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1 Introduction

Mathematics models real world phenomena like space, time, number, probability, games, etc. It
proceeds by rigorous arguments from initial assumptions to conclusions. Its results are “uni-
versal”, or “logically valid”, in that they do not depend on external or implicit conditions which
may change with nature or society.

It is remarkable that mathematics is also able to model itself: Mathematical logic defines rig-
orously what mathematical statements and rigorous arguments are. The mathematical enquiry
into the mathematical method leads to deep insights into mathematics, applications to classical
field of mathematics, and to new mathematical theories. The study of mathematical language
has also influenced the study of formal and natural languages in computer science, linguistics
and philosophy.

1.1 A simple proof

We want to indicate that rigorous mathematical proofs can be obtained by a sequence of syn-
tactic manipulations of mathematical statements. Let us consider a fragment of the elementary
theory of functions which expresses that the composition of two surjective maps is surjective as
well:

Let f and g be surjective, i.e., for all y there is x such that y = f(z), and for
all elements y there is z such that y = g(z).

Theorem. go f is surjective, i.e., for all y there is x such that y = g(f(x)).

Proof. Consider any y. Choose z such that y = g(z). Choose x such that z =
f(z). Then y = g(f(x)). Thus there is x such that y = g(f(z)). Thus for all y
there is = such that y=g(f(x)).

Qed.

These statements and arguments are expressed in an austere and systematic language, which
can be normalized even further. Common abbreviations stand for certain figures of language:

Let Vydzy = f(x).
Let Vy3zy = g(x).

Theorem. Vy3dzy=g(f(x)).
Proof. Consider y.
Jzy=g(2).

Let y=g(2).

Jzz= f(x).

Let z= f(z).
y=g(f(2)).

Thus Jzy=g(f(x)).
Thus Jxy = g(f(x)).
Thus Vy3zy = g(f(z)).
Qed.

The lines in this text can be considered as formal sequences of symbols. Certain sequences of
symbols are acceptable as mathematical formulas. There are logical rules with allow the transfer
from certain formulas to other ones. These rules have a purely formal character and they can be
applied irrespectively of the “meaning” of the symbols and formulas.
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1.2 Formal proofs

In the example, 3z y = g(f(z)) is inferred from y = g(f(x)). The rule of existential quantifica-
tion: “put dz in front of a formula” can be applied in many circumstances and it is comparable
to a kind of left-multiplication of y= g(f(z)) by Jz.

Jz, g(f(2)) 3z g(f(2)).

It is conceivable that logical rules satisfy certain algebraic laws like associativity. Another inter-
esting operation is substitution: From y = g(z) and z = f(x) we inferred y = g(f(x)) by a “find-
and-replace™substitution of z by f(z).

Given a sufficient collection of rules, the above sequence of formulas, involving “keywords”
like “Let” and “Thus” can be a deduction or derivation in which every line is generated from ear-
lier ones by one of the rules. Mathematical results may be provable simply by the application of
formal rules. In analogy with the formal rules of the infinitesimal calculus one calls such a
system of rules a calculus.

1.3 Syntax and semantics

Obviously we do not just want to describe a formal derivation as a kind of domino but we want
to interpret the occuring symbols as mathematical objects. Thus we have to let variables z, y, ...
range over some domain like the real numbers R and let f and g stand for functions F', G: R —
R . Observe that the symbol or “name” f is not identical with the function F', and indeed f
might also be interpretated as another function F’. To emphasize the distinction between names
and objects, we consider symbols, formulas and derivations as syntax whereas the interpreta-
tions of symbols belong to the realm of semantics.

By interpreting z, y,... and f, g in a structure like (R, F', G) we can define straightforwardly
whether a formula like 3z g( f(x)) is satisfied in the structure. A formula is logically valid if it is
satisfied under all interpretations. The fundamental theorem of mathematical logic and the cen-
tral result of this course is GODEL’s completeness theorem:

Theorem 1. There is a calculus with finitely many rules such that a formula is derivable in the
calculus iff it is logically valid.

1.4 Set theory

In modern mathematics notion can usually be reduced to set theoretic notions: non-negative
integers correspond to cardinalities of finite sets, integers can be obtained via pairs of non-nega-
tive integers, rationals via pairs of integers, and real numbers via subsets of the rationals. Geo-
metric notions can be defined from real numbers using analytic geometry. The basic set theoret-
ical axioms can be formulated in the logical language indicated above.

This shows that the mathematical method can be understood abstractly as

mathematics = (first-order) logic + set theory.

1.5 Course overview
We shall cover the following topics:
1. Words
Calculi
Induction and recursion on calculi
Terms and formulas
Structures
The satisfaction relation
Logical implication and propositional connectives

Substitution and quantification rules

© X N oo N

A sequent calculus
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10. Examples of formal proofs

2 Words

The languages of mathematical logic can be defined within the framework of finite sequences.

Definition 2. Let A be a non-empty set. w is a finite sequence over A if there is n € N such
that w is a function satisfying w: {0, 1, ....,m — 1} — A . For w a finite sequence over A with
dom(w) = {0, 1, ..., n — 1} call n the length of w. For w a finite sequence of length n write
w(0)...w(n — 1) instead of w. We also write wy...wp—1 for w(0)...w(n —1).

