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1 Introduction

Mathematics models real world phenomena like space, time, number, probability, games, etc. It
proceeds by rigorous arguments from initial assumptions to conclusions. Its results are “uni-
versal”, or “logically valid”, in that they do not depend on external or implicit conditions which
may change with nature or society.

It is remarkable that mathematics is also able to model itself: Mathematical logic defines rig-
orously what mathematical statements and rigorous arguments are. The mathematical enquiry
into the mathematical method leads to deep insights into mathematics, applications to classical
field of mathematics, and to new mathematical theories. The study of mathematical language
has also influenced the study of formal and natural languages in computer science, linguistics
and philosophy.

1 . 1 A simple proof
We want to indicate that rigorous mathematical proofs can be obtained by a sequence of syn-
tact ic manipulations of mathematical statements. Let us consider a fragment of the elementary
theory of functions which expresses that the composition of two surject ive maps is surjective as
well :

Let f and g be surject ive, i . e. , for all y there is x such that y = f ( x ) , and for
all elements y there is x such that y = g( x ) .

Theorem. g ◦ f is surject ive, i . e. , for all y there is x such that y = g( f ( x ) ) .
Proof. Consider any y . Choose z such that y = g( z ) . Choose x such that z =

f ( x ) . Then y = g( f ( x ) ) . Thus there is x such that y = g( f ( x ) ) . Thus for all y
there is x such that y = g( f ( x ) ) .

Qed.

These statements and arguments are expressed in an austere and systematic language, which
can be normalized even further. Common abbreviations stand for certain figures of language:

Let ∀y∃x y = f ( x ) .
Let ∀y∃x y = g( x ) .

Theorem. ∀y∃x y = g( f ( x ) ) .
Proof. Consider y .
∃z y = g( z ) .
Let y = g( z ) .
∃x z = f ( x ) .
Let z = f ( x ) .
y = g( f ( x ) ) .
Thus ∃x y = g( f ( x ) ) .
Thus ∃x y = g( f ( x ) ) .
Thus ∀y∃x y = g( f ( x ) ) .
Qed.

The lines in this text can be considered as formal sequences of symbols. Certain sequences of
symbols are acceptable as mathematical formulas. There are logical rules with allow the transfer
from certain formulas to other ones. These rules have a purely formal character and they can be
applied irrespectively of the “meaning” of the symbols and formulas.
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1 . 2 Formal proofs
In the example, ∃x y = g( f ( x ) ) is inferred from y = g( f ( x ) ) . The rule of existential quantifica-
tion : “put ∃x in front of a formula” can be applied in many circumstances and it is comparable
to a kind of left-multiplication of y = g( f ( x ) ) by ∃x .

∃x , g( f ( x ) ) � ∃x g( f ( x ) ) .

It is conceivable that logical rules satisfy certain algebraic laws like associat ivity. Another inter-
esting operation is sub stitution : From y = g( z ) and z = f ( x ) we inferred y = g( f ( x ) ) by a “find-
and-replace”-substitution of z by f ( x ) .

Given a sufficient collect ion of rules, the above sequence of formulas, involving “keywords”
like “Let” and “Thus” can be a deduction or derivation in which every line is generated from ear-
lier ones by one of the rules. Mathematical results may be provable simply by the application of
formal rules. In analogy with the formal rules of the infinitesimal calculus one calls such a
system of rules a calculus .

1 . 3 Syntax and semantics
Obviously we do not just want to describe a formal derivation as a kind of domino but we want
to interpre t the occuring symbols as mathematical objects. Thus we have to let variables x , y , �

range over some domain like the real numbers R and let f and g stand for functions F , G : R→
R . Observe that the symbol or “name” f is not identical with the function F , and indeed f
might also be interpretated as another function F ′ . To emphasize the dist inct ion between names
and objects, we consider symbols, formulas and derivations as syntax whereas the interpreta-
t ions of symbols belong to the realm of semantics .

By interpret ing x , y , � and f , g in a structure like (R , F , G ) we can define straightforwardly
whether a formula like ∃x g( f ( x ) ) is satisfied in the structure. A formula is logical ly valid i f i t is
satisfied under al l interpretations. The fundamental theorem of mathematical logic and the cen-
tral result of this course is Gödel ’ s completeness theorem:

Theorem 1 . There is a calculus with finite ly many rules such that a formula is derivab le in the
calculus iff it is logical ly valid.

1 . 4 Set theory
In modern mathematics notion can usually be reduced to set theoret ic notions: non-negative
integers correspond to cardinalities of finite sets, integers can be obtained via pairs of non-nega-
t ive integers, rat ionals via pairs of integers, and real numbers via subsets of the rationals. Geo-
metric notions can be defined from real numbers using analytic geometry. The basic set theoret-
ical axioms can be formulated in the logical language indicated above.

This shows that the mathematical method can be understood abstractly as

mathematics = ( first-order) logic + set theory.

1 . 5 Course overview
We shall cover the following topics:

1 . Words

2 . Calculi

3 . Induction and recursion on calculi

4. Terms and formulas

5. Structures

6. The satisfact ion relat ion

7. Logical implication and proposit ional connectives

8 . Substitution and quantification rules

9. A sequent calculus
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1 0. Examples of formal proofs

2 Words
The languages of mathematical logic can be defined within the framework of finite sequences.

Definit ion 2 . Let A be a non-empty set. w is a finite sequence over A if there is n ∈ N such
that w is a function satisfying w : { 0 , 1 , � , n − 1 } → A . For w a finite sequence over A with
dom (w ) = { 0 , 1 , � , n − 1 } cal l n the length of w . For w a finite sequence of length n write
w ( 0 ) � w ( n − 1 ) instead ofw . We also write w0 � wn− 1 for w ( 0 ) � w ( n − 1 ) .

We also say that A is an alphabet and cal l finite sequences over A words over A ; a symbol
is an e lement of the alphabe t A . Le t A∗ be the se t of al l words over A . The empty sequence or
the empty word is the empty se t ∅ .

Note that in our convention, w0 may denote the symbol w0 as well as the length-1 word w0 .
This ambiguity will usually pose no problem in concrete situations.

Definit ion 3. For words w = w0 � wm− 1 and w ′ = w0
′

� wn− 1
′ le t wˆ w ′ = w0 � wm− 1w0

′
� wn− 1

′ be
the concatenation ofw and w ′ . One can also define the word wˆ w ′ : { 0 , 1 , � , m + n − 1 } → V by

wˆ w ′( i ) =

{
w ( i ) , if i < m
w ′( i − m) , if i > m

We also write ww ′ instead ofwˆ w ′ .

