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Prologue

These lecture notes were written for a lecture course on constructibil ity and fine
structure theory at the University of Bonn in the summer term of 2005 .

3





Table of contents

Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 The Language of Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 . 1 C lass Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 . 2 Extending the Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1
2 . 3 Relations and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3

3 The
�����������
	���
��������������

Axioms . . . . . . . . . . . . . . . . . . . . . . . 1 5

4 Induction, recursion, and ordinals . . . . . . . . . . . . . . . . . . . . . . 1 7

4. 1 ∈ -induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7
4. 2 Transitive Sets and Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7
4. 3 ∈ -recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8
4. 4 Ordinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0
4. 5 Natural numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1

5 Transit ive ∈ -models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5

5 . 1 Relativizations of Formulas and Terms . . . . . . . . . . . . . . . . . . . . . . 2 5
5 . 2 Transitive Models of set theory . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8

6 Definite formulas and terms . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 . 1 Definiteness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6 . 2 Absoluteness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Formalizing the logic of set theory . . . . . . . . . . . . . . . . . . . . . . 39

7. 1 First-order logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7. 2 Definable power sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8 The constructible hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8 . 1 Wellordering L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8 . 2 An external continuum hypothesis . . . . . . . . . . . . . . . . . . . . . . . . 46

9 The Axiom of Constructibility . . . . . . . . . . . . . . . . . . . . . . . . . 47

1 0 Constructible Operations and condensation . . . . . . . . . . . . . . 49

5



1 0 . 1 Constructible operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 0

1 1 GCH in L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3

1 2 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5

1 3 The principle ♦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 9

1 4 Combinatorial principles and Suslin trees . . . . . . . . . . . . . . . . 63

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Table of contents



Chapter 1

Introduction

The scope of these lecture notes roughly correspond to the contents of the mono-
graph Constructib ility by Keith J . Devlin . S ome mayor simplifications are
obtained by using the hyperfine structure theory of Sy D . Friedman and the
present author.

Kurt Godel¨ proved the unprovability of the negation of the generalized con-
tinuum hypothesis ( GCH) , i . e. , its ( relative) consistency, in notes and articles
published between 1 938 and 1 940 [ 1 ] , [ 3 ] , [ 2 ] , [ 4] . He presented his results in var-
ious forms which we can subsume as follows: there is an ∈ -term L such that

ZF ` ‘ ‘ (L , ∈ ) � ZF + the axiom of choice ( AC) + GCH” .

So ZF sees a model for the stronger theory ZF + AC + GCH. If the system ZF is
consistent, then so is ZF+AC+GCH. In ZF, the term L has a host of special
properties ; L is the ⊆ -minimal inner model of ZF , i . e. , the ⊆ -smallest model of
ZF which is transit ive and contains the class Ord of ordinals .

The model L will be the central ob ject of study in this lecture course.
The construction of L is motivated by the idea of recursively constructing a

minimal model of ZF . The archetypical ZF-axiom is Zermelo ’ s comprehension
schema ( axiom of sub se ts ) : for every ∈ -formula ϕ ( v , w� ) postulate

∀x∀p� { v ∈ x | ϕ ( v , p� ) } ∈ V.

The term V denotes the abstraction term { v | v = v } , i . e. , the set theoretic uni-
verse ; formulas with abstraction terms are abbreviations for pure ∈ -formulas.
E . g. , the above instance of the comprehension schema abbreviates the formula

∀x∀p� ∃ y∀v ( v ∈ y ↔ v ∈ x ∧ ϕ ( v , p� ) ) .

The basic idea for building a ( minimal) model of set theory is to form some kind
of closure under the operations

( x , p� ) � { v ∈ x | ϕ ( v , p� ) } .
There is a difficulty where to evaluate the formula ϕ . The comprehension instance
should be satisfied in the model to be built eventually, i . e. , the quantifiers of ϕ
may have to range about sets which have not yet been included in the construc-
tion. To avoid this one only lets the evaluation of the formula refer to sets already
constructed and considers the modified definability operations

( x , p� ) � { v ∈ x | ( x , ∈ ) � ϕ ( v , p� ) } .
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These could be termed predicative operations whereas the strong operation would
be impredicative . The set { v ∈ x | ( x , ∈ ) � ϕ ( v , p� ) } is determined by the parame-
ters x , ϕ , p� . One can thus view { v ∈ x | ( x , ∈ ) � ϕ ( v , p� ) } as an interpretation of a
name ( x , ϕ , p� ) . These ideas will be essential in the definition of the constructib le
hierarchy .
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Chapter 2

The Language of Set Theory

The intuitive notion of set is usually described by Georg Cantor ’ s dictum

Unter einer Menge verstehen wir jede Zusammenfassung M von
bestimmten, wohlunterschiedenen Objekten m unsrer Anschauung
oder unseres Denkens ( welche die , , Elemente‘ ‘ von M genannt
werden) zu einem Ganzen. [ Cantor , S . 282 ; By a set we under-
stand every co llec tion M of definite , distinguished objec ts m of our
perceptions or thoughts (which are called the ‘ ‘ e lements” of M) into
a who le . ]

This idea may be formalized by c lass terms :

M = {m | ϕ (m) } .

M is the c lass of all m which satisfy the ( mathematical) property ϕ . C lass terms
are common in modern mathematical practice. The transfer from the definining
property ϕ to the corresponding collection M = {m | ϕ (m) } supports the view that
one is working with abstract ‘ ‘ ob jects” , namely c lasses , instead of ‘ ‘ immaterial”
propertie s . How such classes can reasonably and consistently be treated as ob jects
is a matter of set theoretical and foundational concern. It is partially answered by
the Zermelo-Fraenkel axioms of set theory which we shall introduce in the
next chapter.

Even without set theory, classes can be treated intuitively. One can describe
properties of class terms and define complex terms from given ones, thus devel-
oping a c lass theory . We shall take the view that sets are ‘ ‘ small” classes . The
language of class terms is thus also the language of set theory — or even of math-
ematics , if we think of all of mathematics as formalized within set theory.

2 . 1 Class Terms

Classes or collections may be queried for certain elements: m is an element of
M = {m | ϕ (m) } if it satisfies the defining property ϕ . In symbols :

m ∈ M if and only if ϕ (m) .
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So in m ∈ {m | ϕ (m) } the class term may be eliminated by just writing the prop-
erty or formula ϕ . Carrying out this kind of elimination throughout mathematics
shows that all mathematical terms and properties may be reduced to basic for-
mulas without class terms. The basic language can be chosen extremely small ,
but we may also work in a very rich language employing class terms.

The set theoretic analysis of mathematics shows that the following basic lan-
guage is indeed sufficient:

Definition 2 . 1 . The (basic) language of set theory has variab le s v0 , v1 , � .
The atomic formulas of the language are the formulas x = y (‘ ‘ x equals y” ) and
x ∈ y (‘ ‘ x is an e lement of y” ) where x and y are variab le s . The co llec tion of for-
mulas of the language is the smalle st co llec tion L ( ∈ ) which contains the atomic
formulas and is c lo sed under the fo llowing rule s:

− if ϕ is a formula then ¬ϕ (‘ ‘ no t ϕ” ) is a formula;

− if ϕ and ψ are formulas then ϕ ∨ ψ (‘ ‘ϕ or ψ” ) is a formula;

− if ϕ is a formula and x is a variab le then ∃x ϕ (‘ ‘ there is x such that ϕ” )
is a formula .

A formula is also called an ∈ -formula . As usual we understand o ther proposi-
tional operators or quantifiers as ab breviations. So ϕ ∧ ψ , ϕ→ ψ , ϕ↔ ψ and ∀x ϕ
stand for ¬ (¬ϕ ∨ ¬ψ ) , ¬ϕ ∨ ψ , ( ϕ→ ψ ) ∧ ( ψ→ ϕ ) and ¬∃x¬ϕ respec tive ly. Also

the formula ϕ
y

�

x
� is o b tained from ϕ by substituting the variab le s x� by y� .

We now introduce the rich language involving class terms.

Definition 2 . 2 . A class term is a symbo l sequence of the form

{x | ϕ } ( ‘ ‘ the c lass of x such that ϕ” )

where x is one of the variab le s v0 , v1 , � and ϕ is an ∈ -formula . A term is a
variab le or a c lass term. We now allow arb itrary terms to be used in (atomic) for-
mulas . A generalized atomic formula is a formula of the form s = t or s ∈ t
where s and t are terms. Form the generalized formulas from the generalized
atomic formulas by the same rules as in the previous definition.

Generalized formulas can be translated into strict ∈ -formulas according to the
above intuition of class and collection. It suffices to define the elimination of class
terms for generalized atomic formulas . So we recursively translate

y ∈ {x | ϕ } into ϕ
y

x
,

{x | ϕ } = { y | ψ } into ∀z ( z ∈ {x | ϕ } ↔ z ∈ { y | ψ } ) ,
x = { y | ψ } into ∀z ( z ∈ x↔ z ∈ { y | ψ } ) ,
{ y | ψ } = x into ∀z ( z ∈ { y | ψ } ↔ z ∈ x ) ,

{x | ϕ } ∈ { y | ψ } into ∃z ( ψ
z

y
∧ z = {x | ϕ } ) ,

{x | ϕ } ∈ y into ∃z ( z ∈ y ∧ z = {x | ϕ } ) .

1 0 The Language of Set Theory



The translation of the equalities corresponds to the intuition that a class is deter-
mined by its extent rather by the specific formula defining it . If at least one of s
and t is a class term, then by the elimination procedure

s = t iff ∀z ( z ∈ s↔ z ∈ t) .
We also have x = { y | y ∈ x } where we assume a reasonale choice of variables . In
this case this means that x and y are different variables . Under the natural
assumption that our term calculus satisfies the usual laws of equality, we get

x = y iff { v | v ∈ x } = { v | v ∈ y }
iff ∀z ( z ∈ { v | v ∈ x } ↔ z ∈ { v | v ∈ y } )
iff ∀z ( z ∈ x↔ z ∈ y) .

This is the axiom of extensionality for sets , which will later be part of the set-the-
oretical axioms. We have obtained it here assuming that = for class terms is
transit ive. In our later development of set theory from the Zermelo-Fraenkel
axioms one would rather have to show these axioms imply the equality laws for
class terms.

2 . 2 Extending the Language

We introduce special names and symbols for important class terms and formulas.
Naming and symbols follow traditions and natural intuitions. In principle, all
mathematical notions could be interpreted this way, but we restrict our attention
to set theoretical notions. We use also many usual notations and conventions, like
x

�
x instead of ¬ x = x .

Definition 2 . 3. Define the fo llowing c lass terms and formulas:

a ) ∅ : = {x | x �
x } is the empty class ;

b ) x ⊆ y : = ∀z ( z ∈ x→ z ∈ y) deno tes that x is a subclass of y;

c ) {x } � { y | y = x } is the singleton of x ;

d ) {x , y } � { z | z = x ∨ z = y } is the unordered pair of x and y;

e ) ( x , y) � { {x } , {x , y } } is the (ordered) pair of x and y;

f) {x0 , � , xn− 1 } � { y | y = x0 ∨ � ∨ y = xn− 1 } ;
g ) x ∩ y � { z | z ∈ x ∧ z ∈ y } is the intersection of x and y;

h ) x ∪ y � { z | z ∈ x ∨ z ∈ y } is the union of x and y;

i ) x \ y � { z | z ∈ x ∧ z � y } is the difference of x and y;

j) x � { y | y ∈ x } is the complement of x ;

k )
⋂
x � { z | ∀y ( y ∈ x→ z ∈ y ) } is the intersection of x ;

l )
⋃
x � { z | ∃ y ( y ∈ x ∧ z ∈ y ) } is the union of x ;

2 . 2 Extending the Language 1 1



m ) P( x ) � { y | y ⊆ x } is the power of x ;

n ) V � {x | x = x } is the universe or the class of all sets ;

o ) x is a set � x ∈ V.

Strict ly speaking, these notions are just syntactical ob jects . Nevertheless they cor-
respond to certain intuit ive expectations, and the notation has been chosen
accordingly. The axioms of Zermelo-Fraenkel set theory will later ensure,
that the notions do have the expected properties .

Note that we have now formally introduced the notion of se t . The variables of
our language range over sets, terms which are equal to some variable are sets . If t
is a term then

t is a set iff t ∈ V iff ∃ x ( x = x ∧ x = t) iff ∃x x = t .

Here we have inserted the term t into the formula ‘ ‘ x is a set” . In general, the
substitution of terms into formulas is understood as follows: the formula is trans-
lated into a basic ∈ -formula and then the term is substituted for the appropriate
variable. In a similar way, terms t0 , � , tn− 1 may be substituted into another terms
t( x0 , � , xn− 1 ) : let t( x0 , � , xn− 1 ) be the class term {x | ϕ ( x , x0 , � , xn− 1 ) } ; then

t( t0 , � , tn− 1 ) = {x | ϕ ( x , t0 , � , tn− 1 ) }

where the right-hand side substitution is carried out as before. This allows to
work with complex terms and formulas like

{ ∅} , { ∅ , { ∅} } , x ∪ ( y ∪ z ) , x ∩ y ⊆ x ∪ y , ∅ is a set .

A few natural properties can be checked already on the basis of the laws of first-
order logic . We give some examples :

Theorem 2 . 4. a ) For terms t we have ∅ ⊆ t and t ⊆ V.

b ) For terms s , t , r with s ⊆ t and t ⊆ r we have s ⊆ r .
c ) For terms s , t we have s ∩ t = t ∩ s and s ∪ t = t ∪ s .

Proof. b) Assume s ⊆ t and t ⊆ r . Let z ∈ s . Then z ∈ t , s ince s ⊆ t . z ∈ r , s ince
t ⊆ r . Thus ∀z ( z ∈ s→ z ∈ r ) , i . e. , s ⊆ r .

The other properties are just as easy. �

Russell ’ s antinomy is also just a consequence of logic :

Theorem 2 . 5 . The c lass {x | x � x } is no t a se t.

Proof. Assume for a contradiction that {x | x � x } ∈ V = {x | x = x } . This trans-
lates into ∃z ( z = z ∧ z = {x | x � x } ) . Take z such that z = {x | x � x } . Then

z ∈ z↔ ( x � x )
z

x
↔ z � z .

Contradiction. �

1 2 The Language of Set Theory



2 . 3 Relations and Functions

Apart from sets , re lations and functions are the main building blocks of mathe-
matics. As usual, relations are construed as sets of ordered pairs. Again we note
that the subsequent notions only attain all their intended properties under the
assumption of sufficiently many set theoretical axioms.

Definition 2 . 6 . Let t be a term and ϕ be a formula, where x� is the sequence of
variab le s which are bo th free in t and in ϕ . Then write the generalized c lass term

{ t | ϕ } instead of { y | ∃x� ( y = t( x� ) ∧ ϕ ( x� ) ) } .

