
Definite Notions
We shall study transitive ∈ -structures (M, ∈ ) where M is a non-empty transitive set or class.
We are mainly interested in situations where (M, ∈ ) is a model of ZF− , i . e. , ϕM holds for every
axiom in ZF− . We want to show that many properties are abso lute between (M, ∈ ) and the set-
theoretical universe V .

Definition 1 . Let ψ ( v
�

) be an ∈ -formula and let t( v
�

) be a term, both in the free variab les v
�

.
Then

a ) ψ is definite iff for every transitive ZF− -model (M, ∈ )

∀x� ∈ M ( ψM (x
�

) ↔ ψ (x
�

) ) .

b ) t is definite iff for every transitive ZF− -model (M, ∈ )

∀x� ∈ M tM (x
�

) ∈ M and ∀x� ∈ M tM (x
�

) = t(x
�

) .

Recall that if t is of the form t = {u | ϕ } then tM = {u ∈ M | ϕM } ; for t = x a variable term, set
xM = x . We shall prove that a majority of set-theoretical notions are definite. We shall shall
work inductively: some basic notions are definite and many set-theoretical operations lead from
definite notions to definite notions.

Lemma 2. Let ϕ ( x , y
�

) be a formula and t( z
�

) be a term and M be a class. Assume that ∀z� ∈
Mt( z

�

) ∈ M. Then

∀y� , z� ∈ M ( ϕ ( t( z
�

) , y
�

) )M↔ ϕM ( tM ( z
�

) , y
�

) ) .

Proof. If t = t( z
�

) is of the form t = z then there is nothing to show. Assume otherwise that t is
of the form t = {u | ψ (u, z

�

) } . We work by induction on the complexity of ϕ . Assume that ϕ ≡
x = y and y , z

� ∈ M . Then

( t( z
�

) = y)M ↔ ( {u | ψ (u, z
�

) } = y)M

↔ (∀u ( ψ (u, z
�

) ↔ u ∈ y) )M

↔ ∀u ∈ M ( ψM (u, z
�

) ↔ u ∈ y)

↔ {u ∈ M | ψM (u, z
�

) } = y

↔ tM ( z
�

) = y

↔ ϕM ( tM ( z
�

) , y)

Assume that ϕ ≡ y ∈ x and y , z
� ∈ M . Then

( y ∈ t( z� ) )M ↔ ψM (
y

u
, z

�

)

↔ y ∈ {u ∈ M | ψM (u, z
�

) }
↔ y ∈ tM ( z

�

)

↔ ϕM ( tM ( z
�

) , y)

Assume that ϕ ≡ x ∈ y and y , z
� ∈ M . Then

( t( z
�

) ∈ y)M ↔ ( ∃u (u = t( z
�

) ∧ u ∈ y)M

↔ ∃u ∈ M ( (u = t( z
�

) )M ∧ u ∈ y)

↔ ∃u ∈ M (u = tM ( z
�

) ∧ u ∈ y) , by the first case,
↔ ∃u (u = tM ( z

�

) ∧ u ∈ y) , since M is closed w. r. t . t ,
↔ tM ( z

�

) ∈ y
↔ ϕM ( tM ( z

�

) , y)
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The induction steps are obvious. �

Theorem 3.

a ) The formulas x = y and x ∈ y are definite .

b ) If the formulas ϕ and ψ are definite then so are ¬ϕ and ϕ ∧ ψ .

c ) Let the formula ϕ (x , y
�

) and the term t( z
�

) be definite . Then so are ϕ ( t( z
�

) , y
�

) and ∀x ∈
t( z

�

) ϕ (x , y
�

) .

d ) The formulas Trans(x ) , Ord( x) , Succ(x ) , and Lim(x ) are definite .

e ) Let the terms t(x , y
�

) and r( z
�

) be definite . Then so is t( r( z
�

) , y
�

) .

f) The terms x , ∅ , {x , y } , ⋃ x and ω are definite .

g ) Let the formula ϕ (x , y
�

) be definite . Then so is the term {x ∈ z | ϕ ( x , y
�

) } .

h ) Let the term t( x , y
�

) be definite . Then so is the term { t( x , y� ) | x ∈ z } .

Proof. Let M be a transitive ZF− -model.
a) is obvious since ( x = y)M = ( x = y) and ( x ∈ y)M = (x ∈ y) .
b) Assume that ϕ and ψ are definite and that (M, ∈ ) is a transitive ZF− -model. Then ∀x� ∈
M ( ϕM (x

�

) ↔ ϕ (x
�

) ) and ∀x� ∈ M ( ψM ( x
�

) ↔ ψ ( x
�

) ) . Thus

∀x� ∈ M ( ( ϕ ∧ ψ )M (x
�

) ↔ ( ϕM ( x
�

) ∧ ψM ( x
�

) ) ↔ ( ϕ ( x
�

) ∧ ψ (x
�

) ) ↔ ( ϕ ∧ ψ ) (x
�

) ) .

A similar argument works for ¬ϕ .
c) Let (M, ∈ ) be a transitive ZF− -model. Let y

�

, z
� ∈ M . t( z

�

) ∈ M since t is definite. Then

( ϕ ( t( z
�

) , y
�

) )M ↔ ϕM ( tM ( z
�

) , y
�

) , by the Lemma,
↔ ϕM ( t( z

�

) , y
�

) , since t is definite,
↔ ϕ ( t( z

�

) , y
�

) , since ϕ is definite.