Note that V stands for the class of all mathematical objects, the universe . We prove that ˆ
is an associative operation on words:

Theorem 4. For words w , w ′ , w ′′ over A ho lds

a ) (wˆ w ′) ˆ w ′′ = wˆ (w ′ ˆ w ′ ′)

b ) ∅ ˆ w = wˆ ∅ = w

c ) wˆ w ′ = wˆ w ′′→ w ′ = w ′′

d ) w ′ ˆ w = w ′′ ˆ w→ w ′ = w ′′

This means that the set A of words together with ˆ form a monoid which also satisfies the can-
cellat ion rules c) and d) .

Proof. a) Let n , n ′ , n ′′ ∈ N such that w = w0 � wn− 1 , w ′ = w0
′

� wn ′− 1
′ , w ′′ = w0

′′
� wn ′ ′− 1

′′ . Then

(wˆ w ′) ˆ w ′′ = (w0 � wn− 1w0
′

� wn ′− 1
′ ) ˆ w0

′′
� wn ′ ′− 1

′′

= w0 � wn− 1w0
′

� wn ′− 1
′ w0

′ ′
� wn ′ ′− 1

′′

= w0 � wn− 1 ˆ (w0
′

� wn ′− 1
′ w0

′ ′
� wn ′ ′− 1

′′ )

= w0 � wn− 1 ˆ (w0
′

� wn ′− 1
′ ˆ w0

′′
� wn ′ ′− 1

′ ′ )

= wˆ (w ′ ˆ w ′′) .

The trouble with this proof is the intuitive but somewhat vague use of the ellipses “ � ”. In math-
ematical logic we are part icularly attentative to such vagueness. It can be avoided as follows. In
set theory, the natural number n is defined as the set { 0 , 1 , � , n − 1 } :

n = { 0 , 1 , � , n − 1 } .
This means that

0 = { 0 , � , − 1 } = ∅
1 = { 0 , � , 0} = { 0}
2 = { 0 , 1 }
3 = { 0 , 1 , 2}

�
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If w = w0 � wn− 1 is a word of length n then n = dom (w ) . So let , again, w , w ′ , w ′′ be words, and
let n = dom(w ) , n ′ = dom(w ′) , n ′′ = dom(w ′ ′) . Then

dom (wˆ w ′) = n + n ′

dom ( (wˆ w ′) ˆ w ′ ′) = n + n ′ + n ′′

dom(w ′ˆ w ′ ′) = n ′ + n ′ ′

dom (wˆ (w ′ˆ w ′′) ) = n + n ′ + n ′′

To show that (wˆ w ′) ˆ w ′ ′ = wˆ (w ′ ˆ w ′′) we have to show that for all i < n + n ′ + n ′′ holds

( (wˆ w ′) ˆ w ′′) ( i ) = (wˆ (w ′ ˆ w ′′) ) ( i ) .

Let i < n + n ′ + n ′′ .
Case 1 : i < n . Then

( (wˆ w ′) ˆ w ′′) ( i ) = (wˆ w ′) ( i )

= w ( i )

= (wˆ (w ′ ˆ w ′′) ) ( i ) .

Case 2 : n 6 i < n + n ′ . Then

( (wˆ w ′) ˆ w ′′) ( i ) = (wˆ w ′) ( i )

= w ′( i − n)

= (w ′ˆ w ′′) ( i − n)

= (wˆ (w ′ ˆ w ′′) ) ( i ) .

Case 3 : n + n ′ 6 i < n + n ′ + n ′′ . Then

( (wˆ w ′) ˆ w ′′) ( i ) = w ′′( i − (n + n ′) )

= w ′ˆ w ′′( i − (n + n ′) + n ′) = w ′ˆ w ′ ′( i − n)

= (wˆ (w ′ ˆ w ′′) ) ( i − n + n)

= (wˆ (w ′ ˆ w ′′) ) ( i ) .

Thus ( (wˆ w ′) ˆ w ′′) ( i ) = (wˆ (w ′ ˆ w ′′) ) ( i ) holds in all cases. �

3 Calculi
Let us fix a non-empty alphabet A . We want to express abstractly how words like ∃x y =
g( f ( x ) ) can be obtained from words like y = g( f ( x ) ) .

Definit ion 5 . A relation R ⊆ (A∗ ) n × A∗ is cal led a rule (over A ). A calculus (over A ) is a
se t C of rules (over A ).

A rule is often indicated as a produc tion rule of the form

arguments
production

or
preconditions
conclusion

.

For the above existential quantification we may for example write

ϕ

∃x ϕ
where the production is the concatenation of ∃x and ϕ .

Definit ion 6. Let C be a calculus over A . Le t R ⊆ (A∗ ) n × A∗ be a rule of C. For X ⊆ A∗ se t

R [X ] = {w ∈ A∗ | there are words u0 , � , un− 1 ∈ X such that R(u0 , � , un− 1 , w ) holds } .
Then the product of C is the smallest sub se t of A∗ c lo sed under the rules of C:

Prod( C) =
⋂
{X ⊆ A∗ | for al l rule s R ∈ C holds R [X ] ⊆ X } .
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The product of a calculus can also be described “from below” by:

Definit ion 7. Let C be a calculus over A . A sequence w ( 0) , � , w ( k − 1 ) ∈ A∗ is cal led a deriva-
t ion in C if for every l < k there exists a rule R ∈ C, R ⊆ (A∗ ) n × A∗ and l0 , � , ln− 1 < l such that

R(w ( l 0 ) , � , w ( l n − 1 ) , w ( l ) ) .

This means that every word of the derivation can be derived from earlier words of the derivation
by application of one of the rules of the calculus. We shall later define a calculus such that the
sequence of sentences

Let ∀y∃x y = f ( x ) .
Let ∀y∃x y = g( x ) .
Consider y .
∃z y = g( z ) .
Let y = g( z ) .
∃x z = f ( x ) .
Let z = f ( x ) .
y = g( f ( x ) ) .
Thus ∃x y = g( f ( x ) ) .
Thus ∃x y = g( f ( x ) ) .
Thus ∀y∃x y = g( f ( x ) ) .
Qed.

is a derivation in that calculus.
Everything in the product of a calculus can be obtained by a derivation:

Theorem 8. Let C be a calculus over A∗ . Then

Prod(C) = {w | there is a derivation w ( 0) , � , w ( k − 1 ) = w in C} .

Proof. The equality of sets can be proved by two inclusions.
( ⊆ ) The set

X = {w | there is a derivation w ( 0) , � , w ( k − 1 ) = w in C}

satisfies the closure property R [X ] ⊆ X for all rules R ∈ C . S ince Prod( C) is the intersection of
all such sets, Prod( C) ⊆ X .
( ⊇ ) Consider w ∈ X . Consider a derivation w ( 0) , � , w ( k − 1 ) = w in C . We show by induction on
l < k that w ( l ) ∈ Prod( C) . Let l < k and assume that for all i < l holds w ( i ) ∈ Prod(C) . Take a rule
R ∈ C , R ⊆ (A∗ ) n × A∗ and l0 , � , ln− 1 < l such that R(w ( l 0 ) , � , w ( l n − 1 ) , w ( l ) ) . S ince Prod( C) i s
closed under applicat ion of R we get w ( l ) ∈ Prod( C) . Thus w = w ( k − 1 ) ∈ Prod(C) . �

Exercise 1 . ( Natural numbers 1 ) Consider the alphabet A = { | } . The set A∗ = { ∅ , | , | | , | | | , � } of words may
be identified with the set N of natural numbers . Formulate a calculus C such that Prod (C) = A∗ .