Definition 2 . 7 . a ) x × y = { (u , v ) | u ∈ x ∧ v ∈ y } is the (cartesian) product
of x and y .

b ) x is a relation � x ⊆ V × V.

c ) x is a relation on y � x ⊆ y × y .

d ) x ry � ( x , y ) ∈ r is the usual infix no tation for re lations.

e ) dom( r ) � {x | ∃ y x ry } is the domain of r .

f) ran( r ) � { y | ∃x x ry } is the range of r .

g ) field( r ) � dom( r ) ∪ ran( r ) is the field of r .

h ) r � a � { ( x , y) | ( x , y ) ∈ r ∧ x ∈ a } is the restriction of r to a .

i ) r [ a ] � { y | ∃x ( x ∈ a ∧ ( x , y ) ∈ r } is the image of a under r .

j) r− 1 [ b ] � {x | ∃ y ( y ∈ b ∧ ( x , y ) ∈ r } is the preimage of b under r .

k ) r ◦ s � { ( x , z ) | ∃ y ( x ry ∧ ys z ) } is the composition of r and s .

l ) r− 1 � { ( y , x ) | ( x , y) ∈ r } is the inverse of r .

Definition 2 . 8 . a ) f is a function � f is a re lation ∧ ∀x∀y∀z ( x fy ∧
x fz→ y = z ) .

b ) f ( x ) =
⋃ { y | x fy } is the value of f at x .

c ) f is a function from a into b � f : a→ b � f is a function ∧ dom( f ) =
a ∧ ran( f ) ⊆ b .

d ) ab � { f | f : a→ b } is the space of all functions from a into b .

e ) × g � { f | dom( f ) = dom( g) ∧ ∀x ( x ∈ dom( g) → f ( x ) ∈ g( x ) ) } is the
(cartesian) product of g.

Note that the product of g consists of cho ice functions f , where for every argu-
ment x ∈ dom( g) the value f ( x ) chooses an element of g( x ) .

2 . 3 Relations and Functions 1 3





Chapter 3

The
� ��� � ����� �
	 � � ��� 
 ���

Axioms

Russell ’ s antinomy can be seen as a motivation for the axiomatization of set
theory: not all classes can be sets, but we want many classes to be sets. We for-
mulate axioms in the term language introduced above. Most of them are se t exis-
tence axioms of the form t ∈ V . In writing the axioms we omit all init ial universal
quantifiers , i . e. , ϕ stands for ∀x� ϕ where {x� } is the set of free variables of ϕ .

Definition 3. 1 . 1 . Axiom of extensionality: x ⊆ y ∧ y ⊆ x→ x = y .

2. Pairing axiom: {x , y } ∈ V.

3. Union axiom:
⋃
x ∈ V.

4 . Axiom of infinity: ∃x ( ∅ ∈ x ∧ ∀y ( y ∈ x→ y ∪ { y } ∈ x ) ) .

5. Axiom (schema) of subsets : for all terms A postulate : x ∩ A ∈ V.

6 . Axiom (schema) of replacement: for all terms F postulate :
F is a function → F [ x ] ∈ V.

7. Axiom (schema) of foundation: for all terms A postulate :
A

� ∅ → ∃x ( x ∈ A ∧ x ∩ A = ∅ ) .

8. Powerset axiom: P( x ) ∈ V.

9. Axiom of choice (AC):
f is a function ∧ ∀x ( x ∈ dom( f ) → f ( x )

� ∅ ) → × f � ∅ .
1 0. The

����������� 	 ��
 ��� ���������
axiom system ZF consists of the axioms 1 -

8.

1 1 . The axiom system ZF− consists of the axioms 1 - 7.

1 2. The axiom system ZFC consists of the axioms 1 - 9.

Remarkably, virtually all of mathematics can be developed naturally in the axiom
system ZFC : one formalizes the systems of natural, integer, rational, and real
numbers; all further notions of mathematics can be expressed by set operations
and properties . This is usually presented in introductory texts on set theory.

Note that the set theoretical axioms possess very different characters . There
are seemingly week axioms like the pairing or union axiom which postulate the
existence of concretely specified sets . On the other hand, a powerset seems to be
a vast ob ject which is hard to specify other than by its general definition. The
theory ZF− avoids the problematic powerset axiom as well as the axiom of choice.
We shall carry out most of our initial development within ZF− .

1 5





Chapter 4

Induction, recursion, and ordinals

4. 1 ∈ -induction

We work in the theory ZF− . Let us first introduce some notation:

Definition 4. 1 . Write

∃x ∈ s ϕ instead of ∃x ( x ∈ s ∧ ϕ ) ,

∀x ∈ s ϕ instead of ∀x ( x ∈ s→ ϕ ) ,

and

{x ∈ s | ϕ } instead of {x | x ∈ s ∧ ϕ } .
These no tations use x as a bounded variable , the quantifiers ∃x ∈ s and ∀x ∈ s
are called bounded quantifiers .

The axiom of foundation is equivalent to an induction schema for the ∈ -rela-
tion: if a property is inherited from the ∈ -predecessors , it holds everywhere.

Theorem 4. 2 . Let ϕ ( x , y� ) be an ∈ -formula such that

∀x (∀z ∈ x ϕ ( z , y� ) → ϕ ( x , y� ) ) .

Then

∀x ϕ ( x , y� ) .

Proof. Assume not. Then A � {x | ¬ϕ ( x , y� ) } � ∅ . By the foundation schema for
A take some x ∈ A such that x ∩ A = ∅ , i . e. , ∀z ∈ x x � A . By the definition of A

¬ϕ ( x , y� ) and ∀z ∈ x ϕ ( z , y� ) .

This contradicts the assumption of the theorem. �

4. 2 Transitive Sets and Classes

Definition 4. 3. The c lass s is transitive iff ∀x ∈ s ∀y ∈ x y ∈ s . We write
Trans( s ) if s is transitive .

1 7



Theorem 4. 4. s is transitive iff ∀x ∈ s x ⊆ s iff ∀x ∈ s x = x ∩ s .

A transitive class is an ∈ -initial segment of the class of all sets .

Theorem 4. 5 . a ) ∅ and V are transitive .

b ) If ∀x ∈ A Trans( x ) then
⋂
A and

⋃
A are transitive .

c ) If x is transitive then x ∪ {x } is transitive .

Proof. Exerc ise . �

4. 3 ∈ -recursion

We prove a recursion principle which corresponds to the principle of ∈ -induction.

Theorem 4. 6 . Let G : V→ V. Then there is a c lass term F such that

F : V→ V and ∀xF ( x ) = G (F � x ) .

The function F is unique ly de termined: if F ′ : V → F and ∀x F ′( x ) = G (F ′ � x ) .
Then

F = F ′ .

The term F is defined explic ite ly in the sub sequent proof and is called the canon-
ical term defined by ∈ -recursion by F ( x ) = G (F � x ) .

Proof. We construct F as a union of approximations to F . Call a function f ∈ V
a G-approximation if

− f : dom( f ) → V ;

− dom( f ) is transit ive;

− ∀x f ( x ) = G ( f � x ) .

We prove some structural properties for the class of G -approximations:
( 1 ) If f and f ′ are G -approximations then ∀x ∈ dom( f ) ∩ dom( f ′) f ( x ) = f ′( x ) .
Proof . Assume not and let x ∈ dom( f ) ∩ dom( f ′) be ∈ -minimal with f ( x )

�
f ′( x ) . S ince dom( f ) ∩ dom( f ′) is transitive, x ⊆ dom( f ) ∩ dom( f ′) . By the ∈ -
minimality of x , f � x = f ′ � x . Then

f ( x ) = G ( f � x ) = G ( f ′ � x ) = f ′( x ) ,

contradiction. qed ( 1 )
( 2 ) ∀x∃f ( f is a G-approximation ∧ x ∈ dom( f ) ) .
Proof . Assume not and let x be an ∈ -minimal counterexample. For y ∈ x define

fy =
⋂
{ f | f is a G-approximation ∧ y ∈ dom( f ) } .

By the minimality of x , there at least one f such that

f is a G-approximation ∧ y ∈ dom( f ) .

1 8 Induction, recursion, and ordinals



The intersection of such approximations is an approximation itself, so that

fy is a G-approximation ∧ y ∈ dom( fy) .

Then define

fx = (
⋃

y∈ x
fy) ∪ { ( x , G ( (

⋃

y∈ x
fy) � x ) ) .

One can now check that fx is a G-approximation with x ∈ dom( fx) . Contradic-
tion. qed ( 2 )

Now set

F =
⋃
{ f | f is a G-approximation} .

Then F satisfies the theorem. �

.

Definition 4. 7. Let TC be the canonical term defined by ∈ - recursion by

TC( x ) = x ∪
⋃

y∈ x
TC( y) .

TC( x ) is called the transitive closure of x .

Theorem 4. 8 . For all x ∈ V:

a ) TC( x ) is transitive and TC( x ) ⊇ x ;

b ) TC( x ) is the ⊆ - smalle st transitive superse t of x .

Proof. By ∈ -induction. Let x ∈ V and assume that a) and b) hold for all z ∈ x .
Then
( 1 ) TC( x ) ⊇ x is obvious from the recursive equation for TC .
( 2 ) TC( x ) is transitive.
Proof . Let u ∈ v ∈ TC( x ) .
Case 1 : v ∈ x . Then

u ∈ v ⊆ TC( v ) ⊆
⋃

y∈ x
TC( y ) ⊆ TC( x ) .

Case 2 : v � x . Then take y ∈ x such that v ∈ TC( y ) . TC( y ) is transitive by
hypothesis , hence

u ∈ TC( y) ⊆
⋃

y∈ x
TC( y) ⊆ TC( x ) .

qed ( 2 )
b) Let w ⊇ x be transitive. Let y ∈ x . Then y ∈ w , y ⊆ w . By hypothesis, TC( y) is
the ⊆ -minimal superset of y , hence TC( y ) ⊆ w . Thus

⋃

y∈ x
TC( y) ⊆ w

and

TC( x ) = x ∪
⋃

y∈ x
TC( y ) ⊆ w �
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4. 4 Ordinals

The number system of ordinal numbers is particularly adequate for the study of
the infinite. We present the theory of von Neumann-ordinals based on the
notion of transitivity.

Definition 4. 9 . A set x is an ordinal if Trans( x ) ∧ ∀y ∈ x Trans( y) . Le t

Ord = {x | x is an ordinal }
be the c lass of all o rdinals .

We show that the ordinals are a generalization of the natural numbers into the
transfinite.

Theorem 4. 1 0 . The c lass Ord is stric tly we ll- o rdered by ∈ .

Proof. ( 1 ) ∈ is a transitive relation on Ord.
Proof . Let x , y , z ∈ Ord, x ∈ y , and y ∈ z . S ince z is a transitive set , x ∈ z . qed ( 1 )
( 2 ) ∈ is a linear relation on Ord, i . e. , ∀x , y ∈ Ord ( x ∈ y ∨ x = y ∨ y ∈ x ) .
Proof . Assume not. Let x be ∈ -minimal such that

∃ y ( x � y ∧ x �
y ∧ y � x ) .

Let y be ∈ -minimal such that

x � y ∧ x �
y ∧ y � x. ( 4. 1 )

Let x ′ ∈ x . Then by the minimality of x we have

x ′ ∈ y ∨ x ′= y ∨ y ∈ x ′.

If x ′ = y then y = x ′ ∈ x , contradicting ( 4. 1 ) . If y ∈ x ′ then y ∈ x ′ ∈ x and y ∈ x ,
contradicting ( 4. 1 ) . Thus x ′ ∈ y . This shows x ⊆ y .

Conversely let y ′ ∈ y . Then by the minimality of y we have

x ∈ y ′ ∨ x = y ′ ∨ y ′ ∈ x.

If x ∈ y ′ then x ∈ y ′ ∈ y and x ∈ y , contradicting ( 4. 1 ) . If x = y ′ then x = y ′ ∈ y , con-
tradicting ( 4. 1 ) . Thus y ′ ∈ x . This shows y ⊆ x .

Hence x = y , contradicting ( 4. 1 ) . qed ( 2 )
( 3) ∈ is an irreflexive relation on Ord, i . e. , ∀x ∈ Ord x � x .
Proof . Assume for a contradiction that x ∈ x . By the foundation scheme
applied to the term A = {x } � ∅ let y ∈ {x } with y ∩ {x } = ∅ . Then y = x , x ∈ x =
y , x ∈ y ∩ {x } which contradicts the choice of y . qed ( 3)
( 4) ∈ is a well-order on Ord, i . e. , for every non-empty A ⊆ Ord there exists
α ∈ A such that ∀β ∈ α β � A .
Proof . By the foundation scheme applied to A let α ∈ A with α ∩ A = ∅ . Then
∀β ∈ α β � A . �
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By this theorem, ∈ is the canonical order on the ordinal numbers . We use
greek letters α , β , γ , � as variables for ordinals and write α < β instead of α ∈ β .
When we talk about smallest or largest ordinals this is meant with respect to the
ordering < .

Theorem 4. 1 1 . a ) ∅ is the smalle st e lement of Ord . We write 0 instead of
∅ when ∅ is used as an ordinal.

b ) If α ∈ Ord then α ∪ {α } is the smalle st e lement of Ord which is larger than
α , i . e . , α ∪ {α } is the successor of α . We write α + 1 instead of α ∪ {α } .
Every ordinal of the form α + 1 is called a successor ordinal .

Proof. b) Let α ∈ Ord.
( 1 ) α ∪ {α } is transitive.
Proof . Let u ∈ v ∈ α ∪ {α } .
Case 1 . v ∈ α . Then u ∈ α ⊆ α ∪ {α } since α is transitive.
Case 2 . v ∈ {α } . Then u ∈ v = α ⊆ α ∪ {α } . qed ( 1 )
( 2 ) ∀y ∈ α ∪ {α } Trans( y) .
Proof . Let y ∈ α ∪ {α } .
Case 1 . y ∈ α . Then Trans( y) , s ince α is an ordinal.
Case 2 . y ∈ {α } . Then y = α , and Trans( y ) , since α is an ordinal . qed ( 2 )

So α ∪ {α } is an ordinal, and α ∪ {α } > α .
( 3 ) α ∪ {α } is the smallest ordinal > α .
Proof . Let β < α ∪ {α } . Then β ∈ α or β = α . Hence β 6 α and β ≯ α . �

Theorem 4. 1 2 . a ) Ord is transitive .

b ) ∀x ∈ Ord Trans( x ) .

c ) Ord � V, i . e . , Ord is a proper c lass .

Proof. a) Let x ∈ y ∈ Ord.
( 1 ) Trans( x ) , s ince every element of the ordinal y is transitive.
( 2 ) ∀u ∈ x Trans( u) .
Proof . Let u ∈ x . S ince y is transitive, u ∈ y . S ince every element of y is transi-
tive, Trans( u) . qed ( 2 )

Thus x ∈ Ord.
b) is part of the definition of ordinal.
c) Assume Ord ∈ V . By a) and b) , Ord satisfies the definition of an ordinal,
and so Ord ∈ Ord. This contradicts the foundation scheme. �

4. 5 Natural numbers

One can construe the common natural numbers as those ordinal numbers which
can be reached from 0 by the + 1 -operation. Consider the following term:

Definition 4. 1 3. ω = {α ∈ Ord | ∀β ∈ α + 1 ( β = 0 ∨ β is a successor ordinal ) } is
the c lass of natural numbers .
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Theorem 4. 1 4. ω is transitive .

Proof. Let x ∈ α ∈ ω .
( 1 ) x ∈ Ord, since Ord is transitive.
( 2 ) x ⊆ α , s ince α is transitive.
( 3) x + 1 ⊆ α ⊆ α + 1 .
( 4) ∀β ∈ x + 1 ( β = 0 ∨ β is a successor ordinal) , since α ∈ ω and x + 1 ⊆ α + 1 .