We also say that A is an alphabet and call finite sequences over A words over A; a symbol
is an element of the alphabet A . Let A* be the set of all words over A . The empty sequence or
the empty word is the empty set ().

Note that in our convention, wy may denote the symbol wqy as well as the length-1 word wy .
This ambiguity will usually pose no problem in concrete situations.

Definition 3. For words w = wq...w,_1 and w' = w(...w,,_1 let w w’ = wo... Wy, _1w(...w),_1 be
the concatenation of w and w’. One can also define the word w"w’: {0,1,....m+n—1} >V by
o Jw(@), ifi<m
v (l)_{ w/'(i—m), ifi=m

We also write ww’ instead of w”w’.

Note that V stands for the class of all mathematical objects, the universe. We prove that ~
is an associative operation on words:
Theorem 4. For words w,w’,w” over A holds

a) (ww) w'=w(w "w")

b) w=wd=w
¢) ww'=ww"—-w=w"
d) ww=w""w-w=w"

This means that the set A of words together with ~ form a monoid which also satisfies the can-
cellation rules ¢) and d).

Proof. a) Let n,n’,n” € N such that w=wo...w,_1, W =wh...w_1, w’' =wl...w})»_;. Then

(’LUAU)/)A’LUH = (wo...wn,lwé...w,',/_l)Awé’...w,’,’u_l
= WO Wy — 1Whe e Wiy WG e Wi 111
= wo... Wy 1" (Wheo.w)yr_ 1wl .w)n_7)
= Woeo-Wp—1 " (Wheeow)yr 1 WY cwylr_ 1)
= w(w "w”).
The trouble with this proof is the intuitive but somewhat vague use of the ellipses “...”. In math-

ematical logic we are particularly attentative to such vagueness. It can be avoided as follows. In
set theory, the natural number n is defined as the set {0,1,...,n —1}:

n={0,1,...,n—1}.

This means that

0= {0,....,.—1} =90
1 = {0,...,0} = {0}
2 = {0,1}

3

= {0,1,2}
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If w=w...wp_1 is a word of length n then n =dom(w). So let, again, w, w’, w” be words, and
let n=dom(w), n’=dom(w’), n” = dom(w”). Then

dom(w w’) = n+n’
dom((w"w’)"w") = n+n'+n"

dom(w’ w”) = n'+n"”
dom(w”(w" w"”)) = n+n'+n"

To show that (v w’) " w” =w"(w’ "w”) we have to show that for all i <n+n’+n" holds

((w w’) w”)(i) = (w" (w" "w"))(i).
Let i<n+n'+n".
Case 1: i <n. Then

((w w’) w") (@) = (w w)(i)
w(7)
= (w0 W) (i)

Case 2: n<i<n-+n'. Then

(0w w) w") (@) = (w w)(i)
= w'(i—n)
= (w"w")(i—n)

= (w0 (W' w"))(0).

Case 8:n+n'<i<n-+n’+n". Then

(w w’) w") (i) = w"(i—(n+n))
= ww'(i—(n+n)+n)=w"w"(i—n)
= (w (w "w”)(i—n+n)
= (w™(w" w"))(@).
Thus ((w"w’) w”) (i) = (w” (w’ "w"))(¢) holds in all cases. O

3 Calculi

Let us fix a non-empty alphabet A. We want to express abstractly how words like Jxy =
g(f(x)) can be obtained from words like y = g(f(x)).

Definition 5. A relation R C (A*)" x A* is called a rule (over A). A calculus (over A) is a
set C of rules (over A).

A rule is often indicated as a production rule of the form

arguments o preconditions
production conclusion

For the above existential quantification we may for example write

£
Jxp

where the production is the concatenation of 3z and ¢.
Definition 6. Let C be a calculus over A . Let R C (A*)" x A* be a rule of C. For X C A* set
R[X]={w e A*|there are words ug, ..., un—1 € X such that R(ug,...,un—1,w) holds}.
Then the product of C is the smallest subset of A* closed under the rules of C:
Prod(C) = ﬂ {X CA*| for all rules ReC holds R[X]C X }.
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The product of a calculus can also be described “from below” by:

Definition 7. Let C be a calculus over A . A sequence w®, ..., w*=1) e A* is called a deriva-
tion in C if for every I <k there exists a rule R€C, R C (A*)" x A* and ly,..., 1,1 <l such that

Rw), ... wln=1) 1),

This means that every word of the derivation can be derived from earlier words of the derivation
by application of one of the rules of the calculus. We shall later define a calculus such that the
sequence of sentences
Let Vydzy = f(x).
Let Vy3zy = g(x).
Consider y.
Jzy=g(2).
Let y=g(2).
Jxz= f(x).
Let z= f(x).
y=g(f(x)).
Thus Jzy=g(f(x)).
Thus Jzy=g(f(x)).
Thus Vydz y = g(f(z)).
Qed.

is a derivation in that calculus.
Everything in the product of a calculus can be obtained by a derivation:

Theorem 8. Let C be a calculus over A*. Then
Prod(C) = {w|there is a derivation w'®, ..., w* =Y =w in C}.