4 Induction and recursion on calculi

5 Terms and formulas

6 Structures
We interpret formulas like ∀y∃x y = g( f ( x ) ) in adequate struc tures . The realm of structures and
interpretations is usually called semantic s . F ix a symbol set

S = ( (Rn) n≥ 1 , (Fn) n≥ 1 , C ) .
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Definit ion 9. An S- structure is a pair A = (A, a) mit:

a ) A
� ∅ ; A is the underlying set of A ;

b ) a : S = (
⋃
n> 1 Rn) ∪ (

⋃
n> 1 Fn) ∪ C→ V satisfying:

1 . for r ∈ Rn : a( r) is an n- ary relation on A , i . e . , a( r ) ⊆ An ;
2. for f ∈ Fn : a( f ) is an n- ary function on A , i . e . , a( f ) : An→ A;

3. for c ∈ C: a( c) is a constant in A , i . e . , a( c) ∈ A .

We use various simplifying notations like rA , fA , or cA instead of a( r ) , a( f ) , or a( c) resp. In
concrete cases, we simply list the values of a , i . e. , the components of the structure A .

Example 1 0 . Formalize the structure R = (R , a) of the ordered real numbers as follows. Take
the language of ordered fields

SoF = { < , + , · , 0 , 1 } .
Define the interpretation function a : SoF → V by

a( < ) = <R = { (u, v ) ∈ R2 | u < v }
a( + ) = +R = { (u, v , w ) ∈ R3 | u + v = w }
a( · ) = · R = { (u, v , w ) ∈ R3 | u · v = w }
a( 0 ) = 0R = 0 ∈ R
a( 1 ) = 1 R = a ∈ R

Instead of (R , a) one also writes (R , <R , +R , ·R , 0R , 1 R ) or (R, < , + , · , 0 , 1 ) .
Observe that the symbols could in principle be interpreted in completely different, counterin-

tuitive ways:

a ′( < ) = < A = { ( u, v ) ∈ R2 | u > v }
a ′( + ) = +A = { ( u, v , w ) ∈ R3 | u · v = w }
a ′( · ) = · A = { ( u, v , w ) ∈ R3 | u + v = w }
a ′( 0) = 0A = 1 ∈ R
a ′( 1 ) = 1 A = 0 ∈ R

An S-structure interprets the symbols in S . To interpret a formula in a structure one also
has to interpret the ( occuring) variabels.

Definit ion 1 1 . Let A = (A, a) be an S- structure . An assignment in A is a func tion

β : { vn | n ∈ N} → A.

The pair I = ( A , β) is cal led an S- interpretation .

The value β( vn) is the interpretation of the variable vn in A . It will sometimes be important
to alter the interpretation of a specific variable.

Definit ion 1 2 . Let A = (A, a ) be an S- struc ture and le t β : { vn | n ∈ N} → A be an assignment in
A . For n ∈ N and a ∈ A le t

β
a

vn
= ( β \ { ( vn , β( vn ) } ) ∪ { ( vn , a) } .

7 The satisfaction relation
Given an S-interpretation for a fixed language S we may interpret terms and formulas.
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Definit ion 1 3. Let I = ( A , β) , A = (A, a) be an S- interpre tation. Define the interpretation I( t)
of a term t b y recursion on the term calculus:

a ) I( vn) = β( vn) , for n ∈ N ;

b ) I( c) = cA , for c ∈ C;
c ) I( ft0 � . tn− 1 ) = fA( I( t0 ) , � , I( tn− 1 ) ) , for f ∈ Fn and terms t0 , � , tn− 1 .

This explains the standard interpretation of a term like v3
2 + v2 0 0

3 in the reals. The following sat-
isfact ion relation is the fundamental logical relat ion which links syntax and semantics.

Definit ion 1 4. Let I = ( A , β) , A = (A, a) be an S- interpretation. Define the sat isfaction rela-
t ion

I � ϕ
for formulas ϕ ∈ LS by recursion on the formula calculus:

a ) I � t0 ≡ t1 iff I( t0) = I( t1 ) ;

b ) I � Rt0 � tn− 1 iffRA( I( t0 ) , � , I( tn− 1 ) ) ;

c ) I � ¬ϕ iff not I � ϕ ;
d ) I � ( ϕ ∧ ψ ) iff I � ϕ and I � ψ;
e ) I � ( ϕ ∨ ψ ) iff I � ϕ or I � ψ;
f) I � ( ϕ→ ψ ) iff I � ϕ implies I � ψ;
g ) I � ( ϕ↔ ψ ) iff I � ϕ is equivalent to I � ψ;
h ) I � ∀vn ϕ iff for all a ∈ A holds ( A , β

a

vn
) � ϕ ;

i ) I � ∃vn ϕ iff there exists a ∈ A such that ( A , β
a

vn
) � ϕ .

We say I satisfies ϕ or I is a model of ϕ . For a se t Φ ⊆ LS of S- formulas define

I � Φ iff for al l ϕ ∈ Φ holds : I � ϕ.

We also write A � ϕ [ β ] and A � Φ [ β ] instead of I � ϕ and I � Φ resp.

Definit ion 1 5 . Let S be a language and Φ ⊆ LS . Φ is universally valid if for every S- Interpre -
tation I holds I � Φ . Φ is satisfiable if there is an S- Interpretation I such that I � Φ .

With the notion of � we can now formally define what it means that a group is commuta-
t ive or that a function is differentiable, using adequate structures and formulas.

It is intuit ively obvious that the interpretation of a term should only depend on the occuring
variables, and that the satisfact ion for a formula should only depend on its free, non-bound vari-
ables.

Definit ion 1 6 . For t ∈ TS define var( t) ⊆ { vn | n ∈ N} by recursion on the term calculus:

− var( x ) = {x } ;
− var( c) = ∅ ;
− var( ft0 � tn− 1 ) =

⋃
i < n var( ti ) .

Definit ion 1 7. Für ϕ ∈ LS define the se t of free variables free( ϕ ) ⊆ { vn | n ∈ N} b y recursion on
the formula calculus:

− free( t0 ≡ t1 ) = var( t0) ∪ var( t1 ) ;
− free(Rt0 � tn− 1 ) = var( t0) ∪ � ∪ var( tn− 1 ) ;

− free(¬ϕ ) = free( ϕ ) ;

− free( ( ϕ ∧ ψ ) ) = free( ( ϕ ∨ ψ ) ) = free( ( ϕ→ ψ ) ) = free( ( ϕ↔ ψ ) ) = free( ϕ ) ∪ free( ψ ) .
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− free(∀x ϕ ) = free( ∃xϕ ) = free( ϕ ) \ { x } .