Then ( 1 ) and ( 4) imply that x ∈ ω . �

Theorem 4. 1 5 . ω ∈ V, i . e . , ω is the set of natural numbers .

Proof. By the axiom of infinity, take a set x such that

( 0 ∈ x ∧ ∀y ( y ∈ x→ y ∪ { y } ∈ x ) ) .

( 1 ) ω ⊆ x .
Proof . Assume for a contradiction that ω * x . By foundation take z ∈ ω ∈ -min-
imal such that z � x . By the definition of ω we have z = 0 or z is a successor
ordinal. The case z = 0 is impossible by the choice of x . Hence z is a successor
ordinal. Take y ∈ Ord such that z = y + 1 . Then y ∈ z ∈ ω and y ∈ ω by the transi-
tivity of ω . By the ∈ -minimal choice of z we have y ∈ x . By the choice of x we
have z = y + 1 = y ∪ { y } ∈ x . This contradicts the choice of z . qed ( 1 )

The subset schema implies that ω = x ∩ ω ∈ V . �

Theorem 4. 1 6 . ω is a limit ordinal , i . e . , an ordinal
�

0 which is no t a suc -
cessor ordinal. Indeed, ω is the smalle st limit ordinal:

ω =
⋂
{α | α is a limit ordinal } .

Proof. First note that ω is an ordinal, since it is a transitive set and each of its
elements is transitive.

Obviously 0 ∈ ω , hence ω
�

0 . Assume for a contradiction that ω is a successor
ordinal. Take some α ∈ Ord such that ω = α + 1 . Then α ∈ ω and

∀β ∈ α + 1 ( β = 0 ∨ β is a successor ordinal) .

ω + 1 = (α + 1 ) ∪ {ω } . S ince ω is assumed to be a successor ordinal

∀β ∈ ω + 1 ( β = 0 ∨ β is a successor ordinal) .

Hence ω ∈ ω . But this contradicts the foundation schema.
Thus ω is a limit ordinal .
Let γ be ( another) limit ordinal. S ince all elements of ω are 0 or successor

ordinals , we cannot have γ < ω . Therefore ω 6 γ . �

Let us justify this formalization of the set of natural numbers by

Theorem 4. 1 7. The structure (ω , + 1 , 0) satisfies the Peano axioms:

a ) 0 ∈ ω;

b ) ∀n ∈ ω n + 1 ∈ ω;
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c ) ∀n ∈ ω n + 1
�

0 ;

d ) ∀m, n ∈ ω (m + 1 = n + 1 → m = n) ;

e ) ∀x ⊆ ω ( ( 0 ∈ x ∧ ∀m ∈ x m + 1 ∈ x ) → x = ω ) .

Proof. Axioms a) to d) are immediate from the definition of ω or from the gen-
eral properties of ordinals . For e) consider a set x ⊆ ω such that

0 ∈ x ∧ ∀m ∈ x m + 1 ∈ x.
Assume for a contradiction that x

�
ω . By foundation take z ∈ ω ∈ -minimal such

that z � x . By the definition of ω we have z = 0 or z is a successor ordinal . The
case z = 0 is impossible by the properties of x . Hence z is a successor ordinal.
Take y ∈ Ord such that z = y + 1 . Then y ∈ z ∈ ω and y ∈ ω by the transitivity of
ω . By the ∈ -minimal choice of z we have y ∈ x . By the inductive property of x
we have z = y + 1 = y ∪ { y } ∈ x . This contradicts the choice of z . �
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Chapter 5

Transitive ∈ -models

Axiomatic set theory studies the axiom systems ZF and ZFC . By the Godel¨

incompleteness theorem, these systems are incomplete. So one is lead to consider
extensions of these systems of the form ZF + ϕ or ZFC + ϕ for various ϕ . Even
some simple questions of the arithmetic of infinite cardinals like Cantor ’ s con-
tinuum hypo thesis are not decided by ZFC and present an ongoing challenge to
set theoretical research.

To show that a theory like ZFC + ϕ is consistent one constructs mode ls of that
theory ( making some initial assumptions) . Usually these models will be an ∈ -
mode l of the form (M, ∈ ) , where M is some class .

5 . 1 Relativizations of Formulas and Terms

Evaluating an ∈ -formula ϕ in a model (M, ∈ ) amount to bounding the range of
quantifiers in ϕ to M .

Definition 5 . 1 . Let M be a term. For ϕ an ∈ -formula define the relativization
ϕM of ϕ to M by recursion on the complexity of ϕ :

− ( x ∈ y )M : = x ∈ y
− ( x = y)M : = x = y

− (¬ϕ )M � ¬ ( ϕM)

− ( ϕ ∨ ψ )M � ϕM ∨ ψM

− ( ∃xϕ )M � ∃x ∈ MϕM

Definition 5 . 2 . Let M be a term and le t Φ be a (metatheore tical) se t of for-
mulas . Then the (metatheore tical) se t

ΦM = { ϕM | ϕ ∈ Φ}
is the relativization of Φ to M.

The relativizations ϕM and ΦM correspond to the model-theoretic satisfaction
relations (M, ∈ ) � ϕ and (M, ∈ ) � Φ . This is illustrated by
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Theorem 5 . 3. Let Φ be a finite se t of ∈ -formulas and le t ϕ be an ∈ -formula
such that Φ ` ϕ in the calculus of first-order logic . Le t M be a transitive term,
M

� ∅ , which has no common free variab le s with Φ or ϕ . Then

∀x� ∈ M ( (
∧

Φ)M→ ϕM) ,

where x� inc ludes all the free variab le s of Φ and ϕ .

Proof. By induction on the lengths of derivations it suffices to prove the theorem
for the case that Φ ` ϕ is derivable by a single application of a rule of the first-
order calculus . We check this for the various rules.

The theorem is obvious in case ϕ is an element of Φ .
In case ϕ = ( x = x ) , the relativization ( x = x )M = ( x = x ) holds in any case.
The theorem is easy to show for all propositional rules and the substitution

rule.
So let us now consider the quantifier rules . Assume that ϕ ( x , y� )M where x ,

y� ∈ M . Then ∃x ( x ∈ M ∧ ϕ ( x , y� )M) and

( ∃x ϕ ( x , y� ) )M

as required.
For the ∃ -introduction in the antecedens suppose that

∀x , y� ∈ M ( (
∧

Φ)M ∧ ψM( x , y� ) → ϕM( y� ) ) , ( 5 . 1 )

where the variable x does not occur in Φ or ϕ . Now let y� ∈ M and assume that
(
∧

Φ)M ∧ ( ∃x ψ )M( y� ) . Then ∃x ∈ MψM( x , y� ) . Take x ∈ M such that ψM ( x , y� ) .

By ( 4. 1 ) we get ϕM( y� ) . Hence

∀y� ∈ M ( (
∧

Φ)M ∧ ( ∃xψ )M( y� ) → ϕM( y� ) ) . �

We shall later construct models M such that ZFCM holds .

Definition 5 . 4. Let M be a term. For a c lass term s = {x | ϕ } define the rela-
tivization sM of s to M by:

sM � {x ∈ M | ϕM } .
If s is a variab le , s = x , then le t sM = s .

sM is the term s as evaluated in M . We show that evaluating a formula with
class terms ( a generalized formula) in a transitive class M is the same as rela-
tivizing the basic formula without class terms and then inserting the relatived
class terms. This will make many notions ab so lute between M and V .

Note that the relativization of a bounded quantifier ∃x ∈ y to a transitive class
M with y ∈ M has no effect :

∃x ∈ yϕ↔ ∃x ∈ y ∩Mϕ.

Theorem 5 . 5 . Let M be a transitive c lass . Le t ϕ ( x0 , � , xn− 1 ) be a basic formula
and t0 , � , tn− 1 be terms. Then

∀w� ∈ M [ ( χ( t0 , � , tn− 1 ) )
M ↔ χM( t0

M , � , tn− 1
M ) ] ,
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where {w� } is the se t of free variab le s of χ( t0 , � , tn− 1 ) .

Proof. By induction on the complexity of χ . Let w� ∈ M .

Let χ be an atomic formula of the form u ∈ v or u = v . If t0 and t1 are vari-
ables there is nothing to show. The other cases correspond to the following equiv-
alences :

( y ∈ {x | ϕ } )M ↔ ( ϕ
y

x
)M

↔ ϕM
y

x
↔ ( x ∈ M ∧ ϕM)

y

x
↔ y ∈ {x | x ∈ M ∧ ϕM } = {x ∈ M | ϕM }
↔ yM ∈ {x | ϕ }M .

This equivalence is already used in:

( {x | ϕ } = { y | ψ } )M ↔ (∀z ( z ∈ {x | ϕ } ↔ z ∈ { y | ψ } ) )M
↔ ∀z ∈ M ( z ∈ {x | ϕ }M↔ z ∈ { y | ψ }M)

↔ ∀z ( z ∈ {x | ϕ }M↔ z ∈ { y | ψ }M) , since {x | ϕ }M ⊆ M,

↔ {x | ϕ }M = { y | ψ }M .

Note, that x ⊆ M by the transitivity of M :

( x = { y | ψ } )M ↔ (∀z ( z ∈ x ↔ z ∈ { y | ψ } ) )M
↔ ∀z ∈ M ( z ∈ x ↔ z ∈ { y | ψ }M)

↔ ∀z ( z ∈ x↔ z ∈ { y | ψ }M) , s ince x ⊆ M,

↔ xM = { y | ψ }M .

( {x | ϕ } ∈ { y | ψ } )M ↔ ( ∃z ( ψ
z

y
∧ z = {x | ϕ } ) )M

↔ ∃z ∈ M ( ψM
z

y
∧ z = {x | ϕ }M)

↔ ∃z ( z ∈ M ∧ ψM z

y
∧ z = {x | ϕ }M )

↔ {x | ϕ }M ∈ { y | y ∈ M ∧ ψM } = { y | ψ }M .

( {x | ϕ } ∈ y )M ↔ ( ∃z ( z ∈ y ∧ z = {x | ϕ } ) )M
↔ ∃z ∈ M ( z ∈ y ∧ z = {x | ϕ }M )

↔ ∃z ( z ∈ y ∧ z = {x | ϕ }M) , since y ⊆ M,

↔ {x | ϕ }M ∈ y = yM .

Now assume that χ is a complex formula and the theorem holds for all proper
subformulas . If χ = ¬ψ and w� ∈ M then

( χ( t0 , � , tn− 1 ) )
M↔ ¬ ( ψ ( t0 , � , tn− 1 ) )

M↔ ¬ψM( t0
M , � , tn− 1

M ) ↔ χM( t0
M , � , tn− 1

M ) .
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If χ = ϕ ∨ ψ and w� ∈ M then

( χ( t0 , � , tn− 1 ) )
M ↔ ( ϕ ( t0 , � , tn− 1 ) )

M ∨ ( ψ ( t0 , � , tn− 1 ) )
M

↔ ϕM( t0
M , � , tn− 1

M ) ∨ ψM( t0
M , � , tn− 1

M )

↔ χM( t0
M , � , tn− 1

M ) .

If χ = ∃x ϕ and w� ∈ M then

( χ( t0 , � , tn− 1 ) )
M ↔ ∃x ∈ M ( ϕ ( x , t0 , � , tn− 1 ) )

M

↔ ∃x ∈ MϕM( x , t0
M , � , tn− 1

M )

↔ χM( t0
M , � , tn− 1

M ) .

�

5 . 2 Transitive Models of set theory

Theorem 5 . 6 . Let M be a non-empty transitive term. Assume that M satisfies
the fo llowing c lo sure propertie s:

a ) ∀x , y ∈ M {x , y } ∈ M;

b ) ∀x ∈ M ⋃
x ∈ M;

c ) ω ∈ M;

d ) for all terms A: ∀x ∈ Mx ∩ AM ∈ M;

e ) for all terms F: ifFM is a function then ∀x FM [x ] ∈ M.

Then ZF− ho lds in M.

Proof. ( 1 ) The axiom of extensionality holds in M .
Proof . Consider x , y ∈ M . By the axiom of extensionality in V

x ⊆ y ∧ y ⊆ x→ x = y.

S ince M is transitive, x ∩M = x , y ∩M = y and

x ∩M ⊆ y ∧ y ∩M ⊆ x→ x = y.

This is equivalent to

(∀z ∈ M ( z ∈ x→ z ∈ y) ∧ ∀z ∈ M ( z ∈ y→ z ∈ x ) ) → x = y

and

( x ⊆ y ∧ y ⊆ x→ x = y)M .

Thus

(∀x , y ( x ⊆ y ∧ y ⊆ x→ x = y ) )M .

( 2 ) The pairing axiom holds in M .
Proof . Observe that for x , y ∈ M

{x , y }M = { z ∈ M | z = x ∨ z = y } = {x , y } .
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Moreover VM = {x ∈ M | x = x } = M . By assumption a) ,

∀x , y ∈ M {x , y } ∈ M
∀x , y ∈ M {x , y }M ∈ VM

(∀x , y {x , y } ∈ V )M ,

i . e. , the pairing axiom holds in M .
( 3 ) The union axiom holds in M .
Proof . Observe that for x ∈ M ,

(
⋃

x )M = { z ∈ M | ∃ y ∈ M ( y ∈ x ∧ z ∈ y) }
= { z ∈ M | ∃ y ( y ∈ x ∧ z ∈ y) } , s ince x ⊆ M,

= { z | ∃ y ( y ∈ x ∧ z ∈ y ) } , since ∀y ∈ x∀z ∈ y z ∈ M,

=
⋃

x

By assumption b) ,

∀x ∈ M
⋃

x ∈ M
∀x ∈ M (

⋃
x )M ∈ VM

(∀x
⋃

x ∈ V )M ,

i . e. , the union axiom holds in M .
( 4) The axiom of infinity holds in M .
Proof . Let x = ω ∈ M . Then

∅ ∈ x ∧ ∀y ( y ∈ x→ y ∪ { y } ∈ x ) .

The universal quantifier may be restricted to M :

∅ ∈ x ∧ ∀y ∈ M ( y ∈ x→ y ∪ { y } ∈ x ) .

S ince ( y ∪ { y } )M = y ∪ { y } this formula is equivalent to

( ∅ ∈ x ∧ ∀y( y ∈ x→ y ∪ { y } ∈ x ) )M .

Then

∃x ∈ M ( ∅ ∈ x ∧ ∀y ( y ∈ x→ y ∪ { y } ∈ x ) )M ,

i . e. , the axiom of infinity holds in M .
( 5 ) The axiom schema of subsets holds in M .
Proof . Let A( y� ) be a term and x , y� ∈ M . By assumption,

x ∩ AM( y� ) ∈ M.

Note that

x ∩ AM( y� ) = { v | v ∈ x ∧ v ∈ AM( y� ) }
= { v | ( v ∈ x ∧ v ∈ A( y� ) )M }
= { v ∈ M | ( v ∈ x ∧ v ∈ A( y� ) )M } , since x ⊆ M,

= { v | v ∈ x ∧ v ∈ A( y� ) }M
= ( x ∩ A)M .
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So

( x ∩ A)M ∈ M = VM .

