′ } }

is bounded below s ᾱ , by the minimality of ᾱ . So we have αk( β̄ ) = ᾱ . qed ( 1 9)

( 20) β̄ does not fall under special case 3 ,
since ᾱ =0 . So we are again in the generic case .

( 21 ) ∀i < ᾱ βi( β) = βi( β̄ ) .
Proof. β0 = β0( β) = the largest s. t. β0 < β and β0 = β ∩ Ls {β0 ∪ p} . By defini-
tion of β̄ = βᾱ , β0 = the largest s. t. β0 < β̄ and β0 = β̄ ∩ Ls ᾱ {β0 ∪ p} . As
Ls ᾱ {β0 ∪ p} � L s̄ {β0 ∪ q } by a map which is the identity on β̄ , β0 = the largest
s. t. β0 < β̄ and β0 = β̄ ∩ L s̄ {β0 ∪ q } , which is the definition of β0( β̄ ) .
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Now consider 0 < i < ᾱ .

s i( β) = <̃ -least upper bound of Ls { i ∪ p∪ {α0
′ , � , αk− 1

′ } } below s

= <̃ -least upper bound of Ls ᾱ { i ∪ p∪ {α0
′ , � , αk− 1

′ } } below s ᾱ

by the definition of s ᾱ ;

s i( β̄ ) = <̃ -least upper bound of L s̄ { i ∪ q ∪ {α0
′ , � , αk− 1

′ } } below s̄

For ξ < β̄ we have

( * ) π : Ls i{ ξ ∪ p} � L s̄ i{ ξ ∪ q } , where we write s i = s i( β) and s̄ i = s i( β̄ ) .
Proof. We have to show that the Skolem functions in Ls correspond to those
in L s̄ via π . If z = S( δ , ψ , y

�

) , ( δ , ψ , y
�

) <̃ s i , y
� ∈ Ls ᾱ { β̄ ∪ p} , then ( δ , ψ , y

�

) <̃ ( η, χ ,
z

�

) <̃ s i for some location ( η , χ , z
�

) ∈ Ls ᾱ { i ∪ p ∪ {α0
′ , � , αk− 1

′ } } , i . e. , z� ∈ Ls ᾱ { i ∪ p ∪
{α0
′ , � , αk− 1

′ } } . Now π( η , χ , z
�

) ∈ L s̄ { i ∪ q ∪ {α0
′ , � , αk− 1

′ } } and

π( z ) = S(π( δ , ψ , y
�

) ) , π( δ , ψ , y
�

) <̃ π( η , χ , z
�

) <̃ s̄ i .

The converse proceeds analogously. qed ( * )
Now βi( β) is the minimal βi( β) > β0 such that

βi( β) = β ∩ Lsi {βi( β) ∪ p} = β̄ ∩ Lsi {βi( β) ∪ p}

and βi( β̄ ) is the minimal βi( β̄ ) > β0 such that

βi( β̄ ) = β̄ ∩ L s̄ i {βi( β̄ ) ∪ q } .

By the isomorphism property ( * ) and that fact that π � β̄ = id we have βi( β) =
βi( β̄ ) as required. qed ( 21 )

Now to prove the coherence property it suffices to see that

I( β̄ ) = { i < ᾱ | i > 0 , βi > max ( { i } ∪ {α l | l < k } ) ,
s i( β̄ ) is a γ̄ –location ,
s i( β̄ ) >̃ the <̃ –supremum of L s̄ {α l′ ∪ q ∪ {α0

′ , � , α l− 1
′ } }

for all l < k , and
β̄ < γ̄ � β̄ ∈ Ls i( β̄ ){βi ∪ q }

}

= { i < ᾱ | i > 0 , βi > max ( { i } ∪ {α l | l < k } ) ,
s i( β) is a γ–location ,
s i( β) >̃ the <̃ –supremum of Ls ᾱ {α l′ ∪ q ∪ {α0

′ , � , α l− 1
′ } }

for all l < k , and
β < γ � β ∈ Ls i( β){βi ∪ p} }

= I( β) ∩ ᾱ .

The equalities follow from the equivalence of the conditions on i . QED
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Chapter 19
Morasses

19. 1 Definition of a gap-1 morass
Combinatorial principles are general statements of infinitary combinatorics which
yield construction principles for infinitary, mostly uncountable structures. The
continuum hypothesis or the stronger principle ♦ are enumeration principles for
subsets of ω or of ω1 which can be used in recursive constructions. These princi-
ples are provable in the model L by non-finestructural methods.

Ronald Jensen has developed his fine structure theory with a view towards
some stronger combinatorial principles. He could prove the full gap-1 two-cardinal
transfer property in L using the combinatorial principle � :

if a countable first-order theory T has a model A = (A, B , � ) with
card(A) = card(B ) + > ℵ 1 then for every infinite cardinal κ T has a
model A ′= (A ′ , B ′ , � ) with card(A ′) = κ+ and card(B ′) = κ .

Jensen could also prove the gap-2 transfer by defining and using gap-1
morasses in a similar way. We shall demonstrate that gap-1 morasses can be nat-
urally constructed in hyperfine structure theory.

A morass is a commutative tree-like system of ordinals and embeddings. Let
us first consider a trivial example of a system which may be used in constructions.

(ω · α , < ) α6 ω1
, ( id � ω · α) α6 β6ω1

is obviously a directed system whose final structure (ω1 , < ) is determined by the
previous structures, all of which are countable. If we have, e. g. , a model-theoretic
method which recursively constructs additional structure on the countable limit
ordinals (ω · α , < ) which is respected by the maps id � ω · α then the system “auto-
matically” yields a limit structure on (ω1 , < ) . Of course this is just the standard
union-of-chains method, always available in ZFC, which is a main tool for many
kinds of infinitary constructions.

A ( gap-1 ) morass may be seen as a commutative system of directed systems.
In an (ω1 , 1 ) -morass a top directed system converges to a structure of size ω2 .
That system consists of structures of size ω1 and is itself the limit of a system of
directed systems of size ω0 . In applications one has to determine the countable
components of this system of systems. If the connecting maps between the count-
able components commute sufficiently then the morass “automatically” yields
a “limit of limits” of size ω2 , whose properties can be steered by appropriate
choices of the countable structures.
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Hyperfine structure theory provides us with a host of structures and structure-
preserving maps between them. Through hulls and condensation, one can approx-
imate large structures Ls by countable structures L s̄ . This motivates the fol-
lowing construction: carefully select a subsystem of the large hyperfine system or
category and show that it satisfies Jensen ’ s structural axioms for an (ω1 , 1 ) -
morass. We could instead use arbitrary regular cardinals instead of ω1 . We
assume ZFC + V = L for the rest of this paper.

The following construction is due to the present author and will be published
in [ 2 ] . We approximate the structure Lω2

by structures which look like Lω2
. The

heights of those structure will be morass points .

Definition 19. 1 . A limit ordinal σ < ω2 is a morass point if

− Lσ =
⋃ {Lµ | µ < σ ∧ Lµ � ZF− } and

− Lσ � “there is exactly one uncountable cardinal”.

For a morass point σ let γσ be the unique uncountable cardinal in Lσ . For morass
points σ , τ define σ ≺ τ iff σ < τ and γσ = γτ . Let S1 be the set of all morass points
and S0 = { γσ | σ ∈ S1} .

ω2

σ τ≺
γσ

σ ′ τ ′≺ω1 = γσ ′

The structures Lσ ′ ⊆ Lτ ′ , σ ′ ≺ τ ′ approximate Lω2
; the directed

system σ ′ ≺ τ ′ will be a limit of the countable directed systems σ ≺ τ
from below.

We shall assign levels of the fine hierarchy to morass points; the morass will
consist of those levels and of suitable fine maps between them. Finite sets of
parameters will be important in the sequel and they will often be chosen
according to a canonical wellordering “by largest difference”:

Definition 19. 2 . Define a wellorder < ∗ of the class [V ] <ω of finite sets: p < ∗ q
iff there exists x ∈ q \ p such that for all y > L x holds y ∈ p↔ y ∈ q.
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Lemma 19. 3. Let σ be a morass point. Then there is a <̃ - least location s (σ)
such that there is a finite set p ⊆ Ls(σ) with Ls (σ){ γσ ∪ p} being cofinal in σ. Let pσ
be the < ∗ -smallest such parameter. We call Mσ = (Ls(σ) , pσ) the collapsing struc-
ture of σ.

Proof. Since Lσ � “there is exactly one uncountable cardinal” we have σ � ω1 .
Thus σ is not a cardinal in L . Let f : γσ → σ be surjective. Let f ∈ Lα . Set s =
(Lα+1 , 0 , ∅ ) ∈ L̃ and p= { f , Lα} .
( 1 ) σ ⊆ Ls { γσ ∪ p} .
Proof. Let ζ ∈ σ . Let ζ = f ( ξ) , ξ ∈ γσ . Then

ζ = the unique set such that ( ξ , ζ) ∈ f
= S(Lα , “( v1 , v0) ∈ v2”,

ξ f

v1 v2
)

∈ Ls { γσ ∪ p}
�

Definition 1 9. 4. Define a strict partial order � 3 on the set S1 ofmorass points:
σ � 3 τ if there exists a fine map

π : (Ls(σ) , ∈ , < L , I , N , S � s (σ) ) → (Ls(τ) , ∈ , < L , I , N , S � s (τ) )

such that

a ) π is elementary for existential statements of the form ∃v0 � ∃vm− 1 ψ where
ψ is quantifier-free in the language for (Ls(σ) , ∈ , < L , I , N , S � s (σ) ) ;

b ) π � γσ = id � γσ , π( γσ) = γτ > γσ , π(σ) = τ , π( pσ) = pτ ;

c ) if τ possesses an immediate ≺ -predecessor τ ′ then τ ′ ∈ range π.