Example 1 8.

free( (Ryx→ ∀y¬ y = z ) ) = free(Ryx ) ∪ free(∀y¬ y = z )

= free(Ryx ) ∪ ( free( ¬ y = z ) \ { y } )
= free(Ryx ) ∪ ( free( y = z ) \ { y } )
= { y , x } ∪ ( { y , z } \ { y } )
= { y , x } ∪ { z }
= { x , y , z } .

Definit ion 1 9 . a ) For n ∈ N le t LnS = { ϕ ∈ LS | free( ϕ ) ⊆ { v0 , � , vn− 1 } } .
b ) ϕ ∈ LS is an S- sentence if free( ϕ ) = ∅ ; L0

S is the se t of S- sentences.

Theorem 20. Let t be an S- term and le t I = ( A , β) , A = (A, a) and I ′ = ( A , β ′) be S- interpre -
tations with β � var( t) = β ′ � var( t) . Then I( t) = I ′( t) .

Theorem 21 . Let ϕ be an S- formula, and le t I = ( A, β) , A = (A, a) and I ′ = ( A, β ′) be S- inter-
pretations with β � free( ϕ ) = β ′ � free( ϕ ) . Then

I � ϕ iff I ′ � ϕ.

Proof. By induction on the formula calculus.
ϕ = t0 ≡ t1 : Then var( t0) ∪ var( t1 ) = frei ( ϕ ) and

I � ϕ iff I( t0) = I( t1 )

iff I ′( t0) = I ′( t1 ) by the previous Theorem,
iff I ′ � ϕ.

ϕ = ψ ∧ χ and assume the claim to be true for ψ and χ . Then

I � ϕ iff I � ψ und I � χ
iff I ′ � ψ und I ′ � χ by the inductive assumption,
iff I ′ � ϕ.

ϕ = ∃vnψ and assume the claim to be true for ψ . Then free( ψ ) ⊆ free( ϕ ) ∪ { vn } . For all a ∈ A :
( β

a

vn
) � free( ψ ) = ( β ′ a

vn
) � free( ψ ) and so

I � ϕ iff there exists a ∈ A with ( A, β
a

vn
) � ψ

iff there exists a ∈ A with ( A, β ′
a

vn
) � ψ by the inductive assumption,

iff I ′ � ϕ.
�

This allows further simplifications in the notations for � :

Definit ion 22 . Let A be an S- structure and le t ( a0 , � , an− 1 ) be a sequence of e lements of A .
Le t t be an S- term with var( t) ⊆ { v0 , � , vn− 1 } . Then define

tA [a0 , � , an− 1 ] = I( t) ,

where I = ( A , β) is an interpretation with β( 0 ) = a0 , � , β( n − 1 ) = an− 1 .
Le t ϕ be an S- formula with free( t) ⊆ { v0 , � , vn− 1 } . Then define

A � ϕ [a0 , � , an− 1 ] gdw. I � ϕ ,

where I = ( A , β) is an interpretation with β( 0 ) = a0 , � , β( n − 1 ) = an− 1 .
In case n = 0 also write tA instead of tA [a0 , � , an− 1 ] and A � ϕ instead of A � ϕ [a0 , � , an− 1 ] . In
this case we also say: A is a model of ϕ , A satisfies ϕ or ϕ is true in A .
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For Φ ⊆ L0
S a se t of sentences also write

A � Φ iff for al l ϕ ∈ Φ holds : A � ϕ.

Example 23. Groups . SGr : = { ◦ , e } with a binary function symbol ◦ and a constant symbol e
is the language of groups theory . The group axioms are

a) ∀v0 ∀v1 ∀v2 ◦ v0 ◦ v1 v2 ≡ ◦ ◦ v0v1v2 ;

b) ∀v0 ◦ v0 e ≡ v0 ;

c) ∀v0∃v1 ◦ v0v1 ≡ e .

This define the axiom set

ΦG r = { ∀v0 ∀v1 ∀v2 ◦ v0 ◦ v1 v2 ≡ ◦ ◦ v0v1v2 , ∀v0 ◦ v0 e ≡ v0 , ∀v0∃v1 ◦ v0v1 ≡ e } .

An S-structure G = (G , ∗ , k ) satisfies ΦG r iff it is a group in the ordinary sense.

Definit ion 24. Let S be a language and Φ ⊆ L0
S be a set of S- sentences. Then le t

ModSΦ = {A | A is an S- structure and A � Φ }
be the model class of Φ .

Thus ModSG rΦG r is the model class of all groups. Model classes are studied in generality
within model theory which is a branch of mathematical logic. For specific Φ the model class
ModSΦ i s examined in various fields of mathematics: group theory, ring theory, graph theory,
etc. Some typical quest ions quest ions are: Is ModSΦ

� ∅ , i . e. , is Φ sat isfiable? Can we extend
ModSΦ by adequate morphisms between models?

8 Logical implication and propositional connectives
Definit ion 25 . Φ � ϕ

Theorem 26. Properties of Φ � ϕ with respect to propositional connective s.

9 Substitution and quantification rules

Definit ion 27. For a term s ∈ TS , pairwise distinct variab les x0 , � , xr− 1 and terms t0 , � ,
tr− 1 ∈ TS define the ( simultaneous) substitution

s
t0 � . tr− 1

x0 � xr− 1
of t0 , � , tr− 1 for x0 , � , xr− 1 b y recursion:

a ) x t0 � . tr − 1

x 0 � x r − 1
=
{
x , i f x

�
x 0 , � , x

�
x r − 1

t i , i f x = x i
for al l variab les x ;

b ) c t0 � . tr − 1

x 0 � x r − 1
= c for al l constant symbo ls c;

c ) ( fs0 � sn− 1 )
t0 � . tr − 1

x 0 � x r − 1
= fs0

t0 � . tr − 1

x 0 � x r − 1
� sn− 1

t0 � . tr − 1

x0 � x r − 1
for al l n- ary function symbols f.

Note that the simultaneous substitut ion

s
t0 � . tr− 1

x0 � xr− 1

is in general different from a succesive substitution

s
t0
x0

t1
x 1

�

tr− 1

xr− 1

which depends on the order of substitut ion. E. g. , x y x

x y
= y , x y

x

x

y
= y

x

y
= x and x

x

y

y

x
= x

y

x
= y .