This proves

∀x , y� ∈ M ( x ∩ A ∈ V )M ,

i . e. , the axiom scheme of subsets holds relativized to M .
( 6 ) The axiom scheme of replacement holds relativized to M .
Proof . Let F ( y� ) be a term, and let x , y� ∈ M such that (F is a function)M . Note
that

FM [ x ] = { v | ∃u ∈ x (u , v ) ∈ FM }
= { v ∈ M | ∃u (u ∈ x ∧ (u, v ) ∈ FM) } , since FM ⊆ M and M is transitive ,

= { v ∈ M | ∃u ∈ M (u ∈ x ∧ (u, v ) ∈ F )M

= { v | ∃u (u ∈ x ∧ (u , v ) ∈ F ) }M
= (F [x ] )M .

The assumption implies

FM [x ] ∈ M
FM [ x ] ∈ M = VM

(F [x ] ∈ V )M

Thus

∀x , y� ∈ M (F is a function → F [x ] ∈ V )M , and

(∀x , y� (F is a function → F [x ] ∈ V ) )M ,

as required.
( 7) The axiom schema of foundation holds in M .
Proof . Let A( y� ) be a term and let y� ∈ M such that (A

� ∅ )M . Then AM
� ∅ . By

the replacement schema in V , take x ∈ AM such that x ∩ AM = ∅ . We have seen
before that x ∩ AM = ( x ∩ A)M . So ( x ∩ A)M = ∅ and ( x ∩ A = ∅ )M . Hence

∃x ∈ M ( x ∈ AM ∧ ( x ∩ A = ∅ )M)

( ∃x ( x ∈ A ∧ x ∩ A = ∅ )M

Thus

(A
� ∅ → ∃x ( x ∈ A ∧ x ∩ A = ∅ )M ,

i . e. , the foundation schema holds in M . �

The converse to this theorem will be shown later.

Theorem 5 . 7. Let M be a non-empty transitive term such that

∀x ∈ MP( x ) ∩M ∈ M.

Then the power se t axiom ho lds in M.
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Proof. Note that for x ∈ M

(P( x ) )M = { y | y ⊆ x }M
= { y ∈ M | ( y ⊆ x )M }
= { y ∈ M | ( y ⊆ x )M }
= { y ∈ M | (∀z ( z ∈ y→ z ∈ x ) )M }
= { y ∈ M | ∀z ∈ M ( z ∈ y→ z ∈ x ) }
= { y ∈ M | ∀z ( z ∈ y→ z ∈ x ) } , da y ⊆ M,

= { y ∈ M | y ⊆ x } = P( x ) ∩M.

The assumption yields

∀x ∈ MP( x ) ∩M ∈ M
∀x ∈ MP( x )M ∈ VM

(∀x P( x ) ∈ V )M ,

i . e. , the power set axiom holds in M . �
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Chapter 6

Definite formulas and terms

6. 1 Definiteness

In the set existence axioms of the theory ZF− every element of a term whose exis-
tence is postulated is determined by some parameters of the axiom. In the
replacement scheme, e. g. , every element

v ∈ {F ( x ) | x ∈ z }
is of the form v = F ( x ) and is thus definable from the ‘ ‘ simpler” parameter x by
the term F . In contrast , there is no way to define an arbitrary element of an
infinite power set from simple parameters ; this impression can be made more
formal by using Cantor ’ s diagonal argument. The axiom of choice also is a pure
existence statement. There exists a choice functions, but it is in general not defin-
able from the parameters of the situation at hand.

The notion of defineteness aims to capture the concrete nature of ZF− as com-
pared to full ZFC . It will be seen that most basic notions of set theory are defi-
nite and that these notions can be decided in ZF− independantly of the specific
transit ive model of ZF− . The definition of definite term tries to capture
the ‘ ‘ absolute” part of the theory ZF− .

Definition 6 . 1 . Define the co llec tions of definite formulas and definite terms
by a common recursion on syntac tic complexitie s:

a ) the atomic formulas x ∈ y and x = y are definite ;

b ) if ϕ and ψ are definite formulas then ϕ ∨ ψ and ¬ϕ are definite ;

c ) if ϕ is a definite formula then ∀x ∈ y ϕ and ∃x ∈ y ϕ are definite formulas;

d ) x , {x , y } , ⋃ x and ω are definite terms;

e ) if s ( x0 , � , xn− 1 ) and t0 , � , tn− 1 are definite terms then s ( t0 , � , tn− 1 ) is a
definite term;

f) if ϕ ( x0 , � , xn− 1 ) is a definite formula and t0 , � , tn− 1 are definite terms
then ϕ ( t0 , � , tn− 1 ) is a definite formula;

g ) if ϕ is a definite formula then {x ∈ y | ϕ ( x , z� ) } is a definite term;

h ) if t( x , z� ) is a definite term then { t( x , z� ) | x ∈ y } is a definite term;

i ) if G is a definite term then the canonical term F defined by ∈ - recursion
with F ( x ) = G (F � x ) is definite .
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The majority of basic notions of set theory ( and of mathematics) are definite.
The following theorems list some representative examples.

Theorem 6. 2 . The fo llowing terms are definite :

a ) x \ y
b ) ( x , y)

c ) x × y
d ) {

x , if ϕ
y, if ¬ϕ ,

where ϕ is a definite formula (‘ ‘ definition by cases” )

Proof. a) x \ y = { z ∈ x | z � y } .
b) ( x , y ) = { {x } , {x , y } } .
c ) x × y =

⋃ {x × { v } | v ∈ y } =
⋃ { { (u, v ) | u ∈ x } | v ∈ y } .

d)
{
x , i f ϕ
y , i f ¬ϕ can be defined definitely by

{u ∈ x | ϕ } ∪ {u ∈ y | ¬ϕ } . �

Theorem 6. 3. The fo llowing formulas are definite :

a ) x is transitive

b ) x is an ordinal

c ) x is a successor ordinal

d ) x is a limit ordinal

e ) x is a natural number

Proof. All these formulas are equivalent to Σ 0-formulas . �

Recursion on the ordinals is a special case of ∈ -recursion which also leads to
definite terms.

Theorem 6. 4. Let G0 , Gsucc and G limi t be definite terms defining a term F :
Ord→ V by the fo llowing recursion:

− F ( 0) = G0 ;

− F (α + 1 ) = Gsucc(F � (α + 1 ) ) ;

− F ( λ ) = G limit(F � λ ) for limit ordinals λ .

Then the term F (α ) is definite .

Proof. Let F ′ be the canonical term defined by the ∈ -recursion

F ′( x ) =





0 , if x = 0 ,
G succ(F

′ � x ) , if x is a successor ordinal,
G limi t(F

′ � x ) , if x is a limit ordinal ,
0 , if x � Ord .
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By ( an extension of) Theorem 6. 2 d) on definition by cases , the recursion condi-
tion is definite and so is F ′( x ) . Then F = F ′ � Ord. �

nx , Vn , Vω

6. 2 Absoluteness

Definition 6 . 5 . Let W be a transitive non-empty c lass . Le t ϕ ( x� ) be an ∈ -for-
mula and t( x� ) be a term. Then

a ) ϕ is W-absolute iff ∀x� ∈ W ( ϕW( x� ) ↔ ϕ ( x� ) ) ;

b ) t is W-absolute iff ∀x� ∈ W ( tW( x� ) ∈ W ↔ t( x� ) ∈ V ) and ∀x� ∈ W tW( x� ) =
t( x� ) .

Theorem 6. 6 . Let W be a transitive mode l of ZF− . Then

a ) if t( x� ) is a definite term then ∀x� t( x� ) ∈ V;

b ) every definite formula is W-ab so lute ;

c ) every definite term is W-ab so lute .

Proof. a) may be proved by induction on the complexity of the definite term t .
Most cases are immediate from the ZF− -axioms; if t is a canonical term defined
by recursion with a definite recursion rule then the existence of t( x� ) follows from
the recursion principle.

The properties b) and c) are proved by a common induction along the genera-
tion rules of Definition 6 . 1 for definite formulas and terms. If t( x� ) is a definite
term, then by a)

(∀x� t( x� ) ∈ V )W→ ∀x� ∈ W tW( x� ) ∈ W
so that always

∀x� ∈ W ( tW( x� ) ∈ W↔ t( x� ) ∈ V ) .

Thus for the W -absoluteness of t one only has to check

∀x� ∈ W tW( x� ) = t( x� ) .

We now begin the induction. The cases 6 . 1 a) and b) are trivial .
6 . 1 c) : Let ϕ ( x , z� ) be definite and assume that ϕ ( x , z� ) is W -absolute. Let y ,
z� ∈ W . Then y ⊆ W and y ∩W = y , s ince W is transitive.

(∀x ∈ y ϕ ( x , z� ) )W ↔ (∀x ( x ∈ y→ ϕ ( x , z� ) ) )W

↔ ∀x ∈ W ( x ∈ y→ ϕW( x , z� ) )

↔ ∀x ( x ∈ y ∩W→ ϕW( x , z� ) )

↔ ∀x ( x ∈ y→ ϕ ( x , z� ) ) , since ϕ is W -absolute,

↔ ∀x ∈ y ϕ ( x , z� ) .

Thus ∀x ∈ y ϕ ( x , z� ) is W -absolute. S imilarly, ∃x ∈ y ϕ ( x , z� ) is W -absolute.

6 . 2 Absoluteness 35



Let us remark that cases 6 . 1 a) to c) imply that every ∈ -formula in which
every quantifier is bounded is W -absolute. Such formulas are called Σ 0 -formulas.
6 . 1 d) : The only non-trivial case is the term

ω = {α ∈ Ord | ∀β ∈ α + 1 ( β = 0 ∨ β is a successor ordinal) } .
( 1 ) The formula α ∈ ω is W -absolute.
Proof . By the remark above it suffices to see that the formula α ∈ ω is equivalent
to a Σ 0 -formula.

α ∈ ω ↔ α ∈ Ord ∧ ∀β ∈ α + 1 ( β = 0 ∨ β is a successor ordinal)

↔ Trans(α ) ∧ ∀y ∈ α Trans( y ) ∧ ∀β ∈ α (∀x ∈ βx �
x ∨

∃γ ∈ β β = γ + 1 ) ∧ (∀x ∈ α x
�
x ∨ ∃γ ∈ α α = γ + 1 )

↔ ∀u ∈ α∀v ∈ u v ∈ α ∧ ∀y ∈ α∀u ∈ y∀v ∈ u v ∈ y ∧
∀β ∈ α (∀x ∈ β x �

x ∨ ∃γ ∈ β (∀u ∈ β (u ∈ γ ∨ u = γ) ∧
∀u ∈ γ u ∈ β ∧ γ ∈ β) ) ∧ (∀x ∈ α x �

x ∨
∃γ ∈ α (∀u ∈ α (u ∈ γ ∨ u = γ) ∧ ∀u ∈ γ u ∈ α ∧ γ ∈ α ) )

qed ( 1 )
( 2 ) ω ⊆ W .
Proof . By complete induction. 0 ∈ W since W is a non-empty transitive term.
Assume that n ∈ ω and n ∈ W . Then, since ( ZF− )W , (n ∪ {n} )W ∈ W .

(n ∪ {n} )W = {x ∈ W | ( x ∈ n ∨ x ∈ {n} )W }
= {x ∈ W | ( x ∈ n ∨ x = n)W }
= {x ∈ W | x ∈ n ∨ x = n }
= {x | x ∈ n ∨ x = n } , since n ∪ {n} ⊆ W,

= n ∪ {n } .

Hence n + 1 ∈ W . qed ( 2 )
( 3) ωM = ω .
Proof .

ωM = {x ∈ M | ( x ∈ ω )M }
= {x ∈ M | x ∈ ω } , since x ∈ ω is W -absolute,

= {x | x ∈ ω } , since ω ⊆ M,

= ω.

qed ( 3)
By our previous remarks this concludes case 6 . 1 d) .

6 . 1 e) : Let y� be the free variables of the terms t0 , � , tn− 1 and let y� ∈ W . Then
by the inductive assumption

( s ( t0 , � , tn− 1 ) )
W( y� ) = sW( t0

W( y� ) , � , tn− 1
W ( y� ) )

= sW( t0( y� ) , � , tn− 1 ( y� ) )

= s ( t0( y� ) , � , tn− 1 ( y� ) )

= s ( t0 , � , tn− 1 ) ( y� ) .
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6 . 1 f) : Let y� be the free variables of the terms t0 , � , tn− 1 and let y� ∈ W . Then by
the inductive assumption

( ϕ ( t0 , � , tn− 1 ) )
W( y� ) ↔ ϕW( t0

W( y� ) , � , tn− 1
W ( y� ) )

↔ ϕW( t0( y� ) , � , tn− 1 ( y� ) )

↔ ϕ ( t0( y� ) , � , tn− 1 ( y� ) )

↔ ϕ ( t0 , � , tn− 1 ) ( y� ) .

6 . 1 g) : Let y , z� ∈ W . Then y ⊆ W since W is transitive. By the inductive assump-
tion

{x ∈ y | ϕ ( x , z� ) }W = {x | x ∈ y ∧ ϕ ( x , z� ) }W
= {x ∈ W | x ∈ y ∧ ϕW( x , z� ) }
= {x ∈ W | x ∈ y ∧ ϕ ( x , z� ) }
= {x | x ∈ y ∧ ϕ ( x , z� ) } , s ince y ⊆ W,

= {x ∈ y | ϕ ( x , z� ) } .
6 . 1 h) : Let y , z� ∈ W . Then y ⊆ W since W is transitive, and

{ t( x , z� ) | x ∈ y }W = { z | ∃x ∈ y z = t( x , z� ) }W
= { z | ∃x ( x ∈ y ∧ z = t( x , z� ) }W
= { z ∈ W | ∃x ∈ W ( x ∈ y ∧ z = tW( x , z� ) }
= { z | ∃x ∈ W ( x ∈ y ∧ z = tW( x , z� ) } , s ince ∀x ∈ WtW( x , z� ) ∈ W,

= { z | ∃x ∈ W ( x ∈ y ∧ z = t( x , z� ) } , by inductive assumption,

= { z | ∃x ( x ∈ y ∧ z = t( x , z� ) } , since y ⊆ W,

= { t( x , z� ) | x ∈ y } .
6 . 1 i) : Let G = G ( z , y� ) with all free variables displayed and let F be the canonical
term with

F ( x , y� ) = G (F � x , y� ) .

Let y� ∈ W . We show that ∀x ∈ WFW( x , y� ) = F ( x , y� ) . Assume the contrary and

let x ∈ W be ∈ -minimal such that FW( x , y� )
�
F ( x , y� ) . Then by the recursion

theorem in W ,

FW( x , y� ) = GW(FW � x , y� )

= G (FW � x , y� ) , since FW � x ∈ W and G is definite,

= G (F � x , y� ) , by the minimality of x ,

= F ( x , y� ) , contradiction.

�

Recursion can be used to show that certain terms involving finiteness are defi-
nite.

Definition 6. 7. Define Pn( x ) = { y ⊆ x | card( y ) < n} for n 6 ω recursive ly by
induction on n:

− P0( x ) = ∅ ;
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− P1 ( x ) = { ∅} ;
− Pn+ 1 ( x ) = { y ∪ { z } | y ∈ Pn( x ) ∧ z ∈ x } ;
− Pω( x ) =

⋃
n< ω
Pn( x ) .