Proof. The equality of sets can be proved by two inclusions.
(C) The set

X = {w|there is a derivation w®,...,w* =Y =w in C}

satisfies the closure property R[X] C X for all rules R € C. Since Prod(C) is the intersection of
all such sets, Prod(C) C X.

(D) Consider w € X. Consider a derivation w®, ..., w* =% =w in C. We show by induction on
I <k that w¥ € Prod(C). Let I < k and assume that for all i < holds w'¥ € Prod(C). Take a rule
ReC, RC (A")" x A* and l, ..., l,—1 < I such that R(w(, ... w1 1) Since Prod(C) is
closed under application of R we get w") € Prod(C). Thus w=w*~1 € Prod(C). U

Exercise 1. (Natural numbers 1) Consider the alphabet A ={|}. The set A*={0,],[|,]||,...} of words may
be identified with the set N of natural numbers. Formulate a calculus C such that Prod(C) =A*.

4 Induction and recursion on calculi
5 Terms and formulas

6 Structures

We interpret formulas like Vy3z y = g(f(z)) in adequate structures. The realm of structures and
interpretations is usually called semantics. Fix a symbol set

S=((Rn)n>1, (Frn)n>1,C).
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Definition 9. An S-structure is a pair A= (A4,a) mit:
a) A#0; A is the underlying set of 2A;
b) a:S=(U,s, B)U(U, 5, Fn) UC =V satisfying:
1. for r € Ry: a(r) is an n-ary relation on A, i.e., a(r) C A™;
2. for f€F,: a(f) is an n-ary function on A, i.e., a(f): A" — A;

3. for c€C: a(c) is a constant in A, i.e., a(c) € A.

We use various simplifying notations like 7%, % or ¢* instead of a(r), a(f), or a(c) resp. In
concrete cases, we simply list the values of a, i.e., the components of the structure 2.

Example 10. Formalize the structure R = (IR, a) of the ordered real numbers as follows. Take
the language of ordered fields

SOF:{<,+,',0,1}.

Define the interpretation function a: Sop — V by

a(<)=<® = {(u,v)eR*|u<v}

a(+) =% = {(us0,w) € R [utv=u}

a() =" = {(u,0,w) R |uv=1w}

a(0)=0% = 0eR
a(l)=1% = acR
Instead of (R,a) one also writes (R, <®,+8 B oR 1®) or (R, <,+,-,0,1).

Observe that the symbols could in principle be interpreted in completely different, counterin-
tuitive ways:

a(<)=<* = {(u,v) ER?|u>v}
a(+)=+* = {(u,v,w) R |u-v=w}
a( )= = {(u,v,w)eR3}|ut+v=w}

a'(0)=0* = 1eR
a 1% = 0eR

An S-structure interprets the symbols in S. To interpret a formula in a structure one also
has to interpret the (occuring) variabels.

Definition 11. Let A= (A,a) be an S-structure. An assignment in A is a function
B:{vn |IneN} — A.
The pair = (2, B) is called an S-interpretation.

The value §(v,) is the interpretation of the variable v, in . It will sometimes be important
to alter the interpretation of a specific variable.

Definition 12. Let A=(A,a) be an S-structure and let : {v, |n € N} — A be an assignment in
A. ForneN and ac€ A let

51%: (B\{(vn, B(va)}) U{(vn, a)}.

7 The satisfaction relation

Given an S-interpretation for a fixed language S we may interpret terms and formulas.
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Definition 13. Let 7= (2, 8), A= (A, a) be an S-interpretation. Define the interpretation J(t)
of a term t by recursion on the term calculus:

a) I(vn) = B(vy), for neN;
b) J(c)=c?, for ceC;
¢) I(ftoe.tn_1)= f23(to), ..., I(tn_1)), for f € F, and terms to,...,tn_1 -

This explains the standard interpretation of a term like v3 + v3), in the reals. The following sat-
isfaction relation is the fundamental logical relation which links syntax and semantics.

Definition 14. Let 7= (2, ), A = (A4, a) be an S-interpretation. Define the satisfaction rela-
tion

JE
for formulas ¢ € L by recursion on the formula calculus:

a) j':toztl Zﬁ j(t()):j(tl),

We say J satisfies ¢ or J is a model of p. For a set ® C L of S-formulas define
TJE® ff for all p € ® holds: TE ¢.
We also write AF @[] and AE ®[[] instead of TE ¢ and TE P resp.

Definition 15. Let S be a language and ® C LS. ® is universally valid if for every S-Interpre-
tation J holds JF ®. ® is satisfiable if there is an S-Interpretation J such that JF ®.

With the notion of F we can now formally define what it means that a group is commuta-
tive or that a function is differentiable, using adequate structures and formulas.

It is intuitively obvious that the interpretation of a term should only depend on the occuring
variables, and that the satisfaction for a formula should only depend on its free, non-bound vari-
ables.