S ubst itution and quantif ication rules 9



Definit ion 28. For a formula ϕ ∈ LS , pairwise distinct variab le s x0 , � , xr− 1 and terms t0 , � ,
tr− 1 ∈ TS define the ( simultaneous) substitution

ϕ
t0 � . tr− 1

x0 � xr− 1

of t0 , � , tr− 1 for x0 , � , xr− 1 b y recursion:

a ) ( s0 ≡ s 1 )
t0 � . tr − 1

x 0 � x r − 1
= s0

t0 � . tr − 1

x 0 � x r − 1
≡ s 1

t0 � . tr − 1

x 0 � x r − 1
for al l terms s0 , s 1 ∈ TS;

b ) (Rs 0 � sn− 1 )
t0 � . tr − 1

x0 � x r − 1
= Rs0

t0 � . tr − 1

x0 � x r − 1
� sn− 1

t0 � . tr − 1

x0 � x r − 1
for al l n- ary re lation symbo ls R and

terms s0 , � , sn− 1 ∈ TS;
c ) (¬ϕ )

t0 � . tr − 1

x 0 � x r − 1
= ¬ ( ϕ

t0 � . tr − 1

x 0 � x r − 1
) ;

d ) ( ϕ ∨ ψ )
t0 � . tr − 1

x 0 � x r − 1
= ( ϕ

t0 � . tr − 1

x0 � x r − 1
∨ ψ t0 � . tr − 1

x 0 � xr − 1
) ;

e ) for ( ∃xϕ )
t0 � . tr − 1

x0 � x r − 1
distinguish two case s:

− if x ∈ { x0 , � , xr− 1 } , assume that x = x0 . Choose i ∈ N minimal such that u = vi
does no t occur in ∃x ϕ , t0 , � . , tr− 1 and x0 , � , xr− 1 . Then set

( ∃x ϕ )
t0 � . tr− 1

x0 � xr− 1
= ∃u ( ϕ

t1 � . tr− 1 u

x1 � xr− 1 x
) .

− if x � {x0 , � , xr− 1 } , choose i ∈ N minimal such that u = vi does no t occur in ∃x ϕ ,
t0 , � . , tr− 1 and x0 , � , xr− 1 and se t

( ∃x ϕ )
t0 � . tr− 1

x0 � xr− 1
= ∃u ( ϕ

t0 � . tr− 1 u

x0 � xr− 1 x
) .

f) for (∀xϕ )
t0 � . tr − 1

x0 � x r − 1
distinguish two case s:

− if x ∈ { x0 , � , xr− 1 } , assume that x = x0 . Choose i ∈ N minimal such that u = vi
does no t occur in ∀x ϕ , t0 , � . , tr− 1 and x0 , � , xr− 1 . Then set

(∀x ϕ )
t0 � . tr− 1

x0 � xr− 1
= ∀u ( ϕ

t1 � . tr− 1 u

x1 � xr− 1 x
) .

− if x � {x0 , � , xr− 1 } , choose i ∈ N minimal such that u = vi does no t occur in ∀x ϕ ,
t0 , � . , tr− 1 and x0 , � , xr− 1 and se t

(∀x ϕ )
t0 � . tr− 1

x0 � xr− 1
= ∀u ( ϕ

t0 � . tr− 1 u

x0 � xr− 1 x
) .

The following substitution theorem shows that syntactic subst itution corresponds semantically
to a ( simultaneous) modification of assignments by interpreted terms.

Definit ion 29. Consider an S- interpretation I = ( A , β) , pairwise distinct variab le s x0 , � , xr− 1

and a0 , � , ar− 1 ∈ A . Define a modified assignment and interpre tation by

β
a0 � ar− 1

x0 � xr− 1
= ( β \ { ( x0 , β( x0) ) , � , ( xr− 1 , β( xr− 1 ) ) } ) ∪ { ( x0 , a0) , � , ( xr− 1 , ar− 1 ) }

and

I
a0 � ar− 1

x0 � xr− 1
= ( A , β

a0 � ar− 1

x0 � xr− 1
) .

Theorem 30. Consider an S- interpretation I = ( A , β) , pairwise distinc t variab les x0 , � , xr− 1

and terms t0 , � , tr− 1 ∈ TS . If s ∈ TS is a term,

I( s
t0 � . tr− 1

x0 � xr− 1
) = I

I( t0) � . I( tr− 1 )

x0 � xr− 1
( s ) .

If ϕ ∈ LS is a formula,
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I � ϕ t0 � . tr− 1

x0 � xr− 1
gdw. I

I( t0 ) � . I( tr− 1 )

x0 � xr− 1
� ϕ.

Proof. By induction on the complexities of s and ϕ .
Case 1 : s = x .
Case 1 . 1 : x � { x0 , � , xr− 1 } . Then

I( x
t0 � . tr− 1

x0 � xr− 1
) = I( x ) = β( x ) = I

I( t0) � . I( tr− 1 )

x0 � xr− 1
( x ) .

Case 1 . 2 : x = x i . Then

I( x
t0 � . tr− 1

x0 � xr− 1
) = I( ti ) = β

I( t0) � . I( tr− 1 )

x0 � xr− 1
( x i ) = I

I( t0) � . I( tr− 1 )

x0 � xr− 1
( x ) .

Case 2 : s = c is a constant symbol. Then

I( c
t0 � . tr− 1

x0 � xr− 1
) = I( c) = cA = I

I( t0) � . I( tr− 1 )

x0 � xr− 1
( c) .

Case 3 : s = fs0 � sn− 1 where f is an n-ary function symbol and the terms s0 , � , sn− 1 ∈ TS sat-
isfy the theorem. Then

I( ( fs0 � sn− 1 )
t0 � . tr− 1

x0 � xr− 1
) = I( fs 0

t0 � . tr− 1

x0 � xr− 1
� sn− 1

t0 � . tr− 1

x0 � xr− 1
)

= fA ( I( s0
t0 � . tr− 1

x0 � xr− 1
) , � , I( sn− 1

t0 � . tr− 1

x0 � xr− 1
) )

= fA ( I
I( t0) � . I( tr− 1 )

x0 � xr− 1
( s0) , � , I

I( t0) � . I( tr− 1 )

x0 � xr− 1
( sn− 1 ) )

= I
I( t0) � . I( tr− 1 )

x0 � xr− 1
( fs0 � sn− 1 ) .

Assuming that the substitut ion theorem is proved for terms, we turn to formulas:
Case 4 : ϕ = s 0 ≡ s 1 . Then

I � ( s0 ≡ s 1 )
t0 � . tr− 1

x0 � xr− 1
iff I � ( s0

t0 � . tr− 1

x0 � xr− 1
≡ s 1

t0 � . tr− 1

x0 � xr− 1
)

iff I( s0
t0 � . tr− 1

x0 � xr− 1
) = I( s 1

t0 � . tr− 1

x0 � xr− 1
)

iff I
I( t0 ) � . I( tr− 1 )

x0 � xr− 1
( s0 ) = I

I( t0) � . I( tr− 1 )

x0 � xr− 1
( s 1 )

iff I
I( t0 ) � . I( tr− 1 )

x0 � xr− 1
� s0 ≡ s 1 .

Proposit ional connectives of formulas behave similar to terms, so we only consider the existential
quantification case:
Case 5 : ϕ = ( ∃x ψ )

t0 � . tr − 1

x0 � x r − 1
, assuming that the theorem holds for ψ .