We shall see that the system (S1 , � 3) with connecting maps as in this definition
is a gap-1 morass. We first state some results about the “collapsing structures”
(Ls (σ) , pσ) .

Lemma 19. 5. Let σ ∈ S1 be a morass point and (Ls(σ) , pσ) as defined above .
Then

a ) s (σ) is a limit location.

b ) σ ⊆ Ls (σ){ γσ ∪ pσ} .
c ) Ls (σ){ γσ ∪ pσ} = Ls (σ) .

Proof. a) Assume for a contradiction that s (σ) is a successor location of the form
s (σ) = s+ . By the finiteness property (Theorem 1 7. 8) there is a z ∈ Ls such that

Ls (σ){ γσ ∪ pσ} = Ls+{ γσ ∪ pσ} ⊆ Ls { γσ ∪ pσ ∪ {z } } .

But then Ls { γσ ∪ pσ ∪ {z } } is cofinal in σ , contradicting the minimality of s (σ) .
b) Let ξ ∈ σ . Since Lσ � “γσ is the only uncountable cardinal” and Ls(σ){ γσ ∪ pσ} is
cofinal in σ take ζ , L η ∈ Ls (σ){ γσ ∪ pσ} such that ξ < ζ ∈ L η , η < σ , and

L η � ∃f f : ω1 � ζ is surjective ,
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where “ω1 ” is the ZF-term for the smallest uncountable cardinal. Then

g = S (Lη , v0 : ω1 � v1 is surjective,
ζ

v1
) ∈ Ls (σ){ γσ ∪ pσ}

is a surjective map g : γσ� ζ . Now

ξ ∈ ζ = range g ⊆ Ls (σ){ γσ ∪ pσ} .

c) Let X = Ls(σ){ γσ ∪ pσ } C Ls (σ) . By the Condensation Theorem 1 7. 3 there is a
minimal location s̄ 4̃ s (σ) so that there is an isomorphism

π : (X, ∈ , < L , I , N , S � s (σ) ) � L s̄ = (L ᾱ , ∈ , < L , I , N , S � s̄ ) .

Since σ ⊆ X we have π � σ = id � σ . Let p̄ = π( pσ) . Since π is a homomorphism,
L s̄ = L s̄ { γσ ∪ p̄ } . Then L s̄ { γσ ∪ p̄ } is trivially cofinal in σ and by the minimal
definition of s (σ) and pσ we get s̄ = s (σ) and p̄ = pσ . So

Ls (σ) = Ls(σ){ γσ ∪ pσ} . �

Property a) of the preceding Lemma will be crucial; since s (σ) is a limit it will be
possible to continuous approximate the collapsing structure. The finiteness prop-
erty of the fine hierarchy makes the hierarchy so slow that most interesting phe-
nomena can be located at limit locations.

Lemma 19. 6. Let σ � 3 τ witnessed by a structure preserving map

π : (Ls(σ) , ∈ , < L , I , N , S � s (σ) ) → (Ls(τ) , ∈ , < L , I , N , S � s (τ) )

as in Definition 1 9. 4 . Then π is the unique map satisfying Definition 1 9. 4 .

Proof. Let x ∈ Ls (σ) . By Lemma 1 9. 5c, x = tLs (σ ) ( ξ
�

, p
�

) for some Ls (σ) -term t, ξ
�

<
γσ , where p

�

is the < L -increasing enumeration of pσ . S ince π preserves the con-
structible operations, and since π( ξ

�

) = ξ
�

and π( pσ) = pτ we have

π(x ) = tLs ( τ ) ( ξ
�

, q
�

) ,

where q
�

is the < L -increasing enumeration of pτ . Hence π( x) is uniquely deter-
mined by Definition 28. �

This lemma is the basis for

Definition 19. 7. For σ � 3 τ let

πστ : (Ls (σ) , ∈ , < L , I , N , S � s (σ) ) → (Ls(τ) , ∈ , < L , I , N , S � s ( τ) )

be the unique map satisfying Definition 1 9. 4 .

19. 2 Proving the morass axioms

The main theorem states that we have defined a morass in the previous section.
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Theorem 19. 8. The system

(S1 , σ � 3 τ , (πστ) σ � 3τ)

is an (ω1 , 1 ) -morass, i. e . , it satisfies the following axioms:

− (M0)

a ) For all γ ∈ S0 the set Sγ = {σ ∈ S1 | γσ = γ } is a set of ordinals which
is closed in its supremum;

b ) Sω2
is closed unbounded in ω2 ;

c ) S0 ∩ ω1 is cofinal in ω1 ;

d ) � 3 is a tree-ordering on S1 .

− (M1 ) Let σ � 3 τ. Then:

a ) Let ν < σ. Then ν is a morass point iffπστ( ν ) is a morass point.

b ) For all ν 4 σ holds: ν is ≺ -minimal, ≺ -successor, ≺ - limit iff
πστ( ν ) is ≺ -minimal, ≺ -successor, ≺ - limit, respectively.

c ) If τ ′ is the immediate ≺ -predecessor of τ then π− 1 (τ ′) is the imme-
diate ≺ -predecessor of σ.

− (M2) Let σ � 3 τ, σ̄ ≺ σ. Then σ̄ � 3 πστ( σ̄ ) with correponding map
πσ̄ πσ τ ( σ̄ ) = πστ � Ls ( σ̄ ) .

− (M3) Let τ ∈ S1 . Then { γσ | σ � 3 τ } is closed in the ordinals < γτ .

− (M4) Let τ ∈ S1 and assume that τ is not ≺ -maximal. Then { γσ | σ � 3 τ}
is cofinal in γτ .

− (M5) Let { γσ | σ � 3 τ } be cofinal in γτ . Then τ =
⋃
σ � 3τ

πστ[σ ] .

− (M6) Let σ � 3 τ, σ a ≺ - limit, and λ = sup range πστ � σ < τ. Then σ � 3 λ
with πσλ � σ = πστ � σ.

− (M7) Let σ � 3 τ, σ a ≺ - limit, and τ = sup range πστ � σ. Let α ∈ S0 such
that ∀σ̄ ≺ σ ∃ ῡ ∈ Sα σ̄ � 3 ῡ � 3 πστ( σ̄ ) . Then there exists υ ∈ Sα such that
σ � 3 υ � 3 τ .

We shall show the morass axioms in a series of lemmas. The axioms can be moti-
vated by the intended applications. Assume that one want to construct a struc-
ture of size ω2 . Take ω2 as the underlying set of the structure. We present ω2 as
the limit of a system of nicely cohering countable structures. The limit process
has a two-dimensional nature: inclusions τ ′ ≺ τ ( which implies τ ′ ⊆ τ) from left to
right and morass maps πστ going upwards. In the following picture the structure
to be put on τ may be considered as enscribed on the vertical axis from 0 to γτ
and on the horizontal level from γτ to τ . In a supposed construction, the hori-
zontal levels are enscribed one after the other from bottom to top. To determine
the enscriptions on a level Sα first map up all the enscriptions on levels Sβ with
β < α using the morass maps πστ with σ ∈ Sβ and τ ∈ Sα . Often enough, this does
not enscribe all of Sα so that on the non-enscribed parts the structure may be
defined according to the specific aim of the construction.
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ω2

λ τ≺
γτ

≺ω1 = γρ ρρ ′

γσ

τ ′

σσ ′

� 3

� 3

The morass axioms will ensure that the general process above is possible: the
morass maps are consistent with each other and with the inclusions from left to
right, and the top level will be determined completely from the previous levels.
Let us comment on some of the easier axioms. The intention of the complicated
axioms M6 and M7 will only become apparent in actual constructions.

− M0 makes some general statements about the morass system: all of ω2 is
covered by morass points; the tree property ensures that a morass point
can only be reached by one path from below.

− M1 and M3 give some further information along these lines.

− M2 is necessary for a consistent copying process from lower to higher
levels.

− M4 says that a morass point τ which is not maximal on its level is a “limit”
of the path leading to it. Together with M5 this completely determines the
structure ( the enscription) on τ . So the specific construction has to be per-
formed for maximal points σ of levels which are not a limit of the path
below.

Lemma 19. 9. (M0) holds.

