Definite Notions

We shall study transitive \in -structures (M, \in) where M is a non-empty transitive set or class. We are mainly interested in situations where (M, \in) is a model of ZF⁻, i.e., φ^M holds for every axiom in ZF⁻. We want to show that many properties are *absolute* between (M, \in) and the set-theoretical universe V.

Definition 1. Let $\psi(\vec{v})$ be an \in -formula and let $t(\vec{v})$ be a term, both in the free variables \vec{v} . Then

a) ψ is definite iff for every transitive ZF⁻-model (M, \in)

$$\forall \vec{x} \in M \left(\psi^M(\vec{x}) \leftrightarrow \psi(\vec{x}) \right).$$

b) t is definite iff for every transitive ZF^{-} -model (M, \in)

$$\forall \vec{x} \in M \, t^M(\vec{x}) \in M \text{ and } \forall \vec{x} \in M \, t^M(\vec{x}) = t(\vec{x}).$$

Recall that if t is of the form $t = \{u | \varphi\}$ then $t^M = \{u \in M | \varphi^M\}$; for t = x a variable term, set $x^M = x$. We shall prove that a majority of set-theoretical notions are definite. We shall shall work inductively: some basic notions are definite and many set-theoretical operations lead from definite notions to definite notions.

Lemma 2. Let $\varphi(x, \vec{y})$ be a formula and $t(\vec{z})$ be a term and M be a class. Assume that $\forall \vec{z} \in Mt(\vec{z}) \in M$. Then

$$\forall \vec{y}, \vec{z} \in M\left(\varphi(t(\vec{z}), \vec{y})\right)^M \leftrightarrow \varphi^M(t^M(\vec{z}), \vec{y})).$$

Proof. If $t = t(\vec{z})$ is of the form t = z then there is nothing to show. Assume otherwise that t is of the form $t = \{u | \psi(u, \vec{z})\}$. We work by induction on the complexity of φ . Assume that $\varphi \equiv x = y$ and $y, \vec{z} \in M$. Then

$$\begin{split} (t(\vec{z}\,) = y)^M & \leftrightarrow \ (\{u \,|\, \psi(u, \vec{z}\,)\} = y)^M \\ & \leftrightarrow \ (\forall u \,(\psi(u, \vec{z}\,) \leftrightarrow u \in y))^M \\ & \leftrightarrow \ \forall u \in M \,(\psi^M(u, \vec{z}\,) \leftrightarrow u \in y) \\ & \leftrightarrow \ \{u \in M \,|\, \psi^M(u, \vec{z}\,)\} = y \\ & \leftrightarrow \ t^M(\vec{z}\,) = y \\ & \leftrightarrow \ \varphi^M(t^M(\vec{z}\,), y) \end{split}$$

Assume that $\varphi \equiv y \in x$ and $y, \vec{z} \in M$. Then

$$\begin{array}{rcl} (y \in t(\vec{z}\,))^M & \leftrightarrow & \psi^M(\frac{y}{u}, \vec{z}\,) \\ & \leftrightarrow & y \in \{u \in M \,|\, \psi^M(u, \vec{z}\,)\} \\ & \leftrightarrow & y \in t^M(\vec{z}\,) \\ & \leftrightarrow & \varphi^M(t^M(\vec{z}\,), y) \end{array}$$

Assume that $\varphi \equiv x \in y$ and $y, \vec{z} \in M$. Then

$$\begin{split} (t(\vec{z}\,) \in y)^M &\leftrightarrow & (\exists u\,(u = t(\vec{z}\,) \wedge u \in y)^M \\ &\leftrightarrow & \exists u \in M\,((u = t(\vec{z}\,))^M \wedge u \in y) \\ &\leftrightarrow & \exists u \in M\,(u = t^M(\vec{z}\,) \wedge u \in y), \, \text{by the first case,} \\ &\leftrightarrow & \exists u\,(u = t^M(\vec{z}\,) \wedge u \in y), \, \text{since } M \text{ is closed w.r.t. } t, \\ &\leftrightarrow & t^M(\vec{z}\,) \in y \\ &\leftrightarrow & \varphi^M(t^M(\vec{z}\,), y) \end{split}$$

The induction steps are obvious.

Theorem 3.