Case 5. 1 : x = x0 . Choose i ∈ N minimal such that u = vi does not occur in ∃x ϕ , t0 , � . , tr− 1 and
x0 , � , xr− 1 . Then

( ∃x ϕ )
t0 � . tr− 1

x0 � xr− 1
= ∃u ( ϕ

t1 � . tr− 1 u

x1 � xr− 1 x
) .

I � ( ∃xϕ )
t0 � . tr− 1

x0 � xr− 1
iff I � ∃u ( ϕ

t1 � . tr− 1 u

x 1 � xr− 1 x
)

iff there exists a ∈ A with I
a

u
� ϕ t1 � . tr− 1 u

x1 � xr− 1 x
( definition of � )

iff there exists a ∈ A with

( I
a

u
)
I
a

u
( t1 ) � . I

a

u
( tr− 1 ) I

a

u
( u)

x 1 � xr− 1 x
� ϕ

( inductive hypothesis for ϕ )

S ubst itution and quantif ication rules 1 1



iff there exists a ∈ A with

( I
a

u
)
I( t1 ) � . I( tr− 1 ) a

x1 � xr− 1 x
� ϕ

( since u does not occur in ti )
iff there exists a ∈ A with

I
I( t1 ) � . I( tr− 1 ) a

x1 � xr− 1 x
� ϕ

( since u does not occur in ϕ )
iff there exists a ∈ A with

( I
I( t1 ) � . I( tr− 1 )

x 1 � xr− 1
)
a

x
� ϕ

( by simple properties of assignments)

iff ( I
I( t1 ) � . I( tr− 1 )

x 1 � xr− 1
) � ∃xϕ

( definition of � )
iff ( I

I( t0) I( t1 ) � . I( tr− 1 )

x0 x 1 � xr− 1
) � ∃xϕ

( since x = x0 is not free in ∃x ϕ ) .

Case 5. 2 : x � {x0 , � , xr− 1 } . Then proceed similarly. Choose i ∈ N minimal such that u = vi does
not occur in ∃x ϕ , t0 , � . , tr− 1 and x0 , � , xr− 1 . Then

( ∃x ϕ )
t0 � . tr− 1

x0 � xr− 1
= ∃u ( ϕ

t0 � . tr− 1 u

x0 � xr− 1 x
) .

I � ( ∃xϕ )
t0 � . tr− 1

x0 � xr− 1
iff I � ∃u ( ϕ

t0 � . tr− 1 u

x0 � xr− 1 x
)

iff there exists a ∈ A with I
a

u
� ϕ t0 � . tr− 1 u

x0 � xr− 1 x
( definition of � )

iff there exists a ∈ A with

( I
a

u
)
I
a

u
( t0) � . I

a

u
( tr− 1 ) I

a

u
( u)

x0 � xr− 1 x
� ϕ

( inductive hypothesis for ϕ )
iff there exists a ∈ A with

( I
a

u
)
I( t0) � . I( tr− 1 ) a

x0 � xr− 1 x
� ϕ

( since u does not occur in ti )
iff there exists a ∈ A with

I
I( t0) � . I( tr− 1 ) a

x0 � xr− 1 x
� ϕ

( since u does not occur in ϕ )
iff there exists a ∈ A with

( I
I( t0) � . I( tr− 1 )

x0 � xr− 1
)
a

x
� ϕ

( by simple properties of assignments)

iff ( I
I( t0) � . I( tr− 1 )

x0 � xr− 1
) � ∃xϕ

( definition of � )
�

We can now formulate further properties of the � relation.

Theorem 31 . Let S be a language . Let Φ ⊆ LS , t , t ′ ∈ TS and ϕ , ψ ∈ LS . Then:

a ) if Φ � ∀xϕ , then Φ � ϕ t

x
;

b ) if Φ � ϕ t

x
, then Φ � ∃xϕ ;
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c ) if Φ � ϕ y

x
and y � free( Φ ∪ { ∀x ϕ } ) , then Φ � ∀xϕ ;

d ) if Φ ∪ { ϕ y

x
} � ψ and y � free( Φ ∪ { ∃x ϕ , ψ } ) , then Φ ∪ { ∃x ϕ } � ψ ;

e ) if Φ � ϕ t

x
, then Φ ∪ { t ≡ t ′} � ϕ t ′

x
.

Proof. a) Let Φ � ∀x ϕ . Consider an S-interpretation I = ( A , β) with I � Φ . For all a ∈ A holds
I
a

x
� ϕ . In particular I

I ( t )

x
� ϕ . By the substitut ion theorem, I � ϕ t

x
. Thus Φ � ϕ t

x
.

b) Let Φ � ϕ t

x
. Consider an S-interpretation I with I � Φ . Then I � ϕ t

x
. By the substitution

theorem I
I ( t )

x
� ϕ . Hence I � ∃x ϕ . Thus Φ � ∃x ϕ .

c) Let Φ � ϕ y

x
and y � free( Φ ∪ {∀x ϕ } ) . Consider an S-interpretation I = ( A , β) with I � Φ . Let

a ∈ A . S ince y � free( Φ ) , I
a

y
� Φ . By assumption, I

a

y
� ϕ y

x
. By the substitution theorem,

( I
a

y
)
I
a

y
( y )

x
� ϕ and so ( I

a

y
)
a

x
= I

a a

yx
� ϕ

Case 1 : x = y . Then I
a

x
� ϕ .

Case 2 : x
�
y . Then y � free( ϕ ) and so I

a

x
� ϕ .

Thus I � ∀x ϕ . Thus Φ � ∀xϕ .
d) Let Φ ∪ { ϕ y

x
} � ψ and y � free( Φ ∪ { ∃x ϕ , ψ } ) . Consider an S-interpretation I = ( A , β)

with I � Φ ∪ { ∃x ϕ } . Take a ∈ A with I
a

x
� ϕ .

Case 1 : x = y . Then ( I
a

y
)
a

x
= I

a

x
und ( I

a

y
)
a

x
� ϕ .

Case 2 : x
�
y . Then y � free( ϕ ) and ( I

a

y
)
a

x
� ϕ .

Obviously a = I
a

y
( y ) and so

( I
a

y
)
I
a

y
( y )

x
� ϕ.

By the substitution theorem

( I
a

y
) � ϕ y

x
.

Since y � free( Φ )

( I
a

y
) � Φ .

By assumption ( I
a

y
) � ψ and since y � free( ψ ) we get I � ψ . Thus Φ ∪ { ∃xϕ } � ψ .

e) Let Φ � ϕ
t

x
. Consider an S-Interpretation I mit I � Φ ∪ { t ≡ t ′} . Then I( t) = I( t ′) . By

assumption I � ϕ t

x
. By the substitut ion theorem

I
I( t)

x
� ϕ .

Then

I
I( t ′)
x
� ϕ

and again by the substitution theorem

I � ϕ t
′

x
.