Proof. d) Let σ , σ ′ � 3 τ , σ 6 σ ′. Then the map πσ ′ τ
− 1 ◦ πστ : Ls (σ) → Ls(σ ′) witnesses

that σ � 3 σ ′ . So the � 3-predecessors of any morass point are linearly ordered.
Indeed they are wellordered since σ � 3 ν implies that σ < ν . �

Lemma 19. 1 0. (M1 ) holds.
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Proof. ( 1 ) Let δ ∈ Ord ∩ Ls (σ) . Then π � Lδ : (Lδ , ∈ ) → (Lπ( δ) , ∈ ) is elementary.
Proof. For an ∈ -formula ϕ and a

� ∈ Lδ note

(Lδ , ∈ ) � ϕ ( a
�

) iff S(Lδ , ϕ (w
�

) ∧ v0 = 1 ,
a

�

w
� ) = 1

iff S(Lπ( δ) , ϕ (w
�

) ∧ v0 = 1 ,
π( a

�

)

w
� ) = 1

iff (Lπ( δ) , ∈ ) � ϕ (π( a
�

) ) . qed ( 1 )

a) Being a morass point is absolute for transitive ZF− -models. σ is a morass point
and so Lσ is a limit of ZF− -models. Take δ , ν < δ < σ so that Lδ is a ZF− -model.
By ( 1 ) , Lπ( δ) is also a ZF− -model. Now ν is a morass point iff (Lδ , ∈ ) � ν is a
morass point iff (Lπ( δ) , ∈ ) � π( ν ) is a morass point iff π( ν ) is a morass point.
b) Also being a morass point which is ≺ -minimal, ≺ -successor, or ≺ -limit can
be expressed absolutely for ZF− -models and we can use the same technique as in
a) to prove preservation.
c) π− 1 (τ ′) is defined and it is a morass point by a) . Assume for a contradiction
that there is a morass point σ ′, π− 1 ( τ ′) ≺ σ ′ ≺ σ . By a) , π(σ ′) is a morass point
and τ ′ ≺ π(σ ′) ≺ π(σ) = τ , which contradicts the assumptions of c) . �

Lemma 19. 1 1 . (M2) holds

Proof. Set τ̄ = πστ( σ̄ ) . Take δ , σ̄ < δ < σ so that Lδ is a ZF− -model. The col-
lapsing structure (Ls ( σ̄ ) , p( σ̄ ) ) is definable in (Lδ , ∈ ) from the parameter σ̄ . Then
the same terms define (Ls ( τ̄ ) , p( τ̄ ) ) in (Lπσ τ( δ) , ∈ ) from the parameter τ̄ , and the
map πστ restricted to the collapsing structure Ls( σ̄ ) witnesses σ̄ � 3 πστ( σ̄ ) by the
lementarity of πστ � Lδ : (Lδ , ∈ ) → (Lπσ τ ( δ) , ∈ ) . �

Lemma 19. 1 2 . (M3) holds

Proof. Let ᾱ < γτ be a limit of { γσ | σ � 3 τ } . Form the hull

Ls (τ){ ᾱ ∪ { pτ} }

and by condensation obtain an isomorphism

π : Ls(τ){ ᾱ ∪ { pτ} } � L s̄ with τ̄ = π(τ) and p̄ = π( pτ) .

( 1 ) τ̄ is a morass point.
Proof. Let ξ < τ̄ . Take σ � 3 τ such that γσ < ᾱ and

π− 1 ( ξ) ∈ (Ls(τ){ γσ ∪ { pτ} } = range πστ .

Let ξ̄ < σ such that π− 1 ( ξ) = πστ( ξ̄ ) . S ince σ is a morass point take an ordinal µ ,
ξ̄ < µ < σ such that Lµ � ZF− . Then πστ(Lµ) = Lπσ τ ( µ) � ZF− .

πστ(Lµ) = Lπσ τ ( µ) ∈ range πστ ⊆ Ls (τ){ ᾱ ∪ { pτ} } = range π− 1 .

Then π(πστ(Lµ) ) = Lπ(πσ τ ( µ) ) is a ZF− -model. Furthermore ξ̄ < µ < σ implies that
πστ( ξ̄ ) = π− 1 ( ξ) < πστ( µ) < πστ(σ) = τ and ξ = π(π− 1 ( ξ) ) < π(πστ( µ) ) < π(τ) = τ̄ .
So L τ̄ is a limit of ZF− -models.

1 9 . 2 Proving the morass axioms 1 01



Similarly one can show that ᾱ is the only uncountable cardinal in L τ̄ .
Note that Ls (τ){ ᾱ ∪ pτ} ∩ γτ = ᾱ , since ᾱ is the limit of Ls (τ){ γσ ∪ pτ} ∩ γτ =

γσ < ᾱ . We show s̄ = s ( τ̄ ) : Clearly s ( τ̄ ) <̃ s̄ , since L s̄ = L s̄ { ᾱ ∪ p̄ } is cofinal in
τ̄ . Now assume for a contradiction that s ( τ̄ ) <̃ s̄ . Let πσ = π ◦ πστ for σ ∈
{σ � 3 τ | γσ < ᾱ } . Choose σ large enough such that there exist s̃ , p̃ ∈ Ls(σ) with
s ( τ̄ ) = πσ( s̃ ) and pτ̄ = πσ( p̃) . By s ( τ̄ ) <̃ s̄ we have s̃ <̃ s (σ) and hence L s̃ { γσ ∪ p̃}
bounded in σ , say by β. But this bound is preserved by πστ and by π ( hence by
πσ) ; therefore, we get that Ls ( τ̄ ){ ᾱ ∪ pτ̄ } ∩ τ̄ is bounded by πσ( β) < τ̄ which con-
tradicts the definition of s ( τ̄ ) and pτ̄ .

To see that π− 1 : Ls( τ̄ ) → Ls (τ) is a morass map and hence τ̄ � 3 τ with γτ̄ = ᾱ ,
we need to show, that π− 1 preserves Σ 1 ; the other properties follow by definition,
for pτ and the predecessor of τ ( if any) note that dom π contains the ranges of
morass maps as subsets.

As a collapsing map, π− 1 is structure-preserving. Σ 1 is preserved upwards.
Now assume, we have a Σ 1 -formula in Ls (τ) . It is preserved downwards by morass
maps πστ for σ ∈ {σ � 3 τ | γσ < ᾱ } and hence has a witness in range πστ ⊂
dom π . �

Lemma 19. 1 3. (M4) holds.

Proof. Let υ ∈ Sγτ with τ < υ . Let α < γτ be arbitrary and η between τ and υ
s. t. Ls (τ) ∈ L η and L η � Z F− . Let X ≺ L η s. t. Ls (τ){α ∪ pτ} ∪ {τ } ⊂ X and ᾱ : =

X ∩ γτ ∈ γτ. Let π : X � L η̄ , σ = π( τ) , and p̄ = π( pτ) . So σ is a morass point and
π− 1 � Ls (σ) : Ls (σ) → Ls (τ) is elementary and therefore a morass map. Hence σ � 3 τ
and α ≤ γσ = ᾱ . �

Lemma 19. 1 4. (M5) holds.

Proof. Let ξ ∈ τ ∈ S1 . We have Ls(τ) = Ls (τ){ γτ ∪ pτ} and by cofinality there
exists a σ � 3 τ with ξ ∈ Ls (τ){ γσ ∪ pτ} = range πστ. �

Lemma 19. 1 5. (M6) holds.

Proof. Let s̃ = <̃ -lub {πστ( t) | t <̃ s (σ) } . We show that L s̃ { γτ ∪ pτ} ∩ τ = λ : First
assume λ 0 ∈ λ ; then there is λ 1 with λ 0 < λ 1 < λ and λ 1 = πστ( λ̄ 1 ) . Then
Lσ � card(λ 1

¯ ) ≤ γσ , hence there exists f̄ ∈ Lσ s. t. f̄ : γσ→ λ̄ 1 is onto, in particular
f̄ ∈ Ls (σ){ γσ ∪ pσ} . As s (σ) is a limit location, we have f̄ ∈ L t{ γσ ∪ pσ} for some
t <̃ s (σ) . Let f = πστ( f̄ ) ∈ Lπστ ( t){ γτ ∪ pτ} , then f : γτ→ λ 1 is onto, so λ 0 ∈ range f ,
hence λ 0 ∈ L s̃ { γτ ∪ pτ} . On the other hand assume λ 0 ∈ L s̃ { γτ ∪ pτ} ∩ τ , then
there is a t <̃ s (σ) s. t. λ 0 ∈ Lπστ ( t){ γτ ∪ pτ} . But L t{ γσ ∪ pσ} ∩ σ is bounded below
σ ( by β say) , since t <̃ s (σ) , hence also Lπστ ( t){ γτ ∪ pτ} ∩ τ is bounded below τ ,
namely by πστ( β) < λ . So λ 0 ∈ λ as required.

