Übungen zur Mengenlehre I

- 9. Zeigen Sie:
- (a) $\forall \alpha, \beta \ \alpha \cdot \beta \in On$
- (b) $\beta < \gamma \land \alpha \neq 0 \rightarrow \alpha \cdot \beta < \alpha \cdot \gamma$
- (c) $\forall \alpha, \beta, \gamma \ \alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$
- (d) Die Ordinalzahlmultiplikation ist assoziativ.
- 10. Beweisen Sie, dass jede Ordinalzahl eine eindeutige Darstellung der Form $\beta = \omega^2 \cdot \alpha + \omega \cdot m + n$ besitzt, wobei $n, m \in \omega$ und $\alpha \in On$ ist.
- 11. Zeigen Sie:
- (a) Es gilt $2^{\omega} = \omega$. D.h. ω ist ein Fixpunkt der Funktion 2^{α} .
- (b) Jede monotone und stetige Funktion $F: On \to On$ hat beliebig große Fixpunkte.
- D.h. ist $F: On \to On$ ordungserhaltend und $F(\lambda) = \sup\{F(\alpha) \mid \alpha < \lambda\}$ für alle $\lambda \in Lim$, so gibt es zu jedem $\gamma \in On$ ein $\delta > \gamma$ mit $F(\delta) = \delta$.
- 12. Induktion für fundierte Relationen:

Sei R eine fundierte Relation auf A und $\varphi(x, \overline{w})$ eine \in -Formel. Zeigen Sie, dass dann gilt:

$$\forall x \in A \ (\forall y (yRx \to \varphi(y, \overrightarrow{w})) \to \varphi(x, \overrightarrow{w})) \to \forall x \in A \ \varphi(x, \overrightarrow{w}).$$

Dabei heißt eine Relation R auf A fundiert, wenn jedes nicht leere $X \subseteq A$ ein R-minimales Element hat. Das ist ein $a \in X$, so dass es kein $x \in X$ mit xRa gibt.

Jede Aufgabe wird mit 8 Punkten bewertet.

Abgabe: am 13. 11. 06 in der Vorlesung