Thus Φ ∪ { t ≡ t ′} � ϕ t ′

x
. �

Note that in proving these proof rules we have obviously used the corresponding figures of
argument in the language of our discourse.

1 0 A sequent calculus
We can list the above rules of implication established in the previous two sections in the form of
a calculus which leads from correct implications Φ � ϕ to further correct implications Φ ′ � ϕ ′ .
We shall later show in the Gödel completeness theorem that these rules actually generate the
implication relation � . F ix a language S for this section.

A sequent calculus 1 3



We only

Definit ion 32 . An ordered pair ( Φ , ϕ ) is a sequent if Φ ⊆ LS and ϕ ∈ LS . Le t Seq(S ) be the
se t of al l sequents for the language S. We write Φ ϕ instead of ( Φ , ϕ ) . Φ and ϕ are the
antecedent and the succedent of the sequent Φ ϕ . We can also write the antecedent as a concate -
nation of sets of formulas and single formulas:

Φ ψo � ψk − 1 ϕ instead of Φ ∪ { ψ0 , � , ψk − 1 } ϕ
und

ψo � ψk − 1 ϕ instead of { ψ0 , � , ψk − 1 } ϕ .
A sequent Φ ϕ is correct if Φ � ϕ .

Definit ion 33. The sequent calculus consists of the fo l lowing (sequent- )rule s:

− monotonic ity rule (MR)
Φ ϕ

Φ ψ ϕ

− assumption rule (AR)
Φ ϕ ϕ

− → - introduction ( → I)
Φ ϕ ψ

Φ ϕ→ ψ

− → - e limination ( → E )
Φ ϕ
Φ ϕ→ ψ

Φ ψ

− ∨ - introduction ( ∨ E )
Φ ϕ

Φ ϕ ∨ ψ

− ∨ - introduction ( ∨ E )
Φ ϕ

Φ ψ ∨ ϕ

− ∨ - e limination ( ∨ E )

Φ ϕ ∨ ψ
Φ ϕ→ χ
Φ ψ→ χ

Φ χ

− ⊥ - introduc tion (⊥I)
Φ ϕ
Φ ¬ϕ
Φ ⊥

− ⊥ - e limination (⊥E )
Φ ⊥
Φ ϕ

− ∀- introduction (∀I)
Φ ϕ

y

x

Φ ∀xϕ
, if y � free( Φ ∪ { ∀xϕ } )

− ∀- e limination (∀E )
Φ ∀xϕ
Φ ϕ

t

x

, if t ∈ TS

− ∃ - introduction ( ∃I)
Φ ϕ

t

x

Φ ∃xϕ
, if t ∈ TS

− ∃ - e limination ( ∃E )

Φ ∃xϕ
Φ ϕ

y

x
ψ

Φ ψ

, if y � free( Φ ∪ { ∃xϕ , ψ } )

− ≡ - introduction ( ≡ I)
Φ t ≡ t , if t ∈ TS
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− ≡ - e limination ( ≡ E )

Φ ϕ
t

x

Φ t ≡ t ′
Φ ϕ

t ′

x

The deduction relat ion is the smal le st subse t ` ⊆ Seq(S) of the se t of sequents which is c lo sed
under these rules. We write Φ ` ϕ instead of ( Φ , ϕ ) ∈ ` and say that ϕ can be deduced or
derived from Φ .

Theorem 34. A formula ϕ ∈ LS is derivab le from Φ ⊆ LS ( Φ ` ϕ ) iff there is a derivation or a
formal proof

Φ 0ϕ0 Φ 1 ϕ 1 � � Φ k − 1 ϕk − 1

of Φ ϕ = Φ k − 1 ϕk − 1 , in which every sequent Φ iϕ i is generated by a sequent rule from sequents
Φ i 0ϕ i0 , � , Φ in − 1ϕ in − 1 with i0 , � , in− 1 < i .

We usual ly write the derivation Φ 0ϕ0 Φ 1 ϕ 1 � � Φ k − 1 ϕk − 1 as a scheme

Φ 0ϕ0

Φ 1 ϕ1
�

Φ k − 1 ϕk − 1

where we may also mention the rule s and o ther remarks along the course of the derivation.

In our theorems on the laws of implication we have already shown:

Theorem 35 . The sequent calculus is correct , i . e . , every rule of the sequent calculus leads from
correct sequents to correct sequents. Thus every derivab le sequent is correct. This means that

` ⊆ � .

The Gödel completeness theorem proves the opposite inclusion: � ⊆ ` .
We also note the compactness theorem: finite subsets etc.

1 1 Examples of formal proofs

1 1 . 1 Properties of ≡
We show that ≡ as seen by the sequent calculus is an equivalence relation.
Symmetry :

x ≡ y x ≡ y ( assumption rule)
x ≡ y x ≡ x ( ≡ -introduction )

x ≡ y ( z ≡ x )
x

z
(where z � var( t0) )

x ≡ y ( z ≡ x )
y

x
( ≡ -elimination)

x ≡ y y ≡ x
x ≡ y→ y ≡ x
∀y ( x ≡ y→ y ≡ x )

∀x∀y( x ≡ y→ y ≡ x )

Transitivity :

t0 ≡ t1 t0 ≡ t1 (VR)

t0 ≡ t1 ( t0 ≡ x )
t1
x

(where x � var( t0) )

t0 ≡ t1 t1 ≡ t2 ( t0 ≡ x )
t2
x

( Sub)

t0 ≡ t1 t1 ≡ t2 t0 ≡ t2

Examples of formal proofs 1 5



We show further that ≡ is actually a congruence re lation from the perspective of ` .

Theorem 36. Let ϕ be an S- formula and t0 , � , tn− 1 , t0
′ , � , tn− 1

′ ∈ TS . Then

ϕ
t0 � tn− 1

v0 � vn− 1
t0 ≡ t0′ � tn− 1 ≡ tn− 1

′ ϕ
t0
′

� tn− 1
′

v0 � vn− 1
is derivab le .

Proof. Choose pairwise distinct “new” variables u0 , � , un− 1 . Then

ϕ
t0 � tn− 1

v0 � vn− 1
= ϕ

u0

v0

u1

v1
�

un− 1

vn− 1

t0
u0

t1
u1

�

tn− 1

un− 1
and

ϕ
t0
′

� tn− 1
′

v0 � vn− 1
= ϕ

u0

v0

u1

v1
�

un− 1

vn− 1

t0
′

u0

t1
′

u1
�

tn− 1
′

un− 1
.