Let π : L s̃ { γτ ∪ pτ} � Ls0 and p0 = π( pτ) ( then λ = π(τ) ) . Note that λ ∈ Sγτ . We
show Ls0{ γτ ∪ p0} = Ls (λ){ γτ ∪ pλ} :
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s 0 = s (λ ) : First note that s 0 singularizes λ , so s (λ ) <̃ s 0 . Assume for contradic-
tion that s 0 is strictly greater. As pλ ∈ Ls0{ γτ ∪ p0} , we have pλ ∈ Ls1{ γτ ∪ p0}
where s (λ ) <̃ s 1 <̃ s 0 ( and where α( s (λ ) ) belongs to Ls 1{ γτ ∪ p0} in case α( s (λ ) ) <
α( s 0) ; of course we are using the fact that s 0 is a limit location) . Since Ls (λ){ γτ ∪
pλ} ⊂ Ls 1{ γτ ∪ p0} , s 1 singularizes λ . By definition of s 0 , π− 1 ( s 1 ) <̃ s̃ . Further, by
definition of s̃ , there is a t <̃ s (σ) s. t. π− 1 ( s 1 ) <̃ πστ( t) . By minimality of s (σ) ,
L t{ γσ ∪ pσ} ∩ σ is bounded below σ ( by β say) . Hence Lπστ ( t){ γτ ∪ pτ} ∩ τ is
bounded below τ ( by πστ( β) ) . Since π− 1 ( s 1 ) <̃ πστ( t) , Lπ− 1 ( s 1 ){ γτ ∪ pτ} ∩ τ is
bounded below τ ( still by πστ( β) ) . Apply π : Ls 1{ γτ ∪ p0} ∩ λ is bounded below λ
( by π ◦ πστ( β) ) , contradiction.

p0 = pλ : Ls (λ) = Ls (λ){ γτ ∪ p0} is cofinal in λ ( as above using s 0 = s (λ ) ) . There-
fore, pλ ≤ ∗ p0 . Assume for contradiction that p0 is strictly greater, then using p0 ∈
Ls (λ) = Ls(λ){ γτ ∪ pλ} and applying π− 1 we get π− 1 ( pλ) <

∗ pτ ∈ L s̃ { γτ ∪ π− 1 ( pλ) } ⊂
Ls (τ){ γτ ∪ π− 1 ( pλ) } . Therefore, Ls(τ) = Ls (τ){ γτ ∪ pτ} = Ls (τ){ γτ ∪ π− 1 ( pλ) } contra-
dicting the minimality of pτ .

Let π0 = π ◦ πστ : Ls (σ) → Ls (λ) . π0 is well-defined as range πστ = L s̃ { γσ ∪ pτ} ⊂
dom π . Further, π0(σ) = λ and π0( pσ) = pλ . Since λ is a ≺ -limit, property 1 9. 4c)
of the definition of a morass map is vacuous. Finally, π0 is Σ 1 -preserving: First
note that π0 is structure-preserving. Σ 1 formulas are preserved by π0 upwards, by
π upwards ( from Ls (λ) to L s̃ { γτ ∪ pτ} ) , and by πστ downwards, hence by π0 both
ways. Now π0 = πσλ is a morass map, hence σ � 3 λ as required. �

Lemma 19. 1 6. (M7) holds.

Proof. We first show that Ls (τ){α ∪ pτ} ∩ γτ = α , clearly α is a subset of the left
side. For the other direction note that since we assume τ = sup range πστ � σ , the
argument for (M6) shows that s (τ) = <̃ -lub {πστ( t) | t <̃ s (σ) } . Let ξ ∈ Ls(τ){α ∪
pτ} ∩ γτ, then there is s 0 <̃ s (σ) s. t . ξ ∈ Lπστ ( s0 ){α ∪ pτ} ∩ γτ. Working downstairs
we have that Ls0{ γσ ∪ pσ} does not collapse σ ( by minimality of s (σ) >̃ s 0) . Let
π0 : L s̄ = L s̄ { γσ ∪ p̄ } � Ls0{ γσ ∪ pσ} where p̄ = π0

− 1 ( pσ) . Then σ ′ : = π0
− 1 (σ) < σ . L s̄

cannot collapse σ ′, else there would be a map from γσ onto σ ′ and hence a map
from γσ onto σ in Ls0{ γσ ∪ pσ } . Therefore, L s̄ � Cardσ ′ and Lσ � ¬Cardσ ′, hence
L s̄ ∈ Lσ . Now, σ is a ≺ -limit, so there is σ̄ ≺ σ s. t. L s̄ , p̄ ∈ Ls ( σ̄ ) = Ls ( σ̄ ){ γσ ∪ pσ̄ } .

We shift the isomorphism π0 to Ls (τ) :

“πστ(π0) ”: Lπστ ( s̄ ){ γτ ∪ πστ( p̄ ) } � Lπστ( s0 ){ γτ ∪ pτ}

We started with ξ ∈ Lπστ ( s0 ){α ∪ pτ} ∩ γτ. Now we apply the isomorphism and
infer ξ ∈ Lπστ ( s̄ ){α ∪ πστ( p̄ ) } ∩ γτ ( since ξ < γτ it is not moved) . Further,
Lπστ ( s̄ ){α ∪ πστ( p̄ ) } ∩ γτ ⊂ Ls (πστ ( σ̄ ) ){α ∪ pπστ ( σ̄ )} ∩ γτ = α , where the former holds
since πστ( p̄ ) ∈ Lπστ ( σ̄ ){ γσ ∪ pπστ ( σ̄ )} and πστ( s̄ ) <̃ s (πστ( σ̄ ) ) and the latter holds by
σ̄ � 3 ῡ � 3 πστ( σ̄ ) for some ῡ ∈ Sα . Hence ξ ∈ α as desired.

Now we define π : Ls (τ){α ∪ pτ} � Ls ′{α ∪ p′} = Ls ′ where p′ : = π( pτ) , υ : = π(τ) .
By the previous argument we have π− 1 (α) = γτ. Using the system of morass maps
we have υ ∈ Sα .
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We have to show s ′ = s (υ) : Ls ′ = Ls ′{α ∪ p′} collapses υ , hence s (υ ) <̃ s ′.
Assume for a contradiction that s (υ) <̃ s ′ . Since pυ ∈ Ls ′ we have that there is an
s 0 s. t. s (υ ) <̃ s 0 <̃ s ′ and pυ ∈ Ls0{α ∪ p′} . Since πστ and π map locations cofinally
this is also true for π0 : = π ◦ πστ ( locations <̃ s (σ) are mapped to locations <̃ s ′) .
Hence without loss of generality, s 0 = π0( s̄ 0) where s̄ 0 <̃ s (σ) . Therefore,
Ls (σ) � “L s̄0{ γσ ∪ pσ} is bounded below σ”. This is preserved by πστ:
Ls (τ) � “Lπστ ( s̄0 ){ γτ ∪ pτ} is bounded below τ”. Finally, this is preserved by π
downwards: Ls ′ � “Ls0{α ∪ p′} is bounded below υ”, contradicting the definition of
s (υ ) <̃ s 0 .

Finally, we have to show that π− 1 is Σ 1 -preserving, then π− 1 = πυτ and πσυ =
πυτ
− 1 ◦ πστ. First note that π is structure-preserving.

Σ 1 is preserved upwards by π− 1 ( i. e. , from Ls (υ) to Ls(τ){α ∪ pυ} ) . For the
other direction, assume Ls (τ) � ∃x φ(x , r

�

) , where φ is quantifier-free and r
� ∈

dom π = Ls (τ){ γυ ∪ pτ} ; we have to show Ls (υ) � ∃x φ(x , π( r
�

) ) . As before, fix
s 0 <̃ s (σ) s. t. r

� ∈ Lπστ ( s0 ){ γυ ∪ pτ} and w ∈ Lπστ ( s0 ){ γτ ∪ pτ} where w is the least
witness for ∃x φ(x , r

�

) . Our aim is to show that γτ can be replaced by γυ in the
latter hull.

Let π1 : Ls0{ γσ ∪ pσ} � L s̄ = L s̄ { γσ ∪ p̄ } where p̄ = π1 ( pσ) . As above using type
preservation, we shift π1 to the γτ-level, let’ s call the resulting map π2 :
Lπστ ( s0 ){ γτ ∪ pτ} � Lπστ ( s̄ ){ γτ ∪ πστ( p̄ ) } . Then we have π2( r

�

) ∈ Lπστ ( s̄ ){ γυ ∪ πστ( p̄ ) }
and π2(w) ∈ Lπστ ( s̄ ){ γτ ∪ πστ( p̄ ) } : Lπστ ( s̄ ) � φ(π2 (w) , π2( r

�

) )
Further, also as above, there is a σ̄ ≺ σ s. t. L s̄ ∈ L σ̄ with σ̄ � 3 ῡ � 3 τ̄ : =

πστ( σ̄ ) and π2 ( r
�

) , πστ( s̄ ) , πστ( p̄ ) ∈ range πῡτ̄ . Therefore, π2(w) ∈ range πῡτ̄ and
hence by πῡτ̄ being a morass map, we can replace γτ by γυ in “π2 (w) ∈ Lπστ ( s̄ ){ γτ ∪
πστ( p̄ ) } ”. Applying π2

− 1 we get w ∈ range πυτ. This proves Σ 1 -preservation. �
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Chapter 20
Embeddings of L

Transcending L

Theorem 20. 1 . Elementary Embeddings: Definition, critical point, the critical
point is regular, strong limit, there is a model of ZFC: if the critical point is a car-
dinal, then the powerset is an element of the other side, etc .

Theorem 20. 2 . The existence of such an elementary embedding can not be
proven. No formula does this.

Theorem 20. 3. If there is such an embedding then V � L . Assume V = L .

0# definieren! ! !
Finestructural construction of such mappings.
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Chapter 21
Fine Direct Limits
The condensation theorem shows that the fine hierarchy is closed with respect to
transitivizations of fine substructures. Here we show another closure property
which will be crucial for the proof of the covering theorem: the fine hierarchy is
closed with respect to transitive limits of fine directed systems. In the proof of the
covering theorem some effort will be necessary to arrange the transitivity of the
limit through preservation ofwellfoundedness .