Since this is an ∈ - recursion with a definite recursion rule the terms Pn( x ) and
Pn( x ) are definite .

We define a finitary version of the von Neumann-hierarchy which agrees with
the usual Vα-hierarchy for α 6 ω .

Definition 6. 8 . Define Vα
fin for α ∈ Ord recursive ly:

− V0
fin = ∅ ,

− Vα+ 1
fin = Pω(Vα

fin) ,

− Vλ
fin =

⋃
α< λ

Vα
fin for limit ordinals λ .

No te that Vω
fin = Vω and that the term Vα

fin is definite . Hence Vω is a definite term.

Definition 6. 9 . Define a we ll- o rder < n of Vn for n 6 ω recursive ly by induction
on n:

− < 0 = ∅ ;
− < n+ 1 = < n ∪ (Vn × (Vn+ 1 \ Vn) ) ∪

∪ { ( x , y) ∈ Vn+ 1 × Vn+ 1 | ∃v ∈ y \ x∀u ∈ Vn ( u > n v→ (u ∈ x↔ u ∈ y) ) } ;
− < ω =

⋃
n< ω

< n .

The terms < n for n 6 ω are definite .

We shall next give a definite definition of the set of finite sequences from a
given set x which will later be used as the set of assignments in x .

Definition 6. 1 0 . Define nx = { f | f : n→ x } for n ∈ ω by recursion on n:

− 0x = { ∅} ;
− n+ 1x = { f ∪ { (n, u) } | f ∈ n x ∧ u ∈ x } ;
− < ωx =

⋃
n< ω

nx .

Call < ωx the se t of assigments in x .

There are natural operations on assignments :

Definition 6. 1 1 . For f ∈ < ω x , a ∈ x and k ∈ dom( f ) le t

f
a

k
= ( f \ { ( k , f ( k ) } ) ∪ { ( k , a ) }

be the substitution of a into f at k .
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Chapter 7

Formalizing the logic of set theory

7. 1 First-order logic

The theory ZF− is able to formalize most basic mathematical notions. This gen-
eral formalization princ iple also applies to first-order logic. For the definition of
the constructible universe we shall be particularly interested in formalizing the
logic of set theory within ZF− , i . e. , the logic of syntax and semantics of the lan-
guage { ∈ } . G iven some experience with definite formalizations the definite for-
malizability of first-order logic is quite obvious. For the sake of completeness we
shall employ a concrete formalization as described in the monograph Set Theory
by Frank Drake .

S tandard first-order logic can be embedded into its formalized counterpart . So
for every formula ϕ of the language of set theory we shall have a term d ϕ e which
is a formalization of ϕ . Let us motivate the intended formalization by defining
d ϕ e inductively over the complexity of ϕ .

Definition 7. 1 . For each concre te ∈ -formula ϕ define its � 	���������� ��� d ϕ e by
induction on the complexity of ϕ :

− d vi = vj e = ( 0 , i , j) ;

− d vi ∈ vj e = ( 1 , i , j ) ;

− d ϕ ∧ ψ e = ( 2 , d ϕ e , d ψ e ) ;

− d ¬ϕ e = ( 3 , d ϕ e ) ;

− d ∃vi ϕ e = ( 4 , i , d ϕ e ) .

Definition 7. 2 . The formula Fm(u , s , n) describes that a formula u is con-
structed along a finite sequence s of length n + 1 according to the construction
princ iple s of the previous definition:

Fm(u , s , n) ↔ n ∈ ω ∧ s ∈ n+ 1Vω ∧ u = s (n) ∧
∧ ∀k < n + 1

( ∃ i , j < ω s ( k ) = ( 0 , i , j) ∨
∨ ∃ i , j < ω s ( k ) = ( 1 , i , j) ∨
∨ ∃ l , m < k s ( k ) = ( 2 , s ( l ) , s (m) ) ∨
∨ ∃ l < k s ( k ) = ( 3 , s ( l ) ) ∨
∨ ∃ l < k ∃ i < ω s ( k ) = ( 4 , i , s ( l ) ) ) .
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Inspection of this definition shows that Fm(u , s , n) is definite.

Definition 7. 3. The formula Fmla( u) describes that u is a formalized ∈ -for-
mula:

Fmla( u) ↔ ∃n < ω ∃s ∈ Vω Fm(u, s , n) .

The formula Fmla is also definite.

We formalize the Tarskian satisfaction relation for the formulas u defined by
Fmla. For each member of a construction sequence leading to u we consider the
set of assignments in an ∈ -structure ( a , ∈ ) which make the formula true.

Definition 7. 4. The formula S ( s , a , r , t) describes that s builds an ∈ -formula as
in Definition 7. 2 , and that t is a sequence of assignments of the variab le s v0 , � ,
vr− 1 in the ∈ - struc ture ( a , ∈ ) which make the corresponding ∈ -formula of the
sequence s true :

S ( s , a , r , t) ↔ ∃u , n ∈ Vω Fm(u , s , n) ∧ a � ∅ ∧ r < ω ∧ t : dom( s ) → Vω ∧
∧ ∀k ∈ dom( s )

( ( ∃ i , j < ω s ( k ) = ( 0 , i , j) ∧ t( k ) = { b ∈ r a | b( i ) = b( j ) } ) ∨
∨ ( ∃ i , j < ω s ( k ) = ( 1 , i , j) ∧ t( k ) = { b ∈ r a | b( i ) ∈ b( j) } ) ∨
∨ ( ∃ l , m < k s ( k ) = ( 2 , s ( l ) , s (m) ) ∧ t( k ) = t( l ) ∩ t(m) ) ∨
∨ ( ∃ l < k s ( k ) = ( 3 , s ( l ) ) ∧ t( k ) = r a \ t( l ) ) ∨
∨ ( ∃ l < k ∃ i < ω s ( k ) = ( 4 , i , s ( l ) ) ) ∧
∧ t( k ) = { b ∈ r a | ∃x ∈ a ( b \ { ( i , b( i ) ) } ) ∪ { ( i , x ) } ∈ t( l ) } ) ) .

Then define the satisfaction relation a � u [ b ] by b be longing to the assignments
satisfying u:

a � u [ b ] ↔ a
� ∅ ∧ Fmla( u) ∧ b ∈ < ω a ∧
∧ ∃s , r , t ∈ Vω (S ( s , a , r , t) ∧ r = rk(u) ∧ u = s ( dom( s ) − 1 ) ∧
∧ b ∈ t( dom( s ) − 1 ) ) .

Note that

Theorem 7. 5 . For each ∈ -formula ϕ ( v0 , � , vn− 1 ) :

∀a∀x0 , � , xn− 1 ∈ a ( ϕa( x0 , � , xn− 1 ) ↔ a � d ϕ e [ ( x0 , � , xn− 1 ) ] .

On the right-hand side , ( x0 , � , xn− 1 ) is the term

{ ( 0 , x0) , � , (n − 1 , xn− 1 ) } .

Proof. By induction on the formula complexity of ϕ . �
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7. 2 Definable power sets

With these notions we can define a notion of definable power set crucial for the
constructible hierarchy.

Definition 7. 6 . a ) For x ∈ V, ϕ ∈ Fml , and a� ∈ < ω x define the interpreta-
tion of ( x , ϕ , a� ) by

I ( x , ϕ , a� ) = { v ∈ x | x � ϕ [ a�
v

0
] }

b ) Def( x ) = { I ( x , ϕ , p� ) | ϕ ∈ Fml , p� ∈ x } is the definable power set of x .

The terms I ( x , ϕ , a� ) and Def( x ) are definite .
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Chapter 8

The constructible hierarchy

The constructible hierarchy is obtained by iterating the Def-operation along the
ordinals .

Definition 8. 1 . Define the constructible hierarchy Lα , α ∈ Ord by recursion
on α :

L0 = ∅
Lα+ 1 = Def(Lα)

Lλ =
⋃

α< λ

Lα , for λ a limit ordinal .

The constructible universe L is the union of that hierarchy:

L =
⋃

α∈Ord

Lα .

The hierarchy satisfies natural hierarchical laws.

Theorem 8. 2 . a ) α 6 β implie s Lα ⊆ L β
b ) L β is transitive

c ) L β ⊆ Vβ
d ) α < β implie s Lα ∈ L β
e ) L β ∩ Ord = β

f) β 6 ω implie s Lβ = Vβ

g ) β > ω implie s card(L β) = card( β)

Proof. By induction on β ∈ Ord. The cases β = 0 and β a limit ordinal are easy
and do not depend on the specific definition of the L β-hierarchy.

Let β = γ + 1 where the claims hold for γ .
a) It suffices to show that L γ ⊆ L β . Let x ∈ Lγ . By b) , L γ is transitive and
x ⊆ Lγ . Hence

x = { v ∈ L γ | v ∈ x } = { v ∈ Lγ | (L γ , ∈ ) � ( v ∈ w )
x

w
} = I (L γ , v ∈ w , x ) ∈ L γ+ 1 = L β .

b) Let x ∈ L β . Let x = I (L γ , ϕ , p� ) . Then by a) x ⊆ L γ ⊆ L β .
c ) By induction hypothesis ,

L β = Def(L γ) ⊆ P(Lγ) ⊆ P(Vγ) = Vγ+ 1 = Vβ .
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d) It suffices to show that L γ ∈ L β .

L γ = { v ∈ L γ | v = v } = { v ∈ Lγ | (L γ , ∈ ) � v = v } = I (L γ , v = v , ∅ ) ∈ L γ+ 1 = L β .

e) L β ∩ Ord ⊆ Vβ ∩ Ord = β . For the converse, let δ < β . If δ < γ the inductive
hypothesis yields that δ ∈ L γ ∩ Ord ⊆ L β ∩ Ord. Consider the case δ = γ . We have
to show that γ ∈ L β . There is a formula ϕ ( v ) which is Σ 0 and formalizes being an
ordinal. This means that all quantifiers in ϕ are bounded and if z is transitive
then

∀v ∈ z ( v ∈ Ord↔ ( z , ∈ ) � ϕ ( v ) ) .

By induction hypothesis

γ = { v ∈ L γ | v ∈ Ord}
= { v ∈ L γ | (L γ , ∈ ) � ϕ ( v ) }
= I (L γ , ϕ , ∅ )
∈ L γ+ 1 = L β .

f) Let β < ω . By c) it suffices to see that Vβ ⊆ Lβ . Let x ∈ Vβ . By induction
hypothesis , L γ = Vγ . x ⊆ Vγ = Lγ . Let x = {x0 , � , xn− 1 } . Then

x = { v ∈ L γ | v = x0 ∨ v = x 1 ∨ � ∨ v = xn− 1 }
= { v ∈ L γ | (L γ , ∈ ) � ( v = v0 ∨ v = v1 ∨ � ∨ v = vn− 1 )

x0 x 1 � xn− 1

v0 v1 � vn− 1
}

= I (L γ , ( v = v0 ∨ v = v1 ∨ � ∨ v = vn− 1 ) , x0 , x 1 , � , xn− 1 )

∈ L γ+ 1 = L β .

g) Let β > ω . By induction hypothesis card(L γ) = card( γ) . Then

card( β) 6 card(L β)

6 card( { I (L γ , ϕ , p� ) | ϕ ∈ Fml , p� ∈ L γ} )
6 card( Fml) · card( < ωL γ)

6 card( Fml) · card(L γ)
< ω

= ℵ 0 · card( γ) < ω

= ℵ 0 · card( γ) , since γ is infinite,

= card( γ)

= card( β) .

�

The properties of the constructible hierarchy immediately imply the following for
the constructible universe.

Theorem 8. 3. a ) L is transitive .

b ) Ord ⊆ L .

Theorem 8. 4. (L , ∈ ) is a mode l of ZF .
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Proof. By a previous theorem it suffices that L is transitive, almost universal
and c lo sed under definitions .
( 1 ) L is almost universal, i . e. , ∀x ⊆ L ∃ y ∈ L x ⊆ y .
Proof . Let x ⊆ L . For each u ∈ L let rk(u) = min {α | u ∈ Lα } be its constructib le
rank . By replacement in V let β =

⋃ { rk(u) | u ∈ x } ∈ Ord. Then

x ⊆ L β ∈ L .
( 2 ) L is closed under definition, i . e. , for every ∈ -formula ϕ ( x , y� ) holds

∀a , y� ∈ L {x ∈ a | ϕL( x , y� ) } ∈ L .
Proof . Let ϕ ( x , y� ) be an ∈ -formula and a , y� ∈ L . Let a , y� ∈ L θ0 . By the Levy
reflection theorem there is some θ > θ0 such that ϕ is L θ-L -absolute, i . e. ,

∀u, v� ∈ L θ ( ϕLθ (u, v� ) ↔ ϕL(u, v� ) ) .

Then

{x ∈ a | ϕL( x , y� ) } = {x ∈ L θ | x ∈ a ∧ ϕL( x , y� ) }
= {x ∈ L θ | x ∈ a ∧ ϕLθ ( x , y� ) }
= {x ∈ L θ | ( x ∈ a ∧ ϕ ( x , y� ) ) Lθ }
= I (L θ , ( x ∈ z ∧ ϕ ( x , v� ) ) ,

a y�

z v�
) ∈ L θ+ 1 ⊆ L .

�

The recursive and definite definition of the Lα-hierarchy implies immediately:

Theorem 8. 5 . The term Lα is definite .

8. 1 Wellordering L

We shall now prove an external choice principle and also an external continuum
hypothesis for the constructible sets . These will later be internalized through the
axiom of constructib ility . Every constructible set x is of the form

x = I (Lα , ϕ , p� ) ;

(Lα , ϕ , p� ) is a name for x .

Definition 8. 6 . Define the c lass of (constructible) names or locations as

L̃ = { (Lα , ϕ , p� ) | α ∈ Ord , ϕ ( v , v� ) ∈ Fml , p� ∈ Lα , length( p� ) = length( v� ) } .
This c lass has a natural stratification

L̃α = { (L β , ϕ , p� ) ∈ L̃ | β < α } for α ∈ Ord .

A location of the form (Lα , ϕ , p� ) is called an α - location .

8 . 1 Wellordering L 45



Definition 8. 7. Define we llo rders < α ofLα and <̃
α

of L̃α by recursion on α .

− < 0 = <̃ 0 = ∅ is the vacuous ordering on L0 = L̃0 = ∅ ;
− if < α is a we llo rdering of Lα then define <̃

α+ 1
on L̃α+ 1 by:

(L β , ϕ , x� ) <̃ α+ 1 (L γ , ψ , y� ) iff
( β < γ) or ( β = γ ∧ ϕ < ψ ) or
( β = γ ∧ ϕ = ψ ∧ x� is lexicographically le ss than y� with
respec t to < α ) ;

− if <̃
α+ 1

is a we llo rdering on L̃α+ 1 then define < α+ 1 on Lα+ 1 by:

y < α+ 1 z iffthere is a name for y which is <̃ α+ 1 - smaller then every name for z .

− for limit λ , le t < λ =
⋃
α< λ

< α and <̃ λ =
⋃
α< λ

<̃ α .

This defines two hierarchies of wellorderings linked by the interpretation function
I .