Definition 16. For t € T define var(t) C {v,|n € N} by recursion on the term calculus:

—  var(z)={z};

—  var(c) =0;

- var(fto...tn—1) =, ., var(t:).
Definition 17. Fiir ¢ € L° define the set of free variables free() C {v,|n € N} by recursion on
the formula calculus:

—  free(to=t1) = var(to) Uvar(ty);

—  free(Rito...t,—1) =var(to) U... Uvar(ty_1);

—  free(—p) =free(p);

— free((p A ) =free((p v 1)) = free((p — ) = free((1p > 1) = free(p) Utree(t).



8 SECTION 7

—  free(Vzp) =free(Fxp) =free(p) \ {z}.

Example 18.

free((Ryxz — Vy-y=2)) free(Ryx) U free(Vy—y = 2)
free(Ryz) U (free(—y = 2)\ {y})
free(Ryx) U (free(y=2) \ {y})
= {y, 2z} U({y, 2} \{y})

= {y,zpu{z}

= {x,y,z}.

Definition 19. a) ForneN let LY ={pc L5 |free(p) C {vo, ..., vn_1}}.
b) @€ L° is an S-sentence if free(w)=0; L§ is the set of S-sentences.

Theorem 20. Let t be an S-term and let T= (2, 8), A= (4,a) and T = (A, §’) be S-interpre-
tations with 3| var(t)= 3’| var(t). Then J(t)=7T'(t).

Theorem 21. Let ¢ be an S-formula, and let 3= (2, ), A=(A,a) and T' = (2, B’) be S-inter-
pretations with | free(@) =’ | free(yp). Then
JE@ off TEe.
Proof. By induction on the formula calculus.
@ =tog=ty: Then var(to) Uvar(t1) = frei(y) and

JE@ iff J(to)=3(t1)
iff 3'(tg) =7'(t1) by the previous Theorem,
ifft 3'F .
@ =1 A x and assume the claim to be true for ¢ and x. Then

JEp iff JEY und JF x
iff 3'F 4 und J’'F x by the inductive assumption,
iff 3'F .

© = Juyyp and assume the claim to be true for ¢. Then free(y) C free(y) U {v,}. For all a € A:
(B4-) [ free(s) = (B'-) I free(y) and so

JE @ iff there exists a € A with (%, ﬁvi) b

iff there exists a € A with (2, 6’i) E 1 by the inductive assumption,
Un

ifft 3'E .
O
This allows further simplifications in the notations for F:
Definition 22. Let 2 be an S-structure and let (ag, ..., an—1) be a sequence of elements of A.

Let t be an S-term with var(t) C {vo,...,vn—1}. Then define
t*ag, ..., an—1) =3(1),

where 3= (2, B) is an interpretation with 5(0)=ag,...,B(n—1)=an,_1.
Let ¢ be an S-formula with free(t) C {vo,...,vn_1}. Then define

AE plag, ..., an—1] gdw. TE @,

where 3= (2, B) is an interpretation with 5(0)=ag,...,f(n—1)=a,_1.
In case n=0 also write t* instead of t¥ag, ..., an_1] and AF ¢ instead of AF plag,...,an_1]. In
this case we also say: 2 is a model of p, A satisfies ¢ or ¢ is true in 2.
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For ® C L§ a set of sentences also write
AED iff for all ¢ € P holds: AF .

Example 23. Groups. Sgr:={o, e} with a binary function symbol o and a constant symbol e
is the language of groups theory. The group axioms are

a) Yo Vg Vg 0 vg o v1ve = 0 0 vguqvs ;
b) Yvg cvge=wvy ;
¢) Yvoduy ocvgui =e .

This define the axiom set

D, = {Vvp V1 Vo o vg o v1ve = 0 0 vgu1ve, Yoy o vg e =g, YupIug o vgur =€}
An S-structure = (G, *, k) satisfies @, iff it is a group in the ordinary sense.

Definition 24. Let S be a language and ® C L§ be a set of S-sentences. Then let

Mod®® = {2|2 is an S-structure and AF }
be the model class of ®.

Thus Mod®¢:®q, is the model class of all groups. Model classes are studied in generality
within model theory which is a branch of mathematical logic. For specific ® the model class
Mod®® is examined in various fields of mathematics: group theory, ring theory, graph theory,
etc. Some typical questions questions are: Is Mod®® = (), i.e., is ® satisfiable? Can we extend
Mod®® by adequate morphisms between models?

8 Logical implication and propositional connectives
Definition 25. ®F ¢

Theorem 26. Properties of ®FE @ with respect to propositional connectives.

9 Substitution and quantification rules

Definition 27. For a term s € TS, pairwise distinct variables xo, ..., xr—1 and terms to, ...,
t._1€T?® define the (simultaneous) substitution
to....tr—1
g Qeetr—1
) Lo Lp—1
of to,...,tr—1 for xg,...,x,_1 by recursion:

to...tr i '
a) plomtot :{ v if 2# 202 F Tro1 for gl variables x;
L. Ty —1 ti, if t=m;

b) ¢ ;00‘_“';“1 =c for all constant symbols c;

€) (fs0msn_1) lecd = fgp towtecn o Loeliol for a1l meary function symbols f.