We shall first prove a the limit theorem for constructible levels Lδ . This will
later be refined to fine levels. So fix a constructib le directed system S = (Lδ( i) ,
πij) i≤ j∈ I where

a) ( I , ≤ ) is a directly ordered set;

b) every Lδ( i) = (Lδ( i) , ∈ , < , < L , I , N , S ) is a constructible level;

c) for i ≤ j ∈ I , πij : Lδ( i)→ Lδ( j) is a constructible map;

d) The maps commute, i. e. ,

i ≤ j ≤ k→ πik = πjk ◦ πij .

By general category theory, the system S has a directed limit

(M, πi) i∈ I = limS
where

M = (M, ∈ ′ , < ′ , < L
′ , I ′, N ′, S ′)

and each

πi : Lδ( i)→M

is an injective embedding. The direct limit properties mean that
( 1 ) ∀i ≤ j ∈ I πi = πj ◦ πi j , and
( 2) ∀x ∈ M ∃ i ∈ I ∃ x̄ ∈ Lδ( i) x = πi( x̄ ) .

We prove a sequence of claims about the direct limit.
( 3) (M, ∈ ′ ) is extensional.
Proof: Let x , y ∈ M , x � y . Take i , j ∈ I , x̄ , ȳ ∈ Lδ( i) , such that x = πi( x̄ ) and
y = πi( ȳ ) . Then x̄ � ȳ and since Lδ( i) is extensional there is z̄ ∈ Lδ( i) such that

z̄ ∈ x̄ ↔ z̄ ∈ ȳ .
Then πi( z̄ ) ∈ x↔ πi( z̄ )∈ y . qed ( 3)
( 4) < ′ is a subrelation of ∈ ′ : < ′ ⊆ ∈ ′ .
( 5) < ′ is a linear order on its field.
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Let us now make the following
Assumption: ∈ ′ is well-founded.

Then we can transitivize the direct limit and we may assume:
( 6) M is transitive and ∈ ′= ∈ � M .
( 7) < ′ = ∈ � (M ∩ Ord) , i . e. , < ′ has M ∩ Ord as its field.
Proof. ( ⊇ ) Let x ∈ field( < ′ ) . Then x = πi(α) for some i , α ∈ Ord ∩ Lδ( i) = δ( i) .
We have to show that x is an ordinal, i. e. , x and all its elements are transitive.

If z ∈ y ∈ x , we can assume that i is sufficiently large and

πi
− 1 ( z ) ∈ πi− 1 ( y) ∈ α.

Since α is an ordinal , πi
− 1 ( z ) ∈ α , and so z ∈ x . Similiar for the transitivity of the

elements of x .
( ⊆ ) Let x ∈ Ord ∩ M . Let πi( x̄ ) = x . M � “x and all its elements are transitive”.
This is a ∀1 -statement which is preserved downwards by the embedding πj : Lδ( i) →
M . Hence: Lδ( i) � “x̄ and all its elements are transitive”. So x̄ ∈ Ord, x̄ ∈ δ( i) , and
x̄ ∈ field( < ) . Thus x ∈ field( < ′ ) . qed ( 7)

So
( 8) < ′ = < .

Let δ = M ∩ Ord. Our aim will be to show M = Lδ , including the algebraic
structure. This will be shown inductively in a way similar to the proof of con-
structible condensation. Let us define intermediate levels of the limit structure.
For γ ≤ δ define

|Mγ | : = {πi′′L γ̄
�
i ∈ I , πi( γ̄ ) = γ} .

With the conventions
πij( δ( i) ) = δ( j) , πi( δ( i) ) = δ

this is also defined for γ = δ . Then the sets |Mδ | and M are equal. We also endow
|Mδ | with the restrictions of the relations and functions of M : Mδ = M � |Mδ | .
( 9) ∀γ ≤ δ Mγ = Lγ .
Proof by induction on γ ≤ δ .
For γ = 0 obviously Mγ = ∅ is the empty structure.
Lim( γ) : It suffices to show that Mγ =

⋃
β< γ

Mβ as a union of structures. Since ( 9)
holds inductively for all β < γ if suffices to show the equality of the underlying
sets: |Mγ | =

⋃
β< γ
|Mβ | .

( ⊆ ) Consider x ∈ |Mγ | , x = πi( x̄ ) , i ∈ I , πi( γ̄ ) = γ , and x̄ ∈ L γ̄ .
Case 1 . γ̄ = β̄ + 1 is a successor ordinal. Then πi( β̄ ) < γ . S ince γ is a limit, take
δ such that πi( β̄ ) < δ < γ . Take j ∈ I , i ≤ j with πj( δ̄ ) = δ . Then πij( β̄ ) < δ̄ <

πij( γ̄ ) . x̄ ∈ L γ̄ implies that N ( x̄ ) = (L ξ , _ , _ ) with ξ 6 β̄ . Since N is preserved
by πi j , N(πi j( x̄ ) ) = (πi j(L ξ) , _ , _ ) = (Lπi j ( ξ) , _ , _ ) with πi j( ξ) ≤ πi j( β̄ ) < δ̄ <

πij( γ̄ ) . This means that πi j( x̄ ) ∈ L δ̄ and x = πj(πij( x̄ ) ) ∈ Mπj ( δ̄ ) = Mδ , where δ <
γ . Hence x is in the right hand side of the set equality.
Case 2 . γ̄ is a limit. Then take β̄ < γ̄ and x̄ ∈ L β̄ such that x = πi( x̄ ) ∈ Mπi ( β̄ ) ,
where πi( β̄ ) < γ . Again x is in the right hand side of the set equality.
( ⊇ ) Conversely consider β < γ , x = πi( x̄ ) ∈ Mβ , x̄ ∈ L β̄ , πi( β̄ ) = β . By directed-
ness, we can also assume that γ ∈ range(πi) , πi( γ̄ ) = γ , and γ̄ > β̄ . Then x̄ ∈ L γ̄ ,
and so x ∈ Mγ. This concludes the limit case.
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Finally assume γ = β + 1 , and that the claim holds for β .
Let I0 = { i ∈ I � ∃βi < δ( i) πi( βi) = β} be the subfamily of indices, which already
represent β . By the directedness of S , I0 is cofinal in I .

S0 = (Lβi , πij � Lβi) i , j∈ I0 , i≥ j
is a directed system with limit (Lβ , πi � Lβi) i∈ I0 . Since the maps

πij : Lδ( i)→ Lδ( j) , πij( βi) = βj

respect the Skolem functions S(Lβi , _ , _ ) � S(Lβj , _ , _ ) , the maps

πij � Lβi : Lβi→ Lβj

are ∈ -elementary. Since direct limits of elementary systems are elementary,
( a) the map πi � Lβi : Lβi→ Lβ is ∈ -elementary for i ∈ I0 .
( b) Let φ be a formula, z

� ∈ Lβ. Then I ′(Lβ , ϕ , z
�

) = I(Lβ , ϕ , z
�

) .
Proof. We have to show that I ′(Lβ , ϕ , z

�

) = { y ∈ Lβ
�
Lβ � ϕ ( y , z

�

) } .
( ⊆ ) Let y ∈ I ′(Lβ , ϕ , z

�

) . Let i ∈ I0 , β = πi( βi) , z
�

= πi( z̄
�

) , y = πi( ȳ ) . Then: ȳ ∈
I(Lβi , ϕ , z̄

�

) , Lβi � ϕ ( ȳ , z̄
�

) and, by ( a) , Lβ � ϕ ( y , z
�

) .
( ⊇ ) For the converse consider y ∈ Lβ such that y

�
I ′(Lβ , ϕ , z

�

) . Then we have i ,
z̄

�

, ȳ as above so that ȳ ∈ Lβi , ȳ
�
I(Lβi , ϕ , z̄

�

) , Lβi�ϕ ( ȳ , z̄
�

) , and Lβ�ϕ ( y , z
�

) .
qed ( b)
( c)

�
Mγ

�
=

�
Lγ

�
.

Proof. ( ⊆ ) Let x ∈ Mγ. Let x = πi( x̄ ) , x̄ ∈ L γ̄ , πi( γ)¯ = γ , πi( β̄ ) = β , γ̄ = β̄ + 1 .

Then N ( x̄ ) = (L ξ̄ , ϕ , z̄
�

) ∈ L γ̄ with ξ̄ ≤ β̄ and z̄
�

∈ L β̄ . Then x̄ = I(L ξ̄ , ϕ , z̄
�

) and

x = I ′(Lπi( ξ̄ ) , ϕ , πi( z̄ ) ) with πi( ξ )̄ 6 β and πi( z̄
�

) ∈ Mβ= Lβ

= I(Lπi( ξ̄ ) , ϕ , πi( z̄ ) ) , by ( b)
∈ Lπi( ξ̄ ) + 1 ⊆ Lβ+1 = Lγ .