Thus the simultaneous substitutions can be seen as successive substitut ions, and we may use the
substitution rule repeatedly:

ϕ
t0 � tn− 1

v0 � vn− 1
ϕ
t0 � tn− 1

v0 � vn− 1

ϕ
u0

v0
�

un− 1

vn− 1

t0
u0

�

tn− 1

un− 1
ϕ
u0

v0
�

un− 1

vn− 1

t0
u0

�

tn− 1

un− 1

ϕ
u0

v0
�

un− 1

vn− 1

t0
u0

�

tn− 1

un− 1
tn− 1 ≡ tn− 1

′ ϕ
u0

v0
�

un− 1

vn− 1

t0
u0

�

tn− 1
′

un− 1
�

ϕ
u0

v0
�

un− 1

vn− 1

t0
u0

�

tn− 1

un− 1
tn− 1 ≡ tn− 1

′
� t0 ≡ t0′ ϕ

u0

v0
�

un− 1

vn− 1

t0
′

u0
�

tn− 1
′

un− 1

ϕ
t0 � tn− 1

v0 � vn− 1
t0 ≡ t0′ � tn− 1 ≡ tn− 1

′ ϕ
t0
′

� tn− 1
′

v0 � vn− 1
.

�

1 1 . 2 Derivable rules
In proofs recurring combinations of elementary rules are combined into derived rules. This corre-
sponds to the introduction of involved proof schemes in ordinary proofs.

Definit ion 37. A sequent rule is derivable if its transformation from input to output sequents
can be achieved by a composition of rules of the sequent calculus. By the correc tness of the
sequent calculus, every derivab le rule is correc t.

Theorem 38. For Γ ⊆ LS , ϕ , ψ ∈ LS , the fo l lowing cut rule is derivab le :

Γ ϕ Γ ϕ ψ

Γ ψ
.

A rule with several input sequents can also be written in a vertical fashion:

Γ ϕ
Γ ϕ ψ

Γ ψ

Proof.
1 . Γ ϕ input sequent
2 . Γ ϕ ψ input sequent
3 . Γ ¬ϕ ¬ψ ϕ antecedent rule with 1
4 . Γ ¬ϕ ¬ψ ¬ϕ hypothesis rule
5 . Γ ¬ϕ ψ contradiction rule with 3 , 4
6 . Γ ψ case

�
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We derive more rules which will be used to formalize “natural proofs”.

1 2 Natural proofs

The preceding example shows that formal proofs with sequents contain substantial redundan-
cies. The surjectivity assumptions ∀y ∃x y ≡ fx and ∀y ∃x y ≡ gx , e. g. , have to be repeated in
every antecedent. We introduce a notation for proofs of the above kind which basically consists
of the succedents of the sequents. The antecedents can be determined from the succedents and
the keywords “let” and “thus”. We work over a fixed language S .

Definit ion 39. A proof line is a sequence z of symbo ls of one of the fo l lowing forms:

− “ϕ . ”

− “Le t ϕ . ”

− “Thus ϕ . ”

where ϕ ∈ LS is a formula.
If z0 � zl − 1 is a sequence of proof lines, we define a corresponding expansion

A0ϕ0 A1 ϕ1 � � A l − 1 ϕ l − 1

by recursion such that for al l i < l , A i is a finite sequence of S- formulas and ϕ i is an S- formula:
Let A− 1 = ∅ . A ssume that Ai− 1 is defined; then

− if zi is of the form “ϕ . ” then se t A i = Ai− 1 and ϕ i = ϕ ;

− if zi is of the form “Let ϕ . ” then se t Ai = Ai− 1 ˆ ϕ and ϕ i = ϕ ;

− if zi is of the form “Thus ϕ . ” then set Ai = Ai− 1 � ( length(A i− 1 ) − 1 ) and ϕ i = ϕ .

For a finite sequence A = ( a0 , � , an− 1 ) define {{A }} = { a0 , � , an− 1 } . Then we say that the
sequence z0 � zl − 1 of proof lines is a natural proof , if

{{A0}} ϕ0 {{A1 }} ϕ 1 � � {{A l − 1 }} ϕ l − 1

is a derivation.

Note that the sequences A0 , � , A l − 1 can be seen as a “stack” of formulas; A i consists of all
hypotheses which are active at step i of the proof. The “command” “Let ϕ . ” pushes the formula
ϕ onto the stack, “Thus ϕ . ” pops the top element from the stack.

1 2 . 1 Surjective functions
Consider the example of the introduction about surjective functions:

( 1 ) Let ∀y∃x y = f ( x ) .
( 2 ) Let ∀y∃x y = g( x ) .
( Theorem. ∀y∃x y = g( f ( x ) ) .
Proof. )
( 3) Consider y .
( 4) ∃z y = g( z ) .
( 5) Let y = g( z ) .
( 6) ∃x z = f ( x ) .
( 7) Let z = f ( x ) .
( 8 ) y = g( f ( x ) ) .
( 9) ∃x y = g( f ( x ) )
( 1 0) Thus ∃x y = g( f ( x ) ) .
( 1 1 ) Thus ∃x y = g( f ( x ) ) .
( 1 2 ) Thus ∀y∃x y = g( f ( x ) ) .
( Qed. )
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We reformulate the argument as a formal proof, i . e. , a sequence of sequents. The formulas of
the argument occur as succedents of the formal proof. The antecedents list the assumptions
which are locally available. The introduction of an assumption ( “let”, “consider”) corresponds to
adding the assumption to the antecedent; the withdrawal of an assumption ( “thus”) corresponds
to taking the assumption off the antecedent . The sequents corresponding to a withdrawal are
justified by the rules introduced in the last theorem.

antecedent succedent comment

1 . ∀y ∃x y ≡ fx ∀y ∃x y ≡ fx HR
2 . ∀y ∃x y ≡ fx ∀y ∃x y ≡ gx ∀y ∃x y ≡ gx HR
3 . ∀y ∃x y ≡ fx ∀y ∃x y ≡ gx > > HR
4 . ∀y ∃x y ≡ fx ∀y ∃x y ≡ gx > ∃x y ≡ gx ∀E with 2
5 . ∀y ∃x y ≡ fx ∀y ∃x y ≡ gx > y = gz y = gz HR
6 . ∀y ∃x y ≡ fx ∀y ∃x y ≡ gx > y = gz ∃x z ≡ fx ∀E with 1
7 . ∀y ∃x y ≡ fx ∀y ∃x y ≡ gx > y = gz z ≡ fx z ≡ fx HR
8 . ∀y ∃x y ≡ fx ∀y ∃x y ≡ gx > y = gz z ≡ fx y ≡ gfx Sub
9 . ∀y ∃x y ≡ fx ∀y ∃x y ≡ gx > y = gz z ≡ fx ∃x y ≡ gfx ∃ I with 8
1 0 . ∀y ∃x y ≡ fx ∀y ∃x y ≡ gx > y = gz ∃x y ≡ gfx instantiation with 6 , 9
1 1 . ∀y ∃x y ≡ fx ∀y ∃x y ≡ gx > ∃x y ≡ gfx instantiation with 4, 1 0
1 2 . ∀y ∃x y ≡ fx ∀y ∃x y ≡ gx ∀y∃x y ≡ gfx universalization with 3 , 1 1
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