Theorem 8. 8 . a ) < α and <̃ α are we ll-defined

b ) <̃ α is a we llo rdering of L̃α

c ) < α is a we llo rdering of Lα

d ) β < α implie s that <̃ β is an initial segment of <̃ α

e ) β < α implie s that < β is an initial segment of < α

Proof. By induction on α ∈ Ord. �
We can thus define wellorders < L and <̃ of L and L̃ respectively:

< L =
⋃

α∈Ord

< α and <̃ =
⋃

α∈Ord

<̃ α

Theorem 8. 9 . < L is a we llo rdering of L .

The above recursions are definite and yield:

Theorem 8. 1 0 . The terms < α and <̃ α are definite .

8. 2 An external continuum hypothesis
Theorem 8. 1 1 . P(ω ) ∩ L ⊆ Lℵ 1 .

‘ ‘ Proof” . Let m ∈ P(ω) ∩ L . By the downward Lowenheim¨ Skolem theorem let
K ≺ L be a ‘ ‘ sufficiently elementary” substructure such that

m ∈ K and card(K ) = ℵ 0 .

Let π : (K, ∈ ) � (K ′, ∈ ) be the Mostowski transitivisation of K defined by

π(u) = {π( v ) | v ∈ u ∧ v ∈ K } .
π � ω = id � ω and

π(m) = {π ( i ) | i ∈ m ∧ i ∈ X } = {π( i ) | i ∈ m } = { i | i ∈ m } = m.

A condensation argument will show that there is η ∈ Ord with
K ′= L η . card( η) 6 card(L η) = card(K ) = ℵ 0 and η < ℵ 1 . Hence

m ∈ K ′= L η ⊆ Lℵ 1
.
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Chapter 9

The Axiom of Constructibility

If V = L holds then every set is constructible, and the above external arguments
become internal. We shall show that (V = L ) L .

Definition 9. 1 . The axiom of constructibility is the property V = L .

Theorem 9. 2 . ( ZF− ) The axiom of constructib ility ho lds in L . This can be also

written as (V = L ) L or L = LL .

Proof. By Theorem 8 . 5 , the term Lα is definite. Thus the formula x ∈ Lα is abso-
lute for the transitive ZF− -model L . S ince L =

⋃
α∈Ord

Lα we have
∀x ∈ L ∃α ∈ Ord x ∈ Lα
∀x ∈ L ∃α ∈ L (α ∈ Ord ∧ x ∈ Lα)
∀x ∈ L ∃α ∈ L ( (α ∈ Ord) L ∧ ( x ∈ Lα) L)

∀x ∈ L ∃α ∈ L ( (α ∈ Ord) L ∧ ( x ∈ Lα) L)

(∀x ∃α x ∈ Lα) L

(∀x x ∈ L ) L

(V = L ) L . �

Theorem 9. 3. ( ZF− ) The axiom of cho ice ho lds in L : ACL .

Theorem 9. 4. If the theory ZF is consistent then the theory ZFC = ZF + AC is
also consistent.

L ist minimal .
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Chapter 10

Constructible Operations and con-
densation

There are various ways of ensuring the condensation property for the structure K
as used in the above argument for the continuum hypothesis. We shall only
require closure under some basic operations of constructibility theory, in partic-
ular the interpretation operator I . An early predecessor for this approach to con-
densation and to hyperfine structure theory can be found in Godel¨ ’ s 1 939 paper
[ 2 ] :

Proof: Define a set K of constructible sets, a set O of ordinals and a
set F of Skolem functions by the following postulates I-VII:

I . Mωµ ⊆ K and m ∈ K .

II . If x ∈ K , the order of x belongs to O .

III . If x ∈ K , al l constants occuring in the definition of x belong
to K .

IV. If α ∈ O and φα( x ) is a propositional function over Mα all of
whose constants belong to K , then:

1 . The subset of Mα defined by φα belongs to K .

2 . For any y ∈ K · Mα the designated Skolem functions
for φα and y or ∼ φα and y ( according as φα( y ) or ∼
φα( y) ) belong to F .

V. If f ∈ F , x 1 , � , xn ∈ K and ( x1 , � , xn) belongs to the domain
of definition of f , then f ( x1 , � , xn) ∈ K .

VI. If x , y ∈ K and x − y
�

Λ the first element of x − y belongs
to K .

VII. No proper subsets of K, O , F satisfy I--VI.

. . . . . . .

. . . . . . .
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Theorem 5 . There exists a one-to-one mapping x ′ of K on Mη such
that x ∈ y ≡ x ′ ∈ y ′ for x , y ∈ K and x ′= x for x ∈ Mωµ .

P roof: The mapping x ′ ( . . . . ) is defined by transfinite induction on
the order, . . . .

1 0. 1 Constructible operations

A substructure of the kind considered by Godel¨ may be obtained as a closure
with respect to certain constructib le operations .

Definition 1 0 . 1 . Define the constructib le operations I , N , S by:

a ) Interpretation: for a name (Lα , ϕ , x� ) le t
I (Lα , ϕ , x� ) = { y ∈ Lα

�
(Lα , ∈ ) � ϕ ( y , x� ) } ;

b ) Naming: for y ∈ L le t
N ( y) = the <̃ - least name (Lα , ϕ , x� ) such that I (Lα , ϕ , x� ) = y .

c ) Skolem function: for a name (Lα , ϕ , x� ) le t
S (Lα , ϕ , x� ) = the < L - least y ∈ Lα such that Lα � ϕ ( y , x� ) if such a y exists;
se t S (Lα , ϕ , x� ) = 0 if such a y does no t exist.

As we do not assume that α is a limit ordinal and therefore do not have
pairing, we make the following convention.

For X ⊆ L , (Lα , ϕ , x� ) a name we write (Lα , ϕ , x� ) ∈ X to mean that Lα and
each component of x� is an element of X .

Definition 1 0 . 2 . X ⊆ L is constructibly closed , X / L , iffX is c lo sed under I ,
N , S:

(Lα , ϕ , x� ) ∈ X � I (Lα , ϕ , x� ) ∈ X and S (Lα , ϕ , x� ) ∈ X,

y ∈ X � N( y ) ∈ X.

For X ⊆ L , L {X } = the ⊆ - smalle st Y ⊇ X such that Y / L is called the con-
structible hull ofX.

The constructible hull L {X } of X can be obtained by closing X under the
functions I , N , S in the obvious way. Hulls of this kind satisfy certain ‘ ‘ algebraic”
laws which will be stated later in the context of fine hulls . C learly each Lα is con-
structibly closed.

Theorem 1 0. 3. ( Condensation Theorem) Let X be constructib ly c lo sed and le t π :
X � M be the Mostowski co llapse ofX onto the transitive se t M. Then there is
an ordinal α such that M = Lα , and π preserves I , N , S and < L :

π : (X, ∈ , < L , I , N , S ) � (Lα , ∈ , < L , I , N , S ) .

50 Constructible Operations and condensation



Proof. We first show the legitimacy of performing a Mostowski collapse.
( 1 ) (X, ∈ ) is extensional.
Proof . Let x , y ∈ X , x

�
y . Let N ( x ) = (Lα , ϕ , p� ) ∈ X and N( y ) = (L β , ψ , q� ) ∈ X .

Case 1 . α < β . Then x ∈ L β and (L β , ∈ ) � ∃v ( v ∈ x= ψ ( v , q� ) ) . Let

z = S (L β , ( v ∈ u= ψ ( v , w� ) ) ,
x q�

u w�
) ∈ X

Then z ∈ x= z ∈ y . qed ( 1 )

We prove the theorem for X ⊆ L γ, by induction on γ . There is nothing to
show in case γ = 0. For γ a limit ordinal observe that

π =
⋃

α< γ

π � (X ∩ L γ)

where each π � (X ∩ L γ) is the Mostowski collapse of the constructibly closed set
X ∩ L γ which by induction already satisfies the theorem.

So let γ = β + 1 , X ⊆ Lβ+ 1 , X * L β , and the theorem holds for β . Let

π : (X, ∈ ) � ( X̄ , ∈ )

be the Mostowski collapse of X . X ∩ L β is an ∈ -initial segment of X , hence π �
X ∩ L β is the Mostowski collapse of X ∩ L β . X ∩ L β is constructibly closed and

so by the inductive assumption there is some ordinal β̄ such that

π � X ∩ L β : (X ∩ L β , ∈ , < L , I , N , S ) � (L β̄ , ∈ , < L , I , N , S ) .

Note that the inverse map π− 1 : L β̄ → L β is elementary since X ∩ L β is closed
under Skolem functions for L β .
( 2 ) L β ∈ X .
Proof . Take x ∈ X \ L β . Let N ( x ) = (L γ , ϕ , p� ) . Then L γ ∈ X and L γ = L β since
x � L β . qed ( 2 )
( 3) π(L β) = L β̄ .

Proof . π(L β) = {π( x ) | x ∈ L β ∧ x ∈ X } = {π( x ) | x ∈ X ∩ L β} = L β̄ .
( 4) X = { I (L β , ϕ , p� ) | p� ∈ X ∩ L β } .
Proof . ⊇ is clear. For the converse let x ∈ X .
Case 1 . x ∈ L β . Then x = I (L β , v ∈ v1 ,

x

v1
) is of the required form.

Case 2 . x ∈ L \ Lβ . Let N ( x ) = (L β , ϕ , p� ) , noting that the first component
cannot be smaller than L β . p� ∈ X and x = I (N ( x ) ) = I (Lβ , ϕ , p� ) is of the
required form. qed ( 4)
( 5 ) Let x� ∈ X . Then π ( I (L β , ϕ , x� ) ) = I (L β̄ , ϕ , π( x� ) ) .
Proof .

π ( I (L β , ϕ , x� ) ) = {π ( y) | y ∈ π( I (Lβ , ϕ , x� ) ) ∧ y ∈ X }
= {π ( y) | (L β , ∈ ) � ϕ ( y , x� ) ∧ y ∈ X }
= {π ( y) | (L β̄ , ∈ ) � ϕ (π( y) , π( x� ) ) ∧ y ∈ X }
= { z ∈ L β̄ | (L β̄ , ∈ ) � ϕ ( z , π( x� ) ) }
= I (L β̄ , ϕ , π( x� ) ) .
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qed ( 5 )

( 6) X̄ = L β̄ + 1 .

Proof . By ( 4, 5 ) ,

L β̄ + 1 = { I (L β̄ , ϕ , x� ) | x� ∈ L β̄ }
= { I (L β̄ , ϕ , π ( p� ) ) | p� ∈ X ∩ L β } , s ince π � X ∩ L β : X ∩ L β � L β̄ ,

= {π( I (L β , ϕ , p� ) ) | p� ∈ X ∩ L β}
= π ′′{ I (Lβ , ϕ , p� ) | p� ∈ X ∩ L β}
= π ′′X = X̄ .

qed ( 6)
( 7) Let y ∈ X . Then π(N( y ) ) = N (π ( y ) ) . This means: if N ( y) = (Lδ , ϕ , x� ) then
N (π( y) ) = ( π(Lδ) , ϕ , π( x� ) ) = (Lπ( δ) , ϕ , π( x� ) ) .

Proof . Let N ( y) = (Lδ , ϕ , x� ) . Then y = I (L δ , ϕ , x� ) and by ( 5 ) we have π( y ) =
I (Lπ( δ) , ϕ , π( x� ) ) . Assume for a contradiction that (Lπ( δ) , ϕ , π( x� ) )

�
N (π( y) ) . Let

N (π( y) ) = (L η , ψ , y� ) . By the minimality of names we have (L η , ψ , y� ) <̃ (Lπ( δ) , ϕ ,

π( x� ) ) . Then (Lπ− 1 ( η) , ψ , π
− 1 ( y� ) ) <̃ (L δ , ϕ , x� ) . By the minimality of (L δ , ϕ , x� ) =

N ( y) , I (Lπ− 1 ( η) , ψ , π
− 1 ( y� ) )

�
I (Lδ , ϕ , x� ) = y . S ince π is injective and by ( 5 ) ,

π( y )
�

π ( I (Lπ− 1 ( η) , ψ , π
− 1 ( y� ) ) )

= I (L η , ψ , y� )

= I (N( y ) ) = y .

Contradiction. qed ( 7)
( 8 ) Let x , y ∈ X . Then x < L y iff π( x ) < L π( y) .
Proof . x < L y iff N ( x ) <̃N ( y) iff π(N ( x ) ) <̃ π(N ( y) ) ( since inductively π preserves
< L on X ∩ Lβ and <̃ is canonically defined from < L ) iff N(π ( x ) ) <̃ N( π( y) ) iff
π( x ) < L π( y) . qed ( 8 )
( 9 ) Let (L δ , ϕ , x� ) ∈ X . Then π(S (L δ , ϕ , x� ) ) = S (Lπ( δ) , ϕ , π( x� ) ) .
Proof . We distinguish cases according to the definition of S (Lδ , ϕ , x� ) .
Case 1 . There is no v ∈ I (L δ , ϕ , x� ) , i . e. , I (L δ , ϕ , x� ) = ∅ and S (Lδ , ϕ , x� ) = ∅ . Then
by ( 5 ) ,

I (Lπ( δ) , ϕ , π( x� ) ) = π ( I (Lδ , ϕ , x� ) ) = π( ∅ ) = ∅

and S (Lπ( δ) , ϕ , π( x� ) ) = ∅ . So the claim holds in this case.
Case 2 . There is v ∈ I (Lδ , ϕ , x� ) , and then S (L δ , ϕ , x� ) is the < L -smallest element
of I (Lδ , ϕ , x� ) . Let y = S (L δ , ϕ , x� ) . By ( 5 ) ,

π( y) ∈ π( I (L δ , ϕ , x� ) ) = I (Lπ( δ) , ϕ , π( x� ) ) .

So S (Lπ( δ) , ϕ , π( x� ) ) is well-defined as the < L -minimal element of I (Lπ( δ) , ϕ ,

π( x� ) ) . Assume for a contradiction that S (Lπ( δ) , ϕ , π( x� ) )
�
π ( y ) . Let z = S (Lπ( δ) ,

ϕ , π( x� ) ) ∈ I (Lπ( δ) , ϕ , π( x� ) ) . By the minimality of Skolem values, z < L π( y) . By

( 8 ) , π− 1 ( z ) < L y . S ince π is ∈ -preserving, π− 1 ( z ) ∈ I (Lδ , ϕ , x� ) . But this contra-
dicts the < L -minimality of y = S (L δ , ϕ , x� ) �
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Chapter 1 1

GCH in L

Theorem 1 1 . 1 . (L , ∈ ) � GCH .

Proof. (L , ∈ ) � V = L . It suffices to show that

ZFC + V = L ` GCH .

Let ωµ > ℵ 0 be an infinite cardinal.
( 1 ) P(ωµ) ⊆ Lωµ+ .

Proof . Let m ∈ P(ωµ) . Let K = L {Lωµ ∪ {m } } be the constructible hull of Lωµ ∪
{m } . By the Condensation Theorem take an ordinal η and and the Mostowski
isomorphism

π : (K, ∈ ) � (L η , ∈ ) .

S ince Lωµ ⊆ K we have π(m) = m .

η < card( η) + = card(L η)
+ = card(K ) + = card(Lωµ )

+ = ωµ
+ .