( ⊇ ) Let x ∈ Lγ. If x ∈ Lβ, then x ∈ Mβ by the inductive assumption. Since the
M ’ s grow, x ∈ Mγ. So assume now that x ∈ Lβ+1 \ Lβ . Then x = I(Lβ , ϕ , z

�

) for
some ϕ and z

� ∈ Lβ . By ( b) , x = I ′(Lβ , ϕ , z
�

) . Take i ∈ I , πi( βi) = β , πi( z̄
�

) = z
�

.
Then

x̄ : = I(Lβi , ϕ , z̄
�

) ∈ Lβi+1 ⊆ Lδ( i)
and

x = πi( x̄ ) : = I ′(Lβ , ϕ , z
�

) = I(Lβ , ϕ , z
�

) ∈ Mβ+1 = Mγ .

qed ( c)
( d) N ′ = N � Lγ = N � Mγ.
Proof. Let x ∈ Lγ . Then I ′(N ′( x) ) = x because the direct limit preserves such
atomic relations. By ( b) , I(N ′(x ) ) = x . Hence N ′(x ) is a “name” for x and
N ′(x ) >̃N (x ) . Assume for a contradiction that N(x ) <̃N ′(x ) . Then for some suffi-
ciently large i ∈ I

πi
− 1 (N (x ) ) <̃ πi

− 1 (N ′(x ) ) = N (πi
− 1 (x ) ) .

By the minimality of N (πi
− 1 (x ) ) ,

I(πi
− 1 (N (x ) ) � πi− 1 (x ) .
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This atomic statement is also preserved by πi and we get I ′(N (x) ) � x and
I(N (x ) ) � x . This contradicts the definition of N . qed ( d)
( e) S ′ = S � Lγ = S � Mγ.
Proof. By the inductive assumption it suffices to show that for ∈ -formulas ϕ and
x

� ∈ Lγ
S ′(Lβ , ϕ , x

�

) = S(Lβ , ϕ , x
�

) .

Let us only look at the non-trivial case, where the Skolem witness S(Lβ , ϕ , x
�

)
exist. Then Lβ � ϕ (S(Lβ , ϕ , x

�

) , x
�

) . S ince the maps πi : Lβi → Lβ are ∈ -elemen-
tary, we have

Lβi � ϕ (S(Lβi , ϕ , πi
− 1 (x

�

) ) , πi
− 1 ( x

�

) )

for appropriate i ∈ I . Since πi maps S into S ′,

Lβ � ϕ (S ′(Lβ , ϕ , x
�

) , x
�

) .

So S(Lβ , ϕ , x
�

) ≤ L S ′(Lβ , ϕ , x
�

) .
Assume for a contradiction that S(Lβ , ϕ , x

�

) < L S ′(Lβ , ϕ , x
�

) . Then for an
appropriate i ∈ I , using the inductive assumption for < L ,

πi
− 1 (S(Lβ , ϕ , x

�

) ) < L πi
− 1 (S ′(Lβ , ϕ , x

�

) )

= S(Lβi , ϕ , πi
− 1 (x

�

) ) .

Then by the minimality of S : Lβi 2 ϕ (πi
− 1 (S(Lβ , ϕ , x

�

) ) , πi
− 1 (x

�

) ) , and
Lβ2 ϕ (S(Lβ , ϕ , x

�

) , x
�

) , which is a contradiction. qed ( e)
We come to the last structural component of Mγ that we have to check.

( f) < L
′ � Mγ = < L � Mγ .

Proof. For all i ∈ I
Lγi � ∀x , y(x < L y↔ N(x ) <̃ N ( y) ) .

Such ∀1 statements transfer up to the direct limit:

Lγ � ∀x , y(x < L
′ y↔N (x ) <̃ N ( y) ) .

Note that by the inductive assumption for β , the image of <̃ on the right hand
side is simply <̃ . So < L

′ satisfies the definition of < L . qed ( f)
The approach using ∀1 -statements can probably also be applied to claims ( d)

and ( e) . qed ( 9)

Remark 21 . 1 . The above argument also works for a class-sized directed system,
if one can prove that (M, ∈ ′ ) is set-like, i. e. ,

∀z ∈ M {x ∈ M | x ∈ ′ z } ∈ V.

We now refine the construction to a system where the structures and embeddings
in the system are fine. So consider a fine directed system S∗ = (Ls ( i) , πij) i≤ j∈ I
where

A) ( I , ≤ ) is a directly ordered set;

B) every Ls ( i) = (Lδ( i) , ∈ , < , < L , I , N , S � s ( i) ) is a constructible level;
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C) for i ≤ j ∈ I , πij : Ls( i)→ Ls( j) is a fine map;

D) The maps commute, i. e. ,

i ≤ j ≤ k→ πik = πjk ◦ πij .

If for i ∈ I : s ( i) = ( δ( i) , ϕ i , x i
�

) then the restricted system S = (Lδ( i) , πij) i≤ j∈ I satis-
fies ( a) − (d) above. We again make the wellfoundedness assumption that S has a
transitive limit (Lδ , πi) i∈ I as above. We intend to extend Lδ to a fine level Ls such
that the maps πi : Ls ( i) → Ls are fine. This requires that the “top Skolem functions”
converge nicely.

The fine hierarchy shows a certain discontinuity at limit locations of the form
(Lγ+1 , ϕ0 , 0

�

) , which has also come up in the continuity properties of the hierarchy.
In terms of the formation of hulls, L (Lγ+1 , ϕ0 , 0+ ) can roughly be identified with the
constructible level Lγ+1 and also with

Lγ
+ : = (Lγ , ∈ , < , < L , I , N , S , Sϕ0

Lγ , Sϕ1

Lγ , � )

where all the top Skolem functions are admitted. Unfortunately Lγ
+ is not an

element of the fine hierarchy although it arises naturally as a limit of “smaller”
structures in the fine hierarchy.

So let s be the <̃ -least upper bound of

{πi( t)
�
i ∈ I , t<̃ s ( i) } .

( δ , ϕ0 , 0
�

) ≤̃ s ≤̃ ( δ + 1 , ϕ0 , 0
�

) , i . e. s is a δ-location, or we get into the situation of
the remark. Let us include the top Skolem functions in the direct limit forma-
tion. Then the fine system S∗ has a limit

M∗ = (Lδ , S0
′ , S1
′ , � ) ,

where S0
′ , S1

′ , � are the direct images of the top functions Sϕn
Lδ ( i ) of the system.

There will be the case distinction
( 1 0) if s = ( δ , ϕn , x

�

) <̃ ( δ + 1 , ϕ i , 0
�

) , then S0
′ , S1

′ , � = Sϕ0

Lδ , � , SϕnLδ � x
�

, ∅ , ∅ , � , and if
s = ( δ + 1 , ϕ 0 , 0

�

) , then S0
′ , S1
′ , � = Sϕ0

Lδ , Sϕ1

Lδ , � .
Before we prove this, let us note as an immediate corollary

( 1 1 ) If s <̃ ( δ + 1 , ϕ0 , 0
�

) , then M = Ls . If s = ( δ + 1 , ϕ 0 , 0
�

) , then M = Lδ
+ .

In both cases, the direct limit is basically in the fine hierarchy. This is the
result required for the Jensen covering theorem. It corresponds to the upward
extension of embeddings theorem in standard finestructure.

Proof of ( 1 0) . Let t = ( δ , ϕm , y
�

) be a δ-location.
( a) Assume t≥̃ s . Then Sm′ ( y

�

) is undefined.
Proof. The location t is not an image of the form πi( b̄ ) , t̄ <̃ s ( i) . So t does
not appear as an argument in the definition of Sm

′ in the direct limit. Hence
Sm
′ ( y

�

) is undefined. qed ( a)
( b) Assume t<̃ s . Then Sm′ ( y

�

) = Sϕm
Lδ ( y

�

) .
Proof. Let t = πi0( t̄ ) , t̄ <̃ s ( i0) . Then y

�

= πi0( ȳ
�

) for some ȳ
�

∈ Ls( i0 ) . The sub-
system

(Ls ( i) , πij) i0≤ i≤ j∈ I
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of S∗ “above” i0 is Skolem -closed for all proper subformulae of ϕm. Therefore the
subsystem (Ls ( i) , πij) i0≤ i≤ j∈ I is ϕm-elementary.

Assume that z̄ = Sϕm
Lδ ( i0 ) ( ȳ

�

) and Lδ( i0 ) � ϕm( z̄ , ȳ
�

) . By the ϕm-elementarity of
πi0 : Lδ( i0 ) → Lδ we get Lδ � ϕm(πi0( z̄ ) , y

�

) . By the construction of Sm′ , πi0( z̄ ) =

Sm
′ ( y

�

) . So Sm′ ( y
�

) ≥ L SϕmLδ ( y
�

) .
Assume for a contradiction that Sm′ ( y

�

) > L Sϕm
Lδ ( y

�

) . Set w = Sϕm
Lδ ( y

�

) . Let w =

πi1 (w
′) , where i1 ∈ I and i0 ≤ i1 . Take y ′

�

such that y
�

= πi1 ( y
′

�

) and let z ′ = πi0 i1 ( z̄ ) .
By the algebraic preservation properties of S∗

z ′ = πi0 i1 ( z̄ ) = πi0 i1 (Sϕm
Lδ ( i0 ) ( ȳ

�

) ) = Sϕm
Lδ ( i1 ) (πi0 i1 ( ȳ

�

) ) = Sϕm
Lδ ( i1 ) ( y ′

�

) .

