Mengenlehre II, SS 2007

Übungsaufgaben I

Exercise 1. Assume that a class $A \neq \emptyset$ is closed with respect to definite terms, i.e., whenever $t(\vec{v})$ is a definite term then $\forall \vec{a} \in A t(\vec{a}) \in A$. Then

- a) Show that A is transitive.
- b) Provide a (long) list of ZF-axioms which hold in A.
- c) Show that every definite formula is absolute with respect to A.

Exercise 2. Is there a uniform way to define (in ZF) for a given class A the *definite closure* of A, i.e., the smallest class containing A which is closed with respect to definite terms.

Exercise 3. Assume that $(W_{\alpha} | \alpha \in \text{Ord})$ is a continuous hierarchy. Prove

$$\forall a \subseteq \bigcup_{\alpha \in \operatorname{Ord}} W_{\alpha} \exists \theta \ a \subseteq W_{\theta}.$$

Exercise 4. a) Let $\varphi_0, ..., \varphi_{n-1}$ be a finite collection of ZF-axioms. Use the reflection theorem to prove that there is θ such that

$$\varphi_0^{V_\theta}, \dots, \varphi_{n-1}^{V_\theta}$$

b) Use this to show that the theory ZF cannot be finitely axiomatized if it is consistent.

Übungsaufgaben II

Exercise 5. Prove that every L_{α} is closed under the operations

- a) $x, y \mapsto x \cup y, x \cap y, x \setminus y$
- b) $x \mapsto \bigcup x$
- c) $x \mapsto TC(x)$, where TC(x) is the *transitive hull* of x.

Exercise 6. Prove that

- a) $<_n$ is a wellorder of V_n ;
- b) $<_{n+1}$ end-extends $<_n$;
- c) $<_{\omega}$ is a wellorder of V_{ω} .

Exercise 7. Prove

- a) If r is a strict linear ordering then r^{lex} is a strict linear ordering on ${}^{<\text{Ord}}A$.
- b) If (A, r) is a wellorder and $n < \omega$ then r^{lex} is a wellorder of ${}^{n}A$.
- c) If A has more than one element than r^{lex} does not wellorder ${}^{\omega}A$.

Exercise 8.

- a) $<_{\alpha}$ and $\tilde{<}_{\alpha}$ are well-defined
- b) $\tilde{<}_{\alpha}$ is a wellordering of \tilde{L}_{α}
- c) $<_{\alpha}$ is a wellordering of L_{α}
- d) $\beta < \alpha$ implies that $\tilde{<}_{\beta}$ is an initial segment of $\tilde{<}_{\alpha}$
- e) $\beta < \alpha$ implies that $<_{\beta}$ is an initial segment of $<_{\alpha}$

Übungsaufgaben III

Exercise 9. a) Show that every countable ordinal can be embedded order-preservingly into the rational numbers $(\mathbb{Q}, <)$. b) Show that \aleph_1 cannot be embedded order-preservingly into the real numbers $(\mathbb{R}, <)$.

Exercise 10. H_{ω_1} is the set of all *hereditarily countable* sets. Show that H_{ω_1} is a ZF⁻-model.

Exercise 11. Let $\varphi = \exists \vec{x} \ \psi(\vec{x})$ be a statement where $\psi(\vec{x})$ is a definite formula. Assume that φ holds in V. Show that φ holds in H_{ω_1} . [Hint: Transitivize a countable substructure of (V, \in) .]

Exercise 12. Let S and P be the ordinal successor and predecessor function, resp.: $S(\xi) = \xi + 1$ and

$$P(\xi) = \begin{cases} \zeta, \text{ if } \xi = \zeta + 1\\ \xi, \text{ else} \end{cases}$$

Let $\alpha \in \text{Ord}$ and let $X \subseteq \alpha$ be closed with respect to the (partial) functions S and P. Show that there is a unique $\beta \leq \alpha$ such that

$$(\beta, <, S \cap \beta^3, P) \cong (X, <, S \cap \alpha^3, P).$$

Übungsaufgaben IV

Exercise 13. Show that every countable strict linear ordering can be order-embedded into $(\mathbb{Q}, <_{\mathbb{Q}})$.

Exercise 14. Carry out the construction of an Aronszajn tree using the standard rational numbers $(\mathbb{Q}, <)$.

Exercise 15. From an Aronszajn tree construct an Aronszajn line, i.e., an uncountable strict linear order $(A, <_A)$ such that the following holds:

- $(\omega_1, <)$ cannot be order-embedded into $(A, <_A)$;
- $(\omega_1, >)$ cannot be order-embedded into $(A, <_A)$;
- $\quad (X,<_{\mathbb{R}}) \text{ cannot be order-embedded into } (A,<_A) \text{ for every uncountable } X \subseteq \mathbb{R} \,.$

Exercise 16. Assume V = L. Show that for any infinite cardinal κ

 $H_{\kappa} = L_{\kappa}$

where $H_{\kappa} = \{x | \operatorname{card}(\operatorname{TC}(x)) < \kappa\}.$

Übungsaufgaben V

Exercise 17. Let $\theta > \omega_1$ be a regular cardinal. Then

- a) If $\mu < \theta$ is regular then $\{\alpha \in \theta | \operatorname{cof}(\alpha) = \mu\}$ is stationary in θ .
- b) If $W \subseteq \theta$ is stationary and $f: W \to \eta$ for some $\eta < \theta$ then there is some $\nu < \eta$ such that $\{\alpha \in W | f(\alpha) = \nu\}$ is stationary in θ .

Exercise 18. Show that the principle Global Square implies \Box_{κ} for every infinite cardinal κ .

Exercise 19. Show that the principle \diamond is equivalent to: there exists a sequence $(R_{\alpha}|\alpha < \omega_1)$ such that $\forall R \subseteq \omega_1 \exists \alpha < \omega_1 \ (\alpha \neq 0 \land R \cap \alpha = R_{\alpha})$.

Exercise 20. Consider forcing with the partial order

$$P = \{ p | \beta < \omega_1 (p; \beta \to \mathcal{P}(\omega_1) \land \forall \alpha < \beta p(\alpha) \subseteq \alpha) \},\$$

partially ordered by reverse inclusion. Show that in a generic extension by (P, \supseteq) the principle \Diamond holds. [Hint: use exercise 19]