Hence m ∈ L η ⊆ Lωµ+ . qed ( 1 )

Thus ωµ
+ 6 card(P(ωµ) ) 6 card(Lωµ+ ) = ωµ

+ . �
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Chapter 12

Trees

Throughout these lectures we shall prove combinatorial principles in L and apply
them to construct specific structures that cannot be proved to exist in ZFC alone.
We concentrate on the construction of infinite trees since they are purely combi-
natorial ob jects which are still quite close to ordinals and cardinals . One could
extend these considerations and also construct unusual topological spaces or
uncountable groups.

Definition 1 2 . 1 . A tree is a stric t partial order T = (T, < T ) , such that ∀t ∈
T { s ∈ T | s < T t } is we ll- o rdered by < T . For t ∈ T le t htT( t) = otp( { s ∈ T | s < T t} )
be the height of t in T. For X ⊆ Ord le t TX be the se t of po ints in the tree whose
he ights lie in X:

TX = { t ∈ T | htT( t) ∈ X } .
In particular, T{α } is the α - th level of the tree and Tα is the initial segment of T
be low α . We le t

ht(T) = min {α | T = Tα }
be the height of the tree T.

A chain in T is a linearly ordered sub se t of T. An ⊆ -maximal chain is called
a branch .

Definition 1 2 . 2 . A tree T of cardinality λ all of whose leve ls and branches are of
cardinality < λ is called a λ -Aronszajn tree . If λ = ω1 , T is called an Aron-
szajn tree .

Theorem 1 2 . 3. Let κ be regular and ∀λ < κ 2λ 6 κ . Then there is a κ+-Aron-
szajn tree .

Hence in ZFC one can show the existence of an ( ω1 -) Aronszajn tree. The gen-
eralized continuum hypothesis implies the assumption ∀λ < κ 2λ 6 κ , so in L there
are κ+-Aronsza jn trees for every regular κ .

Theorem 1 2 . 4. Let κ be an infinite cardinal. Then there is a linear order (Q , ≺
) such that card(Q ) = κ and every α < κ+ can be order-embedded into every proper
interval ofQ .

Proof. Let Q = { a ∈ ω κ | ∃m ∈ ω ∀n ∈ ω (n > m → a (n) = 0} be the set of ω-
sequences from κ which are eventually zero and define the lexicographic linear
order ≺ on Q by:

a ≺ b↔ ∃n ∈ ω ( a � n = b � n ∧ a (n) < b(n) ) .
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We first prove the embedding property for α = κ :
( 1 ) If a ≺ b then there is an order-preserving embedding

f : ( κ , < ) → ( ( a , b) , ≺ )

into the interval ( a , b) = { c | a ≺ c ≺ b } .
Proof . Take n ∈ ω such that

a � n = b � n ∧ a (n) < b(n) .

Then define f : ( κ , < ) → ( ( a , b) , ≺ ) by

f ( i ) = ( a � n + 1 ) ∪ { (n + 1 , a (n + 1 ) + 1 + i ) } ∪ ( 0 | n + 2 6 l < ω) .

qed ( 1 )
We prove the full theorem by induction on α < κ+ . Let α < κ+ and assume

that the theorem holds for all β < α . Let ( a , b) be a proper interval of Q , a ≺ b .
Case 1 : α = β + 1 is a successor ordinal. By ( 1 ) take b ′ ∈ ( a , b) . By the induc-
tive assumption take an order-preserving map f ′: ( β, < ) → ( a , b ′) . Extend f ′ to an
order-preserving map f : (α , < ) → ( a , b) by setting f ( β) = b ′ .
Case 2 : α is a limit ordinal . S ince α < κ+ let α =

⋃
i< κ

α i such that ∀i < κ α i <

α . By ( 1 ) let f : ( κ , < ) → ( ( a , b) , ≺ ) order-preservingly. By the inductive assump-
tion choose a sequence ( gi | i < κ ) of order-preserving embeddings

gi : (α i , < ) → ( ( f ( i ) , f ( i + 1 ) ) , ≺ ) .

Then define an order-preserving embedding

h : (α , < ) → ( ( a , b) , ≺ )

by h ( β) = gi( β) , where i < κ is minimal such that β ∈ α i . �

Proof of Theorem 1 2 . 3 . Let (Q , ≺ ) be a linear order as in Theorem 1 2 . 4. We
define a tree

T ⊆ { t | ∃α < κ+ t : (α , < ) → (Q , ≺ ) is order-preserving}
with strict inclusion ⊂ as the tree order such that:

a) T is closed under initial segments, i . e. , ∀t ∈ T∀ξ ∈ Ord t � ξ ∈ T ;

b) for all α < κ+ , T{α } = { t ∈ T | dom( t) = α } has cardinality 6 κ ;

c) for all limit ordinals α < κ+ with cof(α ) < κ

T{α } = { t | t : α→ Q ∧ ∀β < α t � β ∈ T{ β }} .

d) for all α < β < κ+ , t ∈ T{α } , a ≺ b ∈ Q such that ∀ξ ∈ α t( ξ) ≺ a there exists
t ′ ∈ T{ β } such that t ⊂ t ′ and ∀ξ ∈ β t ′( ξ) ≺ b .

We define the levels T{α } by recursion on α < κ+ .
Let T{ 0} = { ∅} .
Let α = β + 1 and assume that T{ β } is defined according to a) - d) . For any t ∈
T{ b } and a ≺ b ∈ Q such that ∀ξ ∈ β t( ξ) ≺ a choose an extension ta , b

′ such that

− ta , b
′ : (α , < ) → (Q , ≺ ) is order-preserving;
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− ta , b
′ ⊃ t ;

− ∀ξ ∈ α ta , b
′ ( ξ) ≺ b .

One could for example set ta , b
′ ( β) = a . Then set

T{α } = { ta , b′ | t ∈ T{ β } , a ≺ b , ∀ξ ∈ β t( ξ) ≺ a } .

Obviously, conditions a) - d) are satisfied.
Let α < κ+ be a limit ordinal so that for all β < α T{ β } is defined according to a) -
d) . These are the levels of the tree Tα .
Case 1 : cof(α ) < κ . Let the sequence (α i | i < cof(α ) ) be continuous and cofinal in
α with cof(α ) < α0 . By c) we must set

T{α } = { t | t : α→ Q ∧ ∀β < α t � β ∈ T{ β }} .

Let us check that properties a) - d) hold for this definition. a) is immediate. For
b) , note that every t ∈ T{α } is determined by ( t � β | β ∈ C) :

card(T{α } ) 6 card( cof(α ) (Tα) )

6 card( cof(α )
⋃

β< α

T{ β } )

6 card( cof(α )κ · κ )

= κ cof(α)

6
∑

ν< κ

ν cof(α)

6
∑

ν< κ

2 ν · cof(α)

6
∑

ν< κ

κ , by the assumption ∀λ < κ 2λ 6 κ ,

= κ .

For d) , let t ∈ Tα and a ≺ b ∈ Q such that ∀ξ ∈ dom( s ) t( ξ) ≺ a . By Theorem 1 2 . 4
there is an order-preserving embedding f : ( cof(α ) , < ) → ( ( a , b) , ≺ ) . We may
assume that ht( t) < α0 . We may recursively choose sequences ti ∈ T{α i } such that

− ∀i < j < cof(α ) t ⊂ ti ⊂ tj ;

− ∀i < cof(α ) ∀ξ ∈ α i ti( ξ) ≺ f ( i ) .

For non-limit ordinals i < cof(α ) use the extension property d) . For limit ordinals
i < cof(α ) note that α i is the limit of (α j | j < i ) and is thus singular with cof(α i) 6
i < cof(α ) < κ . We can then take ti =

⋃
j< i

tj which is an element of T{α i } by c) .

Then take t ′ =
⋃
i< cof(α )

ti . t
′ ∈ T{α } by the definition of T{α } . t ′ is an extension

of t and ∀ξ ∈ α t ′( ξ) ≺ b as required.
Case 2 : cof(α ) = κ . Let the sequence (α i | i < κ ) be continuous and cofinal in α .
For each t ∈ Tα and a ≺ b ∈ Q with ∀ξ ∈ dom( t) t( ξ) ≺ a we shall construct an
extension ta , b

′ in T appropriate for the extension property d) : By Theorem 1 2 . 4
there is an order-preserving embedding f : ( κ , < ) → ( ( a , b) , ≺ ) . We may assume
that ht( t) < α0 . Recursively choose sequences ti ∈ T{α i } such that

− ∀i < j < κ t ⊂ ti ⊂ tj ;
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− ∀i < κ ∀ξ ∈ α i ti( ξ) ≺ f ( i ) .

For non-limit ordinals i < cof(α ) use the extension property d) . For limit ordinals
i < cof(α ) note that α i is the limit of (α j | j < i ) and is thus singular with cof(α i) 6
i < κ . We can then take ti =

⋃
j< i

tj which is an element of T{α i } by c) .

Then set ta , b
′ =

⋃
i< κ

ti . ta , b
′ is an extension of t and ∀ξ ∈ α ta , b

′ ( ξ) ≺ b as

required in c) .
Now define

T{α } = { ta , b′ | t ∈ Tα , a ≺ b , ∀ξ ∈ dom( t) t( ξ) ≺ a } .

The properties a) - d) are easily checked. a) follows by construction. For b) note
that

card(T{α } ) 6 card(Tα) · card(Q ) · card(Q )

6 ( card(α ) · κ ) · κ · κ
6 κ · κ · κ · κ 6 κ .

c) does not apply for T{α } and d) holds by construction.
This defines the tree T =

⋃
α< κ+ T{α } . We show that T is a κ+-Aronszajn tree.

( 1 ) ht(T) = κ+ .
Proof . Property d) ensures that ∀α < κ+ T{α }

� ∅ . By construction, T{κ+ } = ∅ ,
hence ht(T) = κ+ . qed ( 1 )
( 2 ) card(T) = κ+ , s ince by property b) κ+ = ht(T) 6 card(T) 6 κ+ · κ = κ+ .
( 3 ) ∀α < ht(T) card(T{α } ) 6 κ , by property b) .
( 4) Every branch of T has cardinality 6 κ .
Proof . Let B ⊆ T be a branch of T . Then

⋃
B : ( θ , < ) → (Q , ≺ ) is an order-

preserving embedding for some θ ∈ Ord. S ince
⋃
B is an injection from θ into Q ,

card( θ ) 6 κ . Then card(B ) 6 θ 6 κ . �
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Chapter 13

The principle ♦
We shall study a principle which was introduced by Ronald Jensen and may be
seen as a strong form of a continuum hypothesis . We shall use the principle to
construct Aronsza jn trees with stronger properties . The principle ♦ involves
notions for ‘ ‘ large” subsets of a regular uncountable cardinal: c lo sed unbounded
and stationary sets .

Definition 1 3. 1 . Let κ be a regular uncountab le cardinal.

a ) C ⊆ κ is closed unbounded in κ ifC is cofinal in κ and

∀α < κ (C ∩ α is cofinal in α→ α ∈ C) .

b ) Cκ = {X ⊆ κ | ∃C ⊆ X C is c lo sed unbounded in κ } is the closed
unbounded filter on κ .

c ) S ⊆ κ is stationary in κ if ∀C ∈ Cκ S ∩ C
� ∅ .

Theorem 1 3. 2 . Let κ > ω be a regular cardinal. Then Cκ is a non- trivial filter on
κ which is < κ - comple te , i . e . ,

∀β < κ∀{Xξ | ξ < β } ⊆ Cκ
⋂

ξ< β

Xξ ∈ Cκ .

Proof. Exercise. �

Definition 1 3. 3. Let κ be a regular uncountab le cardinal. Then ♦κ is the prin-
c iple : there is a sequence (Sα | α < κ ) such that

∀S ⊆ κ {α < κ | S ∩ α = Sα } is stationary in κ .

Theorem 1 3. 4. Assume ♦κ+ . Then 2κ = κ+ .

Proof. Let (Sα | α < κ ) be a sequence satisfying ♦κ+ . Consider x ⊆ κ . By the
♦κ+ -property there is α ∈ ( κ , κ+ ) such that x = x ∩ α = Sα . Hence

P( κ ) ⊆ {Sα | α < κ+}
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and

2κ = card(P( κ ) ) 6 κ+ . �

Theorem 1 3. 5 . Assume V = L . Then ♦κ ho lds for all regular uncountab le cardi-
nals κ .

Proof. Define (Sα | α < κ ) by recursion on α . Consider β < κ and let (Sα | α < β)
be appropriately defined. If β is not a limit ordinal, set Sβ = ∅ . If β is a limit
ordinal, let (Sβ , Cβ) be the < L -minimal pair such that Cβ is closed unbounded in
β , Sβ ⊆ β and ∀α ∈ Cβ Sβ ∩ α

�
Sα , if this exists ; otherwise let Sβ = ∅ .

We show that (Sα | α < κ ) satisfies ♦κ . Assume not . Then there is a set S ⊆ κ
such that {α < κ | S ∩ α = Sα } is not stationary in κ . Hence there is a closed
unbounded set C ⊆ κ such that

{α < κ | S ∩ α = Sα } ∩ C = ∅ ,
i . e. ,

∀α ∈ C S ∩ α �
Sα .

We may assume that (S , C ) is the < L -minimal pair such that C is closed
unbounded in κ and ∀α ∈ C S ∩ α �

Sα .

Take a level L θ such that ( ZF− ) Lθ and κ , (Sα | α < κ ) , S , C ∈ Lθ .
( 1 ) There is X C L such that L θ , κ , (Sα | α < κ ) , S , C ∈ X , and β = X ∩ κ is a
limit ordinal < κ .
Proof . Define sequence X0 ⊆ X1 ⊆ � and β0 < β1 < � < κ by recursion so that
card(Xn) < κ and Xn ∩ κ ⊆ βn . Let

X0 = L { {L θ , κ , (Sα | α < κ ) , S , C } } C L .

X0 is countable and so card(X0) < κ .

Let Xn be defined such that card(Xn) < κ . S ince κ is a regular cardinal, Xn ∩
κ is bounded below κ . Take βn < κ such that Xn ∩ κ ⊆ βn . Then let

Xn+ 1 = L {Xn ∪ ( βn + 1 ) } .

card(Xn+ 1 ) 6 card(Xn) + card( βn) + ℵ 0 < κ .

Let X =
⋃
n< ω

Xn and β =
⋃
n< ω

βn . S ince κ is regular uncountable, β is a limit

ordinal and β < κ . By construction,

X =
⋃

n< ω

Xn =
⋃

n< ω

L {Xn ∪ ( βn + 1 ) } = L {
⋃

n< ω

(Xn ∪ ( βn + 1 ) ) } C L .

β =
⋃

n< ω

βn ⊆ (
⋃

n< ω

Xn+ 1 ) ∩ κ ⊆ X ∩ κ ⊆
⋃

n< ω

Xn ∩ κ ⊆
⋃

n< ω

βn = β .

qed ( 1 )

By the condensation theorem let

π : (X, ∈ , < L , I , N , S ) � (L δ , ∈ , < L , I , N , S )
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for some δ ∈ Ord. We compute the images of various sets.
( 2 ) π � β = id � β , s ince β = X ∩ κ ⊆ X is transitive.
( 3) π( κ ) = β , since π( κ ) = {π( ξ) | ξ ∈ κ ∧ ξ ∈ X } = {π( ξ) | ξ ∈ β } = { ξ | ξ ∈ β } = β .
( 4) π(S ) = S ∩ β , s ince

π(S ) = {π( ξ) | ξ ∈ S ∧ ξ ∈ X }
= {π( ξ) | ξ ∈ S ∩ X }
= {π( ξ) | ξ ∈ S ∩ β }
= { ξ | ξ ∈ S ∩ β }
= S ∩ β .