Moreover

Sm
′ ( y

�

) = πi0( z̄ ) = πi1 ( z
′) < L w = πi1 (w

′)

which implies z ′ > w ′. By the minimality of z ′ = Sϕm
Lδ ( i1 ) ( y ′

�

) we have

Lδ( i1 ) � ¬ϕm(w ′ , y ′
�

) .

By the ϕm-elementarity of πi1 : Lδ � ¬ϕm(w , y
�

) and Lδ � ¬ϕm(Sϕm
Lδ ( y

�

) , y
�

) , which
contradicts the properties of Sϕm

Lδ . qed ( b) qed ( 1 0)
We summarize the above construction as follows.

Theorem 21 . 2 . Let S∗ = (Ls ( i) , πij) i≤ j∈ I be a fine directed system which has a
wellfounded direct limit. Then the transitive limit ofS∗ is of the form

Ls , (πi) i∈ I or Lδ
+ , (πi) i∈ I

where each πi : Ls ( i)→ Ls or πi : Ls ( i)→ Lδ
+ , resp. , is a fine embedding.

21 . 1 Mapping fine directed systems

Let S∗ = (Ls ( i) , πij) i≤ j∈ I and T∗ = (L t( i) , πij
′ ) i≤ j∈ I be fine directed systems, where

S∗ is embedded into T∗ by fine connecting maps (σi) i∈ I . This means that
( a) σi : LS( i)→ L t( i) is a fine map for all i ∈ I ;
( b) the diagram

L t( i) �
πi j
′

L t( j)
↑σi ↑σj
Ls ( i) �

πi j
Ls( j)

commutes for i ≤ j ∈ I .
The direct limit of S∗ can canonically be embedded into the direct limit of T∗ :

Let Ls , (πi) i∈ I and L t , (πi
′) i∈ I be the direct limits of S∗ and T∗ resp. , then define

σ∗ : Ls→ L t by σ∗(πi( x̄ ) ) = πi
′(σi( x̄ ) ) . σ∗ is well-defined and fine.

In the covering situation, such an embedding of fine systems occurs as follows:
Let σ : M → N be an elementary embedding of transitive models of a sufficiently
large fragment of Zermelo-Fraenkel set theory ( specify! ) .
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Definition 21 . 3. Let S∗ = (Ls ( i) , πij) i≤ j∈ I be a fine directed system. Then S∗ is in
M iff

∀i , j ∈ I , i ≤ j : Ls ( i) ∈ M ∧ πij ∈ M.

So assume S∗ is in M . Define σ(S∗ ) = (L t( i) , πij
′ ) i≤ j∈ I by L t( i) = σ(Ls ( i) ) and πij

′ =

σ(πij) . σ(S∗) is fine directed, since σ is elementary. S∗ is embedded into σ(S∗) by
the system (σi) i∈ I where σi : Ls ( i)→ L t( i) is defined as

σi = σ � Ls ( i) .

Each σi is fine, since σ is elementary. The commutativity ( b) as above is also sat-
isfied: let i ≤ j ∈ I and x ∈ Ls ( i) . Then by the elementarity of σ

πij
′ ◦ σi(x) = πij

′ (σ(x) ) = (σ(πij) ) (σ(x ) )

= σ(πij(x) ) = σj ◦ πij(x) .

We can thus define an embedding

σ∗ : lim S∗→ lim σ(S∗)
as above.

21 . 2 The upward mapping situation
We shall now consider a specific situation for the proof of the covering theorem.
( 1 ) σ : L τ̄ → Lτ is elementary, where L τ̄ , Lτ are models of a sufficiently large frag-
ment of ZFC;
( 2) s is a limit location and L τ̄ is a base for Ls , i . e. , ∀r<̃ s ∀p ⊆ Lr finite ∀ν < τ̄ :
the transitive collapse of Lr{ν ∪ p} is an element of L τ̄ .

Then define a fine directed system with limit Ls as follows: define the directed
partial order ( I , ≤ ) by

I : = { ( r , ν , p)
�
r<̃ s , ν < τ̄ , p⊆ Lr finite}

and ( r , ν , p) ≤ ( r ′, ν ′, p′) iff

r≤̃ r ′, ν ≤ ν ′, p⊆ p′ and if r = ( γ, − , − ) , r ′ = ( γ ′, − , − ) and γ < γ ′ then γ ∈ p′ .
For ( r , ν , p) ∈ I let Mrνp: = Lr{ν ∪ p} and πrνp: Ls ( i) � Mrνp be the ( inverse of the)
transitivisation of Mrνp .

By assumption ( 2)
( 3) Ls ( r , ν , p) ∈ L τ̄ .

Let i = ( r , ν , p) ≤ ( r ′, ν ′, p′) = j . Then

Mr , ν , p= Lr{ν ∪ p} ⊆ Lr′ {ν ′ ∪ p′} = Mr ′ , ν ′ , p′

since by definition of the directed order ( I , ≤ ) the r-closure can be reconstructed
in the r ′-closure. This yields the following diagram

Mrνp ⊆ Mr ′ν ′p′

↑πi ↑πj
Ls ( i) �

πi j
Ls ( j)
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with a fine map: πij : Ls( i)→ Ls( j) defined by πij = πj
− 1 ◦ πi .

By construction Ls ( i) = Ls ( i){ν ∪ p̄ } where p̄ = πi
− 1 ( p) . Since the fine map πi j

preserves fine hulls,
Ls ( i) = Ls ( i){ν ∪ p̄ } ' L s̃ {ν ∪ p̃} ⊆ Ls( j)

where p̃ = πij( p̄ ) and s̃ = lub{πij( t)
�
t<̃ s ( i) } ≤̃ s . Therefore range(πij) is definable

from Ls ( j) and some more parameters in the model L τ̄ . So
( 4) πij ∈ L τ̄ .

Hence
( 5) S∗ : = (Ls ( i) , πij) i≤ j∈ I is a fine directed system which is in L τ̄ ;
( 6) lim S∗ = Ls , (πi) i∈ I .
Proof. For i ≤ j ∈ I , by the definition of πij : πi = πj ◦ πij . Also

Ls =
⋃

i∈ I
Mi =

⋃

i∈ I
range πi ,

and so Ls is the constructible direct limit of S∗ . S ince
s = sup {r | ∃ i ∈ I r ∈ Mi} ,

Ls is also the fine direct limit of S∗ . qed ( 6)
As S∗ is in L τ̄ can lift S∗ via σ to σ(S∗) . We make again a

Wellfoundedness-assumption: σ(S∗ ) has a wellfounded direct limit.
Let L t be that limit. As before we have a fine connecting map σ∗ : Ls→ L t .

( 7) σ∗ ⊇ σ .
Proof. Let σ(S∗) = (L t( i) , πij

′ ) i≤ j∈ I with transitive direct limit L t , (πi′) i∈ I .
Claim . Let i = ( r , ν , p) ∈ I , y ∈ Lσ(ν) . Then πi′( y) = y .
Proof. By induction on y . Assume the statement holds for all x ∈ y , for all j ∈
I . Let i = ( r , ν , p) ∈ I and y ∈ Lσ(ν) . We want to show πi

′( y) = y .
Let z ∈ πi′( y) . Then z ∈ L t , z = πj

′ ( z̄ ) for some j ∈ I , j ≥ i , z̄ ∈ L t( j) . By the def-
inition of the collapsing maps: πij � Lν = id , and by the elementarity of σ : πi j′ �
Lσ(ν) = id . Hence πi′( y) = πj

′ (πij
′ ( y) ) = πj

′ ( y) and πj′ ( z̄ ) = z ∈ πi′( y) = πj
′ ( y) . Since πj′

is ∈ -preserving: z̄ ∈ y . By inductive assumption , πj′ ( z̄ ) = z̄ = z and so z = z̄ ∈ y .
Conversely, let z ∈ y . Then πi

′( z ) ∈ πi′( y) , and by induction z = πi
′( z ) ∈ πi′( y) .

qed ( Claim) .
Now let x ∈ L τ̄ . Let i = ( r , ν , p) ∈ I such that x ∈ Lν . Then σ(x) ∈ Lσ(ν) and by

the claim: πi′(σ(x) ) = σ(x) . Hence σ∗(x ) = σ∗ (πi(x) ) = πi
′(σ(x ) ) = σ(x) . qed ( 7) .

Preservation of Wellfoundedness

We need a “strong” map σ : L τ̄ → Lτ such that the above construction leads to
a wellfounded lifted structure L t where L τ̄ is a base for Ls . We also want to
include a given X ⊆ τ into range σ , so that X is “covered” by range(σ) , i . e. , the
cardinality of range(σ) is not much greater than card(X ) .

Theorem 21 . 4. Let Lτ be a model of admissib le set theory. t Let X ⊆ τ be cofinal
in τ, and µ : = card(X ) regular uncountable . Then there is an elementary map σ :
L τ̄→ Lτ such that

a ) card( τ̄ ) = µ , and X ⊆ range(σ) ;
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b ) If s is a limit location and L τ̄ is a base for Ls , and if S∗ is the directed
system converging to Ls considered above, then σ(S∗ ) has a transitive
direct limit.