T Ty 1 T Tp_1 T T 1
Note that the simultaneous substitution

to....tr—1
S—
Lol —1

is in general different from a succesive substitution
o t1 tr—1
Lo L1 Tr—1

yxr __ yz

which depends on the order of substitution. E.g., x rrvi ey
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Definition 28. For a formula ¢ € LS, pairwise distinct variables xq, ..., ._1 and terms to, ...,
t,_1 €T define the (simultaneous) substitution
o to....tr—1
To...LTpr—1
of tg, ..., tr_1 for xg,...,x_1 by recursion:
— to...tr—1 __ to...tr—1 — to....tr—1 S.
a) (so=s1) P e for all terms sg, s1€T7;

b) (RS0..-Sn—1) Lortron _ Ry tomtron o T0mdeon for all n-ary relation symbols R and

To...Tr—1 To...Tr—1 TO...Tr—1

terms sg,...,5n—1 € T%;

to....tyr— to....tr—
) (m¢) s ===
to... by — to.... by — to.... by —
d) (pVo) == (e VY o —=)s

e) for (3zyp) % distinguish two cases:

..
— ifxe{xg, ..., xr—1}, assume that v = xo . Choose i € N minimal such that u = v;

does not occur in Ixp, tg,....,t,—1 and xg,...,T.—1. Then set

) to....tr—1 :Elu( t1...r—1u

Bz .
e oLy —1 T1eeilyp 1T

— ifxé¢{x,...,xr—1}, choose i € N minimal such that uw=wv; does not occur in Iz,

to,....,tr—1 and xg,...,x,._1 and set
to....tr— to....tr—
(33330) 0 r 1:3’(,&(%0 0 r—1U )
oLy —1 Toeoilyp 1T
f) for (Vzp) Z;% distinguish two cases:
— ifxe{xg, ..., xr—1}, assume that v = xg . Choose i € N minimal such that u = v;
does not occur in Vx o, tg,....,t,—1 and xg,...,.—1. Then set

to....tr—1 t1...r—1u
Vep) —————— =Vuy(p—"" ).
( SO) e oLy —1 (80 Lleoilyp 1T

— ifxé¢{x,...,xr—1}, choose i € N minimal such that uw=wv; does not occur in Yxp,

to, ..., tr—1 and xg,...,x,._1 and set
to....trfl to....t,«,lu
Vep) —————=Vu(p———"7——).
( SO) e oLy —1 ( Loeo:lyp 1T

The following substitution theorem shows that syntactic substitution corresponds semantically
to a (simultaneous) modification of assignments by interpreted terms.

Definition 29. Consider an S-interpretation J= (2, ), pairwise distinct variables xg, ..., Tr—1
and ag,...,a._1 € A. Define a modified assignment and interpretation by

Bl (5 {0, B(20))s s (201, Bl 1) DU { (00, @0)s s (0 -1,07-1)}

L. oLy —1

and
5 ag...r—1 _ (Ql, B ap...ar—1 -
L. Ly —1 Lol —1
Theorem 30. Consider an S-interpretation J = (2, (), pairwise distinct variables xo, ..., T, _1

and terms to,...,t,_1 €T°. If s€ TS is a term,

j(s to..tr—1\ 5 j(to)....j(tr_ﬂ (S)
L. Lyr—1 Lo Lpr—1
If o€ L® is a formula,
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to....tr—1 gdw. 3 j(to)....j(trfﬂ

JE@
L. Lpr—1 L. oLy —1

Fe

Proof. By induction on the complexities of s and ¢.
Case 1: s=u.
Case 1.1: x ¢ {xo,...,xr—1}. Then

Iz to....tr—1 — ()= B(z) =3 J(t0)....T(tr—1) (z).

L.y —1 TOeooLp—1
Case 1.2: x=x;. Then

Ao eteot) () — Ao g g Ao Abot) )

Case 2: s=c is a constant symbol. Then

J(c to....tr—1 —3(0) — Ay J(to)....j(tr_ﬂ (C)
Lo oLy —1 L. oLy —1

Case 3: s = fsg...5,_1 where f is an n-ary function symbol and the terms s, ..., s,—1 € T sat-
isfy the theorem. Then

j((fSO---Sn—Q M) — j(fso to....tr—1 s to....tr—1

LQeooLpr—1 Lo oLy —1 e oLy —1
to....tr— to....tr—
_ A~ Q-eeelr—1 ~ Qeeelr—1
= Jso——), .., J(Sp—1————
f ( (50350...357«71), ’ (Sn 1350...357«71))
~ J(to)...3(tr - ~ JI(to)...3(tr—
_ fm(J (0) (T 1) (So),...,J ( 0) (T 1)(57}71))
e oLy —1 e oLy -1
~ JI(to)...3(tr—
= JMUSOWS"%),
Zoeo oLy —1

Assuming that the substitution theorem is proved for terms, we turn to formulas:
Case 4: p=s9=s1. Then

JE (50231) io dr_1 i JE (30 to....tr—1 — to....tr—1
0eeelp—1 Lo Lpr—1 L. Ly —1
°F 3(50 to....tr71):j(51 to....trfl)
Lol —1 Zoeoo Ly —1
T 3 J(to)....3(tr—1) (50) =7 J(to)....3(tr—1) (51)
L. Ly —1 Lol —1
lff j—J(tO)J(tril) '280581 .
L. Lpr—1