- a) The formulas x = y and $x \in y$ are definite.
- b) If the formulas φ and ψ are definite then so are $\neg \varphi$ and $\varphi \land \psi$.
- c) Let the formula $\varphi(x, \vec{y})$ and the term $t(\vec{z})$ be definite. Then so are $\varphi(t(\vec{z}), \vec{y})$ and $\forall x \in t(\vec{z}) \varphi(x, \vec{y})$.
- d) The formulas Trans(x), Ord(x), Succ(x), and Lim(x) are definite.
- e) Let the terms $t(x, \vec{y})$ and $r(\vec{z})$ be definite. Then so is $t(r(\vec{z}), \vec{y})$.
- f) The terms $x, \emptyset, \{x, y\}, \bigcup x$ and ω are definite.
- g) Let the formula $\varphi(x, \vec{y})$ be definite. Then so is the term $\{x \in z | \varphi(x, \vec{y})\}$.
- h) Let the term $t(x, \vec{y})$ be definite. Then so is the term $\{t(x, \vec{y}) | x \in z\}$.

Proof. Let M be a transitive ZF^{-} -model.

a) is obvious since $(x = y)^M = (x = y)$ and $(x \in y)^M = (x \in y)$.

b) Assume that φ and ψ are definite and that (M, \in) is a transitive ZF⁻-model. Then $\forall \vec{x} \in M (\varphi^M(\vec{x}) \leftrightarrow \varphi(\vec{x}))$ and $\forall \vec{x} \in M (\psi^M(\vec{x}) \leftrightarrow \psi(\vec{x}))$. Thus

$$\forall \vec{x} \in M \left((\varphi \land \psi)^M(\vec{x}) \leftrightarrow (\varphi^M(\vec{x}) \land \psi^M(\vec{x})) \leftrightarrow (\varphi(\vec{x}) \land \psi(\vec{x})) \leftrightarrow (\varphi \land \psi)(\vec{x}) \right).$$

A similar argument works for $\neg \varphi$.

c) Let (M, \in) be a transitive ZF⁻-model. Let $\vec{y}, \vec{z} \in M$. $t(\vec{z}) \in M$ since t is definite. Then

$$\begin{aligned} (\varphi(t(\vec{z}\,),\vec{y}\,))^M &\leftrightarrow & \varphi^M(t^M(\vec{z}\,),\vec{y}\,), \text{ by the Lemma,} \\ &\leftrightarrow & \varphi^M(t(\vec{z}\,),\vec{y}\,), \text{ since } t \text{ is definite,} \\ &\leftrightarrow & \varphi(t(\vec{z}\,),\vec{y}\,), \text{ since } \varphi \text{ is definite.} \end{aligned}$$

Also

$$\begin{split} (\forall x \in t(\vec{z}) \, \varphi(x, \vec{y}))^M & \leftrightarrow \quad (\forall x \, (x \in t(\vec{z}) \to \varphi(x, \vec{y})))^M \\ & \leftrightarrow \quad \forall x \in M \, ((x \in t(\vec{z}))^M \to \varphi^M(x, \vec{y})) \\ & \leftrightarrow \quad \forall x \in M \, (x \in t^M(\vec{z}) \to \varphi^M(x, \vec{y})) \\ & \leftrightarrow \quad \forall x \in M \, (x \in t(\vec{z}) \to \varphi(x, \vec{y})), \text{ since } t \text{ and } \varphi \text{ are definite,} \\ & \leftrightarrow \quad \forall x \, (x \in t(\vec{z}) \to \varphi(x, \vec{y})), \text{ since } t(\vec{z}) \subseteq M, \\ & \leftrightarrow \quad \forall x \in t(\vec{z}) \, \varphi(x, \vec{y})). \end{split}$$

d) follows immediately from c).

e) is obvious.

f) A variable term x is trivially definite, since $x^M = x$.

Consider the term $\emptyset = \{u | u \neq u\}$. Since M is non-empty and transitive, $\emptyset \in M$. Also

$$\emptyset^M = \{ u \in M \, | \, u \neq u \,\} = \emptyset.$$

Consider the term $\{x, y\}$. For $x, y \in M$:

$$\{x,y\}^M = \{u \in M \, | \, u = x \lor u = y\} = \{u \, | \, u = x \lor u = y\} = \{x,y\}$$

The pairing axiom in M states that

$$(\forall x, y \exists z \ z = \{x, y\})^M.$$

This implies

$$\forall x, y \in M \exists z \in M z = \{x, y\}^M = \{x, y\}^M$$

and

$$\forall x, y \in M \ \{x, y\} \in M.$$

Consider the term $\bigcup x$. For $x \in M$:

$$(\bigcup x)^{M} = \{u \in M \mid (\exists v \in x \ u \in v)^{M}\} = \{u \in M \mid \exists v \in x \cap M \ u \in v\} = \{u \mid \exists v \in x \ u \in v\} = \bigcup x.$$