Proof. We construct a continuous tower (Yα
�
α < µ) of elementary substructures

of Lτ whose union will be range(σ) .
Let X =

⋃
α< µ

Xα where card(Xα) < µ for all α < µ . Fix a double enumeration
( zαβ

�
α < β < µ) so that for fixed α < µ , the sequence ( zαβ

�
α < β < µ) enumerates

Lµ .
By recursion on α < µ define sequences ( yα

�
α < µ) , (τα

�
α < µ) , (σα

�
α < µ) ,

( in
αβ | n < ω) , (xn

αβ | n < ω) such that:
( 1 ) Yα ≺ Lτ, card(Yα) < µ ;
( 2) α ≤ β→ Yα ⊆ Yβ ;
( 3) Lim( β) → Yβ =

⋃
α< β

Yα ;
( 4) Xα ⊆ Yα+1 ;
( 5) σα : Lτα ' Yα ≺ Lτ ;
( 6) If zαβ = Ls for some limit location s such that Lτ is a base for Ls , and if
S∗ = (Ls ( i) , πij) i≤ j∈ I is the direct limit system in Lτα converging towards Ls , and if
σα(S∗ ) = (Lσα ( s ( i) ) , σα(πij) ) i≤ j∈ I is illfounded. Then this is witnessed by

i0
αβ ≤ i1αβ ≤ � ∈ I

and

x0
αβ , x 1

αβ , � ∈ Lτ
such that in the direct limit L t , (πi′) i∈ I of σα(S∗ ) :

πi0
′ (x0

αβ) 3 ′ πi1′ (x 1
αβ) 3 ′ πi2′ (x2

αβ) �
This means that for all n :

σα(πinin+1 ) (xn
αβ) 3 xn+1

αβ .

We then require that {xnαβ
�
n < ω } ⊆ Yβ+1 .

Obviously the recursion is possible. Let

Y =
⋃

α< µ

Yα ≺ Lτ and σ : L τ̄ ' Y ≺ Lτ .

( a) is satisfied and we have to check ( b) .
Let s be a limit location and L τ̄ a base for Ls . Let S∗ = (Ls ( i) , πij) i≤ j∈ I be the

fine direct limit converging toward Ls as considered above and assume that
σ(S∗ ) = (Lσ( s( i) ) , σ(πij) ) i≤ j∈ I is illfounded. We lead this to a contradiction.

For α < µ let

σ̄α : Lτα→ L τ̄ , σ̄α : = σ− 1 ◦ σα , Ȳα : = range( σ̄α) = σ− 1 ′′Yα .

( Ȳα
�
α < µ) is a continous tower of elementary substructures of L τ̄ . Let us witness

the illfoundedness of σ(S∗) by:

σ(πinin+ 1
) (xn) 3 xn+1 , i0 ≤ i1 ≤ � ∈ I , x0 , x 1 , � ∈ Lτ .
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A Löwenheim-Skolem construction yields the following situation: there is

Z ≺ Ls , card(Z ) < µ, { in
�
n < ω } ⊆ Z , Z ∩ L τ̄ = Ȳα

for some α < µ . Let

σ̄ : L s̄ ' Z ≺ Ls .
Then L s̄ ⊇ Lτα and σ̄ ⊆ σ̄α . If the Löwenheim-Skolem argument is done suffi-
ciently well, s̄ will be a limit location and Lτα is a base for L s̄ . Let S̄ (L s̄ ( i) ,
π̄ij) i≤ j∈ Ī be the fine directed system in Lτα with limit L s̄ .
( 1 ) σα( S̄ ) has an illfounded direct limit.
Proof. Let σ̄ ( ī n) = in for n < ω . Then

σ̄α( π̄ ī n ī n+1
) = σ̄ ( π̄ ī n ī n+1

) = πin , in+1 .

For all n < ω , the assumption σ(πin , in+1 ) (xn) 3 xn+1 implies that

σ( σ̄α( π̄in in+1 ) ) (xn) 3 xn+1 and σα( π̄inin+ 1 ) (xn) 3 xn+1 .

Hence σα( S̄ ) has an illfounded direct limit. qed ( 1 )
By the definition of the sequence (xn

αβ) n<ω we will have {xnαβ | n < ω } ⊆ Y =
range(σ) such that

σα( π̄ ī n ī n+1
) (xn

αβ) 3 xn+1
αβ .

Let yn: = σ− 1 (xn
αβ) , for n < ω . Then, applying σ− 1

σ̄α( π̄inin+ 1
) ( yn) 3 yn+1

and by the calculation above

πin , in+1
( yn) 3 yn+1

This means that Ls , the direct limit of S is illfounded, which is a contradiction.
Thus σ : L τ̄→ Lτ preserves wellfoundedness. �
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Chapter 22
The Jensen covering theorem
The most important theorem in set theory of the 1 970’ s is arguably the Jensen
covering theorem, which originally and still often is called the covering lemma . It
expresses a strong dichotomy: either there are large cardinals in inner models, or
the constructible universe L is close to the set theoretical universe V .

Theorem 22. 1 . Assume ¬0 ] . Then

∀X ⊆ Ord , X ∈ V ∃Y ∈ L (X ⊆ Y ∧ card(Y) 6 card(X ) + ℵ 1 ) .

If X and Y are in the theorem we say that Y covers X . The covering theorem
has many corollaries.

Proof. Assume the conclusion of the theorem fails. Then let τ ∈ Ord be minimal
such there is a counterexample X to the theorem with X ⊆ τ . Fix a counterex-
ample X . We state some observations about τ :
( 1 ) supX = τ by the minimality of τ .
( 2) τ > ℵ 2 , since if τ < ℵ 2 then τ covers X .
( 3) τ > ℵ 2 , since if τ = ℵ 2 then X is cofinal in the regular cardinal τ and
card(X ) = ℵ 2 . But then τ = ℵ 2 covers X .
( 4) There is no Z ∈ L such that Z ⊇ X and cardL(Z ) < τ .
Proof. If not, take Z ∈ L such that Z ⊇ X and τ̄ = cardL(Z ) < τ . Let f ∈ L such
that f : τ̄ ↔ Z . Let X̄ = f− 1 [X ] ⊆ τ̄ < τ . By the minimality of τ , X̄ is not a coun-
terexample to the covering theorem. Take Ȳ ∈ L , Ȳ ⊆ τ̄ such that

X̄ ⊆ Ȳ ∧ card( Ȳ ) 6 card( X̄ ) + ℵ 1 .

Let Y = f [ Ȳ ] . Then Y ∈ L and

X = f [ X̄ ] ⊆ f [ Ȳ ] = Y ∧ card(Y ) = card( Ȳ ) 6 card( X̄ ) + ℵ 1 = card(X ) + ℵ 1 .

But then X is not a counterexample to covering. Contradiction. qed ( 4)
By possibly adding a set of size ℵ 1 to X we may assume that

( 5) card(X ) is uncountable.
By the lemma on preservation of wellfoundedness there is a strong elementary

map σ : L τ̄→ Lτ .
( 6) L τ̄ is not a base for L .
Proof. Assume L τ̄ is a base for L . The previous construction yielded an L τ̄ -
system S = (Ls ( i) , πi j) converging to L . S ince L τ̄ is a base for L : S is in L τ̄ . We
can thus form the image σ(S) . By the preservation of wellfoundedness assump-
tion, σ(S) has a wellfounded direct limit which must be L , and on obtains σ∗ : L→
L , σ∗ ⊇ σ . Hence σ∗ is a non-trivial embedding of L into L , hence 0 ] exists, con-
tradicting the assumption of the Theorem. qed ( 6)
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By ( 6) , take s <̃ -minimal, so that for some ν < τ̄ , p0 ⊆ Ls : the transitivisation
of Ls {ν ∪ p0} is not an element of L τ̄ .
( 7) s is a limit location.
Proof. Assume for a contradiction that s = r+ . Then by the Finiteness Prop-
erty Ls {ν ∪ p} = Lr{ν ∪ p0} or Ls {ν ∪ p0} = Lr{ν ∪ p0 ∪ {z } } for some z = S( r) .
This contradicts the minimality of s . qed ( 7)
( 8) One may take p⊆ Ls , p finite so that Ls = Ls {ν ∪ p} .
Proof. By condensation, let π : Ls {ν ∪ p0} ' L s̄ = L s̄ {ν ∪ p} with π( p0) = p. By
the choice of s : L s̄ ∈L τ̄ . s̄ satisfies the defining property of s . By the minimality
of s : s̄ = s . qed ( 8)

By the minimality of s , the structure L τ̄ is a base for Ls . Let S be the limit
system for Ls over L τ̄ . S ince σ is a strong map, σ(S) has a transitive limit L t,
with connecting map σ∗ : Ls→ L t , σ

∗ ⊇ σ. Then

X ⊆ range(σ) ∩ τ = σ ′′τ̄ = σ∗ ′′τ̄

= {σ∗( ξ) �
ξ < τ̄ }

⊆ range(σ∗) = σ∗ ′′(Ls {ν ∪ p} )
= L t{ (σ∗ ′′ν ) ∪ σ∗( p) }
⊆ L t{σ∗ ( ν ) ∪ σ∗ ( p) } ∈ L

The L-cardinality of the set Z : = L t{σ∗( ν ) ∪ σ∗( p) } is < τ since σ∗( ν ) < τ . This
contradicts ( 4) . �
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