Propositional connectives of formulas behave similar to terms, so we only consider the existential
quantification case:
Case 5: ¢ =(Jzv)) %, assuming that the theorem holds for ).
Case 5.1: © =z . Choose 7 € N minimal such that u=wv; does not occur in Iz, tg,....,t,—1 and
0, ..., Tpr—1. Then
to....tr—1 t1....tr—1u
Jrp) ————=Fu(p ————).
( (,0) el —1 ((,0 Lol 1T

to....tr—1 “F 3|=3u(<p t1...tr—1u

L. oLy —1 L1 lyp 1T

iff there exists a € A with J2F %)
u

(definition of F)
iff there exists a € A with
TJE2(t). T2 (tr 1) T (u
(59 —(t1).... I (tr—1) I (u)
u X1 Tp_1
(inductive hypothesis for ¢)

JE(zp)

t1....tr—1u
T1...0p 1T

Fe
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iff there exists a € A with

(j%)j(t;)....J(trﬂ)a
1...Lp 1T
(since u does not occur in t;)

Fe

iff there exists a € A with

iff

iff

iff

5 J(t1)...3(tr—1)a
L1..0p-1T
(since u does not occur in @)
there exists a € A with
~J(t)...Tr—1) \ a
100 Lp—1 X
(by simple properties of assignments)
j(h)....j(tr_l)
A I 1)y 5
(j L1l —1 ) Ty
(definition of F)
(3 TI(to)I(t1)....3(tr-1)
LToL1...LTp—1
(since x =z is not free in Jzr ).

Fe

Fe

YEJze

SECTION 9

Case 5.2: x ¢ {xo,...,xr_1}. Then proceed similarly. Choose ¢ € N minimal such that u=wv; does

not occur in Jzx g, to,....,t,—1 and xg,...,x,—1. Then
to....tr—1 to....tr—1u
dryp) ————==Ju(p —————).
( (,0) el —1 ((,0 Lol 1T
~ to...tr—1 . to...tr—1u
JE(drp) ———— iff JEJu(p—"———
( (P) Lo oLy —1 ((pl'()...l'r_lm

iff

iff

iff

iff

iff

iff

there exists a € A with 32k %)
u

efinition o
definiti fE
there exists a € A with
(jg) 3%(t0)....3%(tr_1)3%(u)
U I
(inductive hypothesis for )
there exists a € A with
(jﬁ) j(to)....j(tr_l)a
u oo oLy 1T
since u does not occur in t;
i d in t
there exists a € A with
5 J(to)....J(t,«fl)a o
0o Lp—-1T
(since u does not occur in @)
there exists a € A with
~ j(to)....j(tr_l) a
L00)e I —1) ) @
(J e olpr—1 ) x v
(by simple properties of assignments)
(j j(to)....j(tr_1) )T

ool —1

(definition of F)

Fe

We can now formulate further properties of the F relation.

Theorem 31. Let S be a language. Let ® C LS, t.t' € TS and p, 1 € LS. Then:

a) if EVxp, then <I>|=g0£;
b) if ®F -, then ®FIzyp;

to....tr—1u



A SEQUENT CALCULUS 13

c) if D@L and y¢ free(®U{Vzp}), then PEVrp;
d) if @U{cp%}hi/) and y ¢ free(QU{Jxp, v }), then U{3zp}Fy;
e) if <I>|=<p%, then (I)U{tEt/}':(p%.

Proof. a) Let ® EVzy. Consider an S-interpretation J = (A, 3) with JF ®. For all a € A holds

J % F ¢ . In particular J RIOFS @ . By the substitution theorem, JkF gp% . Thus ®F w%.

x

b) Let & F @%. Consider an S-interpretation J with J F ®. Then J F go% . By the substitution

theorem J 2 . Hence JE3Jxp. Thus PEIxp.

c) Let F @% and y ¢ free(® U {Vx¢}). Consider an S-interpretation J= (2, 3) with JF ®. Let
a € A. Since y ¢ free(®), 3% E ®. By assumption, 3% E w%. By the substitution theorem,
~Q j% (v)
@ y)
Case 1: x=7y. Then 3% F .
Case 2: x#+y. Then y ¢ free(y) and so 3% E .

Thus JEVxp. Thus ®FVre.
d) Let ® U {¢ £} F ¢ and y ¢ free(® U {3z, }). Consider an S-interpretation J = (2, 3)
with TEQU{Jzp}. Take a € A with J%IZ ©.

d

F ¢ and so (J )%:3%#90

e
Y yz

—

Case 1: x=vy. Then (j%)%:j% un (3%)% E .
Case 2: x#+y. Then y ¢ free(y) and (j%)% Ee
Obviously a:j% (y) and so
3% ()
(3 %) k.
By the substitution theorem
(3 %) Fod
Since y ¢ free(®)
a
J)ED
( y)

By assumption (J %) F 1 and since y ¢ free()) we get JE ¢. Thus @U{3zp}E .
e) Let ® F gp% . Consider an S-Interpretation J mit J F ® U {¢t = ¢'}. Then J(¢) = 3(¢'). By

assumption JF @%. By the substitution theorem

~3(t)
——F
J . ©
Then
~(+!
3*,(5 ) Eo
and again by the substitution theorem
t/
Fo—.
J Lo
Thus QU {t=t'}F o= O

Note that in proving these proof rules we have obviously used the corresponding figures of
argument in the language of our discourse.