The union axiom in M states that

$$(\forall x \exists z \ z = [\] x)^M.$$

This implies

$$\forall x \in M \exists z \in M \ z = (\bigcup x)^M = \bigcup x$$

and

$$\forall x \in M \ [\] x \in M.$$

Consider the term $\omega = \bigcap \{x | x \text{ is inductive}\}$. Since M satisfies the axiom of infinity,

$$\exists x \in M \ (x = \omega)^M.$$

Take $x_0 \in M$ such that $(x_0 = \omega)^M$. Then $(\text{Lim}(x_0))^M$, $(\forall y \in x_0 \neg \text{Lim}(y))^M$. By definiteness, $\text{Lim}(x_0), \forall y \in x_0 \neg \text{Lim}(y)$, i.e., x_0 is equal to the smallest limit ordinal ω . Hence $\omega \in M$. The formula "x is inductive" has the form

$$\emptyset \in x \land \forall y \in x \bigcup \{y, \{y\}\} \in x$$

and is definite by previous considerations. Now

$$\begin{split} \omega^{M} &= (\bigcap \{x | x \text{ is inductive}\})^{M} \\ &= (\{y | \forall x (x \text{ is inductive} \to y \in x)\})^{M} \\ &= \{y \in M | \forall x \in M (x \text{ is inductive} \to y \in x)\}, \text{ since "}x \text{ is inductive" is definite,} \\ &= \bigcap \{x \in M | x \text{ is inductive}\} \\ &= \bigcap \{x \cap \omega | x \in M \text{ is inductive}\}, \text{ since } \omega \in M, \\ &= \bigcap \{\omega\}, \text{ since } \omega \text{ is the smallest inductive set,} \\ &= \omega. \end{split}$$

g) Let $\vec{y}, z \in M$. By the separation schema in M,

$$(\exists w \ w = \{x \in z \mid \varphi(x, \vec{y})\})^M,$$

i.e., $\{x \in z \mid \varphi(x, \vec{y})\}^M \in M$. Moreover by the definiteness of φ

$$\{x\in z\,|\,\varphi(x,\vec{y}\,)\}^M=\{x\in M\,|\,x\in y\wedge\varphi^M(x,\vec{y}\,)\}=\{x\,|\,x\in y\wedge\varphi(x,\vec{y}\,)\}=\{x\in z\,|\,\varphi(x,\vec{y}\,)\}.$$

h) Since t is definite, $\forall x, \vec{y} \in M t^M(x, \vec{y}) \in M$. This implies

$$\forall x, \vec{y} \in M \exists w \in M w = t^M(x, \vec{y})$$

and $(\forall x, \vec{y} \exists w \ w = t(x, \vec{y}))^M$. Let $\vec{y}, z \in M$. By replacement in M,

$$(\exists a \ a = \{t(x, \vec{y}) | x \in z\})^M$$

Hence $\{t(x, \vec{y}) | x \in z\}^M \in M$. Moreover

$$\begin{split} \{t(x, \vec{y}) | x \in z\}^M &= \{ w | \exists x \in z \; w = t(x, \vec{y}) \}^M \\ &= \{ w \in M \, | \, \exists x \in z \; w = t^M(x, \vec{y}) \} \\ &= \{ w \, | \, \exists x \in z \; w = t^M(x, \vec{y}) \}, \text{ since } M \text{ is closed w.r.t. } t^M, \\ &= \{ w \, | \, \exists x \in z \; w = t(x, \vec{y}) \}, \text{ since } t \text{ is definite,} \\ &= \{ t(x, \vec{y}) | x \in z \}. \end{split}$$

We may view this theorem as a "definite" form of the ZF⁻-axioms: common notions and terms of set theory and mathematics are definite, and natural operations lead to further definite terms. Since the recursion principle is so important, we shall need a definite recursion schema:

Theorem 4. Let $G(w, \vec{y})$ be a definite term, and let $F(\alpha, \vec{y})$ be the canonical term defined by Ord-recursion with G:

$$\forall \alpha F(\alpha, \vec{y}) = G(F \upharpoonright \alpha, \vec{y}).$$

Then the term $F(\alpha)$ is definite.

Proof. Let M be a transitive ZF⁻-model.