Also

(∀x ∈ t( z� ) ϕ (x , y
�

) )M ↔ (∀x ( x ∈ t( z� ) → ϕ ( x , y
�

) ) )M

↔ ∀x ∈ M ( ( x ∈ t( z� ) )M→ ϕM (x , y
�

) )

↔ ∀x ∈ M (x ∈ tM ( z
�

) → ϕM (x , y
�

) )

↔ ∀x ∈ M (x ∈ t( z� ) → ϕ (x , y
�

) ) , since t and ϕ are definite,
↔ ∀x (x ∈ t( z� ) → ϕ (x , y

�

) ) , since t( z
�

) ⊆ M,

↔ ∀x ∈ t( z� ) ϕ (x , y
�

) ) .

d) follows immediately from c) .

e) is obvious.

f) A variable term x is trivially definite, since xM = x .

Consider the term ∅ = {u | u �
u } . S ince M is non-empty and transitive, ∅ ∈ M . Also

∅M = {u ∈ M | u �
u } = ∅ .
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Consider the term {x , y } . For x , y ∈ M :

{x , y }M = {u ∈ M | u = x ∨ u = y } = {u | u = x ∨ u = y } = {x , y } .

The pairing axiom in M states that

(∀x , y∃z z = {x , y } )M .

This implies

∀x , y ∈ M∃z ∈ Mz = {x , y }M = {x , y }

and

∀x , y ∈ M {x , y } ∈ M.

Consider the term
⋃

x . For x ∈ M :

(
⋃

x)M = {u ∈ M | ( ∃v ∈ x u ∈ v )M } = {u ∈ M | ∃v ∈ x ∩Mu ∈ v } = {u | ∃v ∈ x u ∈ v } =
⋃

x .

The union axiom in M states that

(∀x∃z z =
⋃

x )M .

This implies

∀x ∈ M∃z ∈ M z = (
⋃

x)M =
⋃

x

and

∀x ∈ M
⋃

x ∈ M.

Consider the term ω =
⋂ {x | x is inductive} . S ince M satisfies the axiom of infinity,

∃x ∈ M ( x = ω )M .

Take x0 ∈ M such that ( x0 = ω )M . Then (Lim( x0 ) )
M , (∀y ∈ x0 ¬Lim( y) )M . By definiteness,

Lim(x0 ) , ∀y ∈ x0 ¬Lim( y) , i . e. , x0 is equal to the smallest limit ordinal ω . Hence ω ∈ M . The
formula “x is inductive” has the form

∅ ∈ x ∧ ∀y ∈ x
⋃
{ y , { y } } ∈ x

and is definite by previous considerations. Now

ωM = (
⋂
{x | x is inductive} )M

= ( { y | ∀x (x is inductive→ y ∈ x) } )M
= { y ∈ M | ∀x ∈ M (x is inductive→ y ∈ x ) } , since “x is inductive” is definite,
=
⋂
{x ∈ M | x is inductive}

=
⋂
{x ∩ ω | x ∈ M is inductive} , since ω ∈ M,

=
⋂
{ω } , since ω is the smallest inductive set,

= ω .

g) Let y
�

, z ∈ M . By the separation schema in M ,

( ∃w w = {x ∈ z | ϕ (x , y
�

) } )M ,

3



i. e. , {x ∈ z | ϕ ( x , y
�

) }M ∈ M . Moreover by the definiteness of ϕ

{x ∈ z | ϕ ( x , y
�

) }M = {x ∈ M | x ∈ y ∧ ϕM ( x , y
�

) } = {x | x ∈ y ∧ ϕ ( x , y
�

) } = {x ∈ z | ϕ ( x , y
�

) } .

h) Since t is definite, ∀x , y� ∈ M tM ( x , y
�

) ∈ M . This implies

∀x , y� ∈ M∃w ∈ Mw = tM ( x , y
�

)

and (∀x , y� ∃w w = t( x , y
�

) )M . Let y
�

, z ∈ M . By replacement in M ,

( ∃a a = { t(x , y� ) | x ∈ z } )M .

Hence { t(x , y� ) | x ∈ z }M ∈ M . Moreover

{ t(x , y� ) | x ∈ z }M = {w | ∃x ∈ z w = t( x , y
�

) }M
= {w ∈ M | ∃x ∈ z w = tM ( x , y

�

) }
= {w | ∃x ∈ z w = tM (x , y

�

) } , since M is closed w. r. t. tM ,
= {w | ∃x ∈ z w = t( x , y

�

) } , since t is definite,
= { t(x , y� ) | x ∈ z } .

�

We may view this theorem as a “definite” form of the ZF− -axioms: common notions and terms of
set theory and mathematics are definite, and natural operations lead to further definite terms.
Since the recursion principle is so important, we shall need a definite recursion schema:

Theorem 4. Let G(w , y
�

) be a definite term, and let F(α , y
�

) be the canonical term defined by
Ord- recursion with G:

∀α F(α , y
�

) = G(F � α , y� ) .

Then the term F(α ) is definite .

Proof. Let M be a transitive ZF− -model. �
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