10 A sequent calculus

We can list the above rules of implication established in the previous two sections in the form of
a calculus which leads from correct implications ® F ¢ to further correct implications ®' E ¢’
We shall later show in the GODEL completeness theorem that these rules actually generate the
implication relation F. Fix a language S for this section.
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We only

Definition 32. An ordered pair (®, ¢) is a sequent if ® C L% and ¢ € L°. Let Seq(S) be the
set of all sequents for the language S. We write ® ¢ instead of (P, ¢). ® and ¢ are the
antecedent and the succedent of the sequent ® . We can also write the antecedent as a concate-
nation of sets of formulas and single formulas:

D1)y... 51 ¢ instead of PU{g,..., Y1} ¢

und
Voo -1 @ instead of {o,..., Vk-1}p.
A sequent ® ¢ is correct if ®F p.

Definition 33. The sequent calculus consists of the following (sequent-)rules:

—  monotonicity rule (MR) i—w@
¥
—  assumption rule (AR) oo
— = -introduction (—1) 2 d :ﬁ 7
N
Q@
—  — -elimination (— E) & p—
Q9
. . D ¢
—  V-introduction (V E)
¢ vy
—  V-introduction (V E) i z\/
¥
¢ oV
—  V-elimination (VE) i ;‘Z:iﬁ
e X
¢ 9
—  L-introduction (LI) ® -
o 1
—  L-elimination (LE) q) ;

d Y

—  V-introduction (VI) — P , if y ¢ free(PU{Vaep})
d Vzp

o S Vzp

—  V-elimination (VE) —F—, ifteT?

—  F-introduction (3I) — Tz ifteT
® dxp
P Jxp

—  J-elimination (3E) @ w2 ¢ if y¢free(®U{Tzp, v})
@ (G

— = _q ] = - ) S

= -introduction (=1) T ,ifteT
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—  =-elimination (=E) ® t=t'
o o
(p—

The deduction relation is the smallest subset + C Seq(S) of the set of sequents which is closed
under these rules. We write ® - ¢ instead of (®, ¢) € b and say that ¢ can be deduced or
derived from ®.

Theorem 34. A formula ¢ € L° is derivable from ® C L° (®F ) iff there is a derivation or a
formal proof

(bOSDO ‘I)1(,01 ...... (bk—l(pk—l

of ®p=Pk_10r_1, in which every sequent ®,p; is generated by a sequent rule from sequents
(I)io(pim ey (bin—l(pin—l with g, ..., tn_1<1.
We usually write the derivation ®opg P11 ...... Py _1pr—1 as a scheme

Do
D1

Qp 1061
where we may also mention the rules and other remarks along the course of the derivation.

In our theorems on the laws of implication we have already shown:

Theorem 35. The sequent calculus is correct, i.e., every rule of the sequent calculus leads from
correct sequents to correct sequents. Thus every derivable sequent is correct. This means that

FCE.

The GODEL completeness theorem proves the opposite inclusion: FCF.
We also note the compactness theorem: finite subsets etc.

11 Examples of formal proofs

11.1 Properties of =

We show that = as seen by the sequent calculus is an equivalence relation.
Symmetry:

rT=y rT=y (assumption rule)
T=y T=x ( =-introduction)
T=y (z= x)g (where z ¢ var(tg))
T=y (z= x)% ( =-elimination)
T=y y=x

Transitivity:
toEtl toEtl (VR)
to=t1 (to=x)— (wherez ¢ var(ty))
x
to=t, t1=to (tozz)f (Sub)
toEtl t1£t2 toEtQ
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We show further that = is actually a congruence relation from the perspective of .

Theorem 36. Let ¢ be an S-formula and to, ..., tn—1,th,....th_1€TS. Then

t0eth_1
) ) seelbn —

Ot o=t ety =t L=l
) ) V0...Un—-1 V0...Un—1
1s derivable.

Proof. Choose pairwise distinct “new” variables ug, ..., uy—1. Then

to..ln—1 _ up U1 Un-1to t1 tn-1

VQ...Un—1 B Vo V1 Up—1 Up UL Up—1
and

ttn_1 o Ul Un—1th U1 tp_q

V0...Un—1 B Vo V1 Up—1 Up UL Up—1 '

Thus the simultaneous substitutions can be seen as successive substitutions, and we may use the
substitution rule repeatedly:

o to...tn—1 o to...th—1
V0...Un—-1 V0...Un—1
U Un-1to  ta U Un-1to  tn-
Vo Un—1 UQ Un—1 Vo Un—1 U0 Unp—1
I
up  Un—1 to tn—1 _ up  Un—1 to tn—1
T s T T e tn_lz n—1 Y — ... T e
Vo Un—1 UQ Un—1 Vo Un—1 U0 Unp—1
/ I
up  Un—1 to tn—1 — o up  Un—1 tp tn—1
20 Anmt 0 tpo1=th 1. to=th 02 0.
Vo Un—1 UQ Unp —1 Vo Un—1 UQ Up —1
to...tn—1 , , £ tn—1
o2l =l ot =t Oeein—l
V0...Un—1 V0...Un—1

11.2 Derivable rules

In proofs recurring combinations of elementary rules are combined into derived rules. This corre-
sponds to the introduction of involved proof schemes in ordinary proofs.

Definition 37. A sequent rule is derivable if its transformation from input to output sequents
can be achieved by a composition of rules of the sequent calculus. By the correctness of the
sequent calculus, every derivable rule is correct.

Theorem 38. For I'C L°, ¢, € L, the following cut rule is derivable:

Ly Toy
'y ’
A rule with several input sequents can also be written in a vertical fashion:
r e
Lo
r v
Proof.
1. T (¢ input sequent
2. T ¢ 1 input sequent
3. T' m¢p =Y ¢ antecedent rule with 1
4. T' =¢p =Y - hypothesis rule
5. I' —p 1 contradiction rule with 3, 4
6. T 1 case
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We derive more rules which will be used to formalize “natural proofs”.

12 Natural proofs

The preceding example shows that formal proofs with sequents contain substantial redundan-
cies. The surjectivity assumptions Vydzy = fzx and Vy3dz y = gz, e.g., have to be repeated in
every antecedent. We introduce a notation for proofs of the above kind which basically consists
of the succedents of the sequents. The antecedents can be determined from the succedents and
the keywords “let” and “thus”. We work over a fixed language S.

Definition 39. A proof line is a sequence z of symbols of one of the following forms:
_ (((p.ﬂ
—  “Let p.”
“Thus ¢.”

where ¢ € L is a formula.
If zg...z1—1 is a sequence of proof lines, we define a corresponding expansion

AOQOO Alsﬁl ...... Al71¢l71

by recursion such that for all i <l, A; is a finite sequence of S-formulas and @; is an S-formula:

Let A_1=0. Assume that A;_1 is defined; then
— if z; is of the form “p.” then set A;= A;_1 and ;= p;
— if z; is of the form “Let ¢.” then set A;i=A;_1"p and p;=p;
— if z; is of the form “Thus ¢.” then set A;=A;_1| (length(A;_1) —1) and p;i=¢p

For a finite sequence A = (ag, ..., an—1) define {A}} = {ao, ..., an—1}. Then we say that the
sequence zg...zi—1 of proof lines is a natural proof, if

H{Aotwo {A1h w1 {AI-1 011

1s a derivation.

Note that the sequences Ay, ..., A;_1 can be seen as a “stack” of formulas; A; consists of all
hypotheses which are active at step ¢ of the proof. The “command” “Let ¢.” pushes the formula
o onto the stack, “Thus ¢.” pops the top element from the stack.

12.1 Swurjective functions
Consider the example of the introduction about surjective functions:
(1) Let Vydz y = f(x).

(2) Let Vy3dz y = g(z).
(Theorem. Vydzy = g(f(z)).

Proof.)
(3) Consider y.
4) Jzy=g(2).

)
5) Let y= g(z).

6) 3z z = f(x).

7) Let z = f(z).

8) y=g(f(z)).

9) 3ﬂﬁy g9(f(x))

10) Thus Jzy=g(f(x)).
11) Thus Fzy=g(f(x)).
12) Thus Vy3zy = g(f(x)).
Q

(
(
(
(
(
(
(
(
(
(Qed.)
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We reformulate the argument as a formal proof, i.e., a sequence of sequents. The formulas of
the argument occur as succedents of the formal proof. The antecedents list the assumptions
which are locally available. The introduction of an assumption (“let”, “consider”) corresponds to
adding the assumption to the antecedent; the withdrawal of an assumption (“thus”) corresponds
to taking the assumption off the antecedent. The sequents corresponding to a withdrawal are
justified by the rules introduced in the last theorem.

antecedent succedent comment
1. Vydaey= fzx Vydzy= fr HR
2. Vydzy=fxr Vydry=gzx Vydry=gx HR
3. Vydey=fr Vydzy=gx T T HR
4. Vydey= for Vydzy=gx T Jry =gz VE with 2
5. Vydzy=fxr Vydey=gxr T y=gz y=gz HR
6. Vydezy=fxr Vydrvy=gxr T y=gz drz= fo VE with 1
7. Vydzy=fxr Vydey=gx T y=gz z=fr 2= fx HR
8. Vydzy=fxr Vydry=gx T y=gz z=fzx y=gfz Sub
9. Vydzy=fxr Vydey=gx T y=gz z=fzr Jay=gfz dI with 8
10. Vydaey= fr Vydzy=gx T y=gz dry=gfx instantiation with 6,9
11. Vydey= fx Vydzy=gx T Jey=gfx instantiation with 4,10
12. Vydey= fx Vydzy=gx Vydzy= g fr universalization with 3,11