S imilarly
( 5 ) π(C) = C ∩ β .
( 6 ) π( (Sα | α < κ ) ) = (Sα | α < β) .
Proof .

π( (Sα | α < κ ) ) = π( { (α , Sα) | α ∈ κ } )
= {π( (α , Sα) ) | α ∈ β }
= { (π(α ) , π(Sα) ) | α ∈ β }
= { (α , Sα) | α ∈ β }
= (Sα | α < β) .

qed ( 6)
( 7) X ∩ L θ is an elementary substructure of (L θ , ∈ ) .
Proof . S ince L θ ∈ X , the init ial segment X ∩ L θ is closed with respect to the
Skolem functions S (Lθ , _ , _ ) for L θ . qed ( 7)

Let θ̄ = π( θ ) . Then
( 8 ) π− 1 � L θ̄ : (L θ̄ , ∈ ) → (L θ , ∈ ) is an elementary embedding.

Now we use elementarity and absoluteness to derive a contradiction.
( 9 ) C ∩ β is closed unbounded in β , S ∩ β ⊆ β and ∀α ∈ C ∩ β S ∩ α �

Sα .
Proof . C is closed unbounded in κ . S ince this is a definite property, (L θ , ∈
) � C is closed unbounded in κ . By elementarity, (L θ̄ , ∈ ) � C ∩ β is closed
unbounded in β . By the absoluteness of being closed unbounded, C ∩ β is closed
unbounded in β .

The other properties follow by the assumptions on C and S . qed ( 9 )
( 1 0) (S ∩ β, C ∩ β) = (Sβ , Cβ) .
Proof . Assume not. By the minimality of (Sβ , Cβ) and ( 9 ) , we get

(Sβ , Cβ) < L (S ∩ β, C ∩ β) .

S ince L θ̄ is an initial segment of < L we have (Sβ , Cβ) ∈ L θ̄ . The defining proper-
ties for (Sβ , Cβ) are absolute for (L θ̄ , ∈ ) :

(L θ̄ , ∈ ) � Cβ is closed unbounded in β , Sβ ⊆ β and ∀α ∈ Cβ Sβ ∩ α
�
Sα .

By the elementarity of π− 1 � L θ̄ :

(Lθ , ∈ ) � π− 1 (Cβ) is cl . unb. in κ , π− 1 (Sβ) ⊆ κ , ∀α ∈ π− 1 (Cβ) π
− 1 (Sβ) ∩ α

�
Sα .

The principle ♦ 61



By the absoluteness of these properties for transitive ZF− -models,

π− 1 (Cβ) is cl . unb. in κ , π− 1 (Sβ) ⊆ κ , ∀α ∈ π− 1 (Cβ) π
− 1 (Sβ) ∩ α

�
Sα ,

i . e. , the pair ( π− 1 (Sβ) , π
− 1 (Cβ) ) satisfies the defining property for (S , C ) . S ince

π− 1 preserves < L ,

(π− 1 (Sβ) , π
− 1 (Cβ) ) < L (π− 1 (S ∩ β) , π− 1 (C ∩ β) ) = (S , C) .

This contradicts the < L -minimal cloice of (S , C) . qed ( 1 0)
By ( 9 ) , β is a limit point of C and hence β ∈ C . By ( 1 0) , S ∩ β = Sβ . This

contradicts the choice of the pair (S , C ) , i . e. , there is no counterexample against
the ♦κ-property of the sequence (Sα | α < κ ) . �
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Chapter 14

Combinatorial principles and Suslin
trees

Definition 1 4. 1 . Let T = (T, < T ) be a tree .

a ) A set A ⊆ T is an antichain in T if ∀s , t ∈ A ( s
�
t→ ( s ≮ Tt ∧ t ≮ Ts ) ) .

b ) Let κ be a cardinal. T is called a κ -Suslin tree if card(T) = κ and every
chain and antichain in T has cardinality < κ .

Obviously every level of a tree is an antichain. Hence a κ -Suslin tree is also a κ -
Aronsza jn tree.

Theorem 1 4. 2 . Let κ be an infinite cardinal. Le t T = (T, < T ) be a tree with
card(T) = κ such that every antichain in T has cardinality < κ and T is
branching, i . e .

∀s ∈ T∃ t , t ′ ∈ T ( s < Tt ∧ s < Tt
′ ∧ htT( t) = htT( t ′) = htT( s ) + 1 ∧ t �

t ′) .

Then T is a κ -Suslin tree .

Proof. It suffices to see that every chain in T has cardinality < κ . Let C ⊆ T be
a chain. For every s ∈ C choose t , t ′ ∈ T such that

s < Tt ∧ s < Tt
′ ∧ htT( t) = htT( t ′) = htT( s ) + 1 ∧ t �

t ′

Then at least one of t , t ′ is not an element of C . So for each s ∈ C we can choose
s ∗ > Ts such that s ∗ � C and htT( s ∗ ) = htT( s ) + 1 .
( 1 ) If s , t ∈ C and s

�
t then s ∗ ≮ Tt∗ ∧ t∗ ≮ Ts ∗ .

Proof . Assume not. Without loss of generality assume s ∗ < T t∗ . S ince t is the
immediate < T -predecessor of t∗ we have s ∗ 6Tt and s ∗ ∈ C . Contradiction. qed ( 1 )

Hence { s ∗ | s ∈ C } is an antichain in T . By assumption card( { s ∗ | s ∈ C } ) < κ .
S ince the assignment s � s ∗ is injective, we have card(C ) < κ . �

Theorem 1 4. 3. Assume ♦ω1 . Then there exists an ω1 -Suslin tree .

Proof. Let (Sα | α < ω1 ) be a ♦ω1
-sequence. We construct a tree T = (T, < T ) of

the form T =
⋃
α< ω1

T{α } such that every level Tα is countable. We can arrange
that

T{ 0} = { 0} and ∀α ∈ [ 1 , ω1 ) T{α } = ω · (α + 1 ) \ ω · α .
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By recursion on α < ω1 we shall determine the < T -predecessors of x ∈ T{α } . We
shall also ensure the following recursive condition which guarantees that the tree
can always be continued:
( 1 ) for all ξ < ζ 6 α and s ∈ T{ ξ } there exists t ∈ T{ ζ } such that s < Tt .

For α = 0 there is nothing to determine.

For α = 1 , let every element of T{ 1 } be a < T -successor of 0 ∈ T{ 0} .

Let α = β + 1 > 1 and let < T � Tα be determined so that ( 1 ) is satisfied. We let
every s ∈ T{ β } have two immediate successors in T{α } : if s = ω · β + m ∈ T{ β } and
t = ω · α + n ∈ T{α } then set

s < Tt iff n = 2 · m or n = 2 · m + 1 .

S ince < T has to be a transitive partial order, this determines all < T -predecessors
of x ∈ T{α } . Also ( 1 ) holds for < T � Tα+ 1 .

Let α be a limit ordinal and let < T � Tα be determined so that ( 1 ) is satisfied.
( 2 ) For every s 0 ∈ Tα there is a branch B of the tree Tα = (Tα , < T � Tα) such
that s 0 ∈ B and otp(B ) = α .
Proof . Choose an ω-sequence

htT( s ) = α0 < α 1 < � < αn < � < α

which is cofinal in α . Using ( 1 ) choose a sequence

s 0 < Ts 1 < T � < Tsn < T �

such that ∀n < ω htT( sn) = αn . Then

B = { t ∈ Tα | ∃n < ω t < Tsn}
satisfies the claim. qed ( 2 )

Define a set Sα
′ ⊆ Tα as follows: if Sα is a maximal antichain in the tree Tα =

(Tα , < T � Tα) then set

Sα
′ = { r ∈ Tα | ∃s ∈ Sα s 6Tr } ;

otherwise set Sα
′ = Tα . The set Sα

′ is countable. Let Sα
′ = { s i | i < ω } be an enumer-

ation of Sα
′ . For each i < ω use ( 2 ) to choose a branch B i of Tα with s i ∈ B i and

otp(Bi) = α . For x = ω · α + i ∈ T{α } and s ∈ Tα define

s < Tx iff s ∈ Bi .

( 3) Property ( 1 ) holds for Tα+ 1 .
Proof . Let s ∈ Tα . It suffices to find t ∈ T{α } such that s < Tt .
Case 1 : Sα

′ = Tα . Then s = s i for some i < ω , s i ∈ B i , and s i < T ω · α + i ∈ T{α } .
Case 2 : Sα

′ = { r ∈ Tα | ∃s ∈ Sα s 6 T r } , where Sα is a maximal antichain in Tα =
(Tα , < T � Tα) . By the maximality of Sα there is s ′ ∈ Sα which is comparable with
s :

s 6Ts ′ or s ′ 6Ts .

Case 2. 1 : s 6Ts ′. Then s ′ ∈ Sα′ , say s ′= s i , s ∈ B i , and s < T ω · α + i ∈ T{α } .
Case 2. 2 : s ′6Ts . Then s ∈ Sα′ , say s = s i , s ∈ Bi , and s < T ω · α + i ∈ T{α } . qed ( 3)
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This concludes the recursive definition of the tree T = (T, < T ) . It is straight-
forward to check, that the predetermined sets T{α } are indeed the α -th levels of
the tree. By the construction at successors , the tree is branching. By the previous
theorem it suffices to show that every antichain in T has cardinality < ω1 .

Let A ⊆ T be an antichain in T . Using the lemma of Zorn we may assume
that A is maximal with respect to ⊆ .
( 4) The set C = {α < ω1 | A ∩ α is a maximal antichain in Tα } is closed
unbounded in ω1 .
Proof . Let us first show unboundedness . Let α0 < ω1 . Construct an ω-
sequence

α0 < α1 < � < ω1

as follows. Let αn < ω1 be defined. By the maximality of A every s ∈ Tαn is < T -
comparable to some t ∈ A . By the regularity of ω1 one can take αn+ 1 ∈ (αn , ω1 )
such that

∀s ∈ Tαn ∃ t ∈ A ∩ αn+ 1 ( s 6 Tt ∨ t 6Ts ) .

Let α =
⋃
n< ω

αn < ω1 . A ∩ α is an antichain in T , s ince it consists of pairwise

incomparable elements . So A ∩ α is an antichain in Tα . For the maximality con-
sider s ∈ Tα . Let s ∈ Tαn . By construction there is t ∈ A ∩ αn+ 1 such that s 6 T t ∨
t 6Ts . So every element of Tα is comparable with some element of A ∩ α .

For the closure property consider some α < ω1 such that C ∩ α is cofinal in α .
To show that α ∈ C it suffices to show that A ∩ α is a maximal antichain in Tα .
Consider s ∈ Tα . Take β ∈ C ∩ α such that s ∈ Tβ . Then A ∩ β is a maximal
antichain in Tβ and there exists t ∈ A ∩ β ⊆ A ∩ α which is comparable with s .
Thus for every s ∈ Ta there exists t ∈ A ∩ α which is comparable with s . Thus α ∈
C . qed ( 4)

By the ♦ω1 -property, {α < ω1 | A ∩ α = Sα } is stationary in ω1 . Take α ∈ C
such that A ∩ α = Sα . Then A ∩ α = Sα is a maximal antichain in Tα .
( 5 ) A = A ∩ α .
Proof . Let t ∈ A . We show that every r ∈ T is comparable with some s ∈ A ∩
α . S ince A ∩ α is a maximal antichain in Tα this is clear for r ∈ Tα and we may
assume that r ∈ T \ Tα . Then htT( r) > α and we can take the unique r̄ ∈ T{α }
such that r̄ 6Tr . By construction of T{α } there is some s ∈ Sα = A ∩ α such that

s < T r̄ 6T r
qed ( 5 )

By ( 5 ) , A = A ∩ α is countable. S ince T is a branching tree all whose
antichains are countable, T is a Suslin tree. �

We shall now study generalizations from ω1 -Suslin trees to κ+-Suslin trees for
κ > ω . We first consider the case when κ is regular. There are now different kinds
of limit cases α in the construction: cof(α ) < κ and cof(α ) = κ . To ensure the ana-
logue of property ( 1 ) of the previous proof, we

− extend all paths through Tα when cof(α ) < κ ;

− use the set Sα of the ♦ -sequence as above when cof(α ) = κ .
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In the first case one assumes that κcof(α ) 6 κ< κ = κ which is a consequence of
GCH. For the second case to yield the desired result a ♦ -principle for ordinals of
cofinality κ is needed. Note that the set Cofκ = {α < κ+ | cof(α ) = κ } is stationary
in κ+ .

Definition 1 4. 4. Let κ be a regular uncountab le cardinal and le t D ⊆ κ be sta-
tionary in κ . Then ♦κ(D ) is the princ iple : there is a sequence (Sα | α < κ ) such
that

∀S ⊆ κ {α ∈ D | S ∩ α = Sα } is stationary in κ .

Theorem 1 4. 5 . Assume V = L . Le t κ be a regular uncountab le cardinal and D ⊆
κ be stationary. Then ♦κ(D ) ho lds .

This is very much proved like ♦κ = ♦κ( κ ) . We only indicate the necessary
changes in the previous proof.

Proof. Let β < κ and let (Sα | α < β) be appropriately defined. If β is not a limit
ordinal or β � D , set Sβ = ∅ . If β is a limit ordinal and β ∈ D , let (Sβ , Cβ) be the
< L -minimal pair such that Cβ is closed unbounded in β , Sβ ⊆ β and ∀α ∈ D ∩
Cβ Sβ ∩ α

�
Sα , if this exists; otherwise let Sβ = ∅ .

Assume that (Sα | α < κ ) does not satisfy ♦κ . Then there is a set S ⊆ κ such
that {α ∈ D | S ∩ α = Sα } is not stationary in κ . Let (S , C) be the < L -minimal
pair such that C is closed unbounded in κ and ∀α ∈ D ∩ C S ∩ α �

Sα .
Take a level L θ such that ( ZF− ) Lθ and κ , D , (Sα | α < κ ) , S , C ∈ L θ .

( 1 ) There is X C L such that L θ , κ , D , (Sα | α < κ ) , S , C ∈ X , β = X ∩ κ is a
limit ordinal, and β ∈ D .
Proof . We basically show that the set of β < κ with the first two properties is
closed unbounded in κ . Let

A = { β < κ | β = L { β ∪ {Lθ , κ , D , (Sα | α < κ ) , S , C } } ∩ κ } .
We first show the unboundedness of A . Let β0 < κ and define an ω-sequence β0 <
β1 < � < κ by recursion: if βn < κ is defined, let βn+ 1 < κ be minimal such that
βn+ 1 > βn and

L { βn ∪ {Lθ , κ , D , (Sα | α < κ ) , S , C } } ∩ κ < βn+ 1 .

βn+ 1 exists, since

card(L { βn ∪ {Lθ , κ , D , (Sα | α < κ ) , S , C } } ) 6 card( βn) + ℵ 0 < κ

and since κ is regular.
Let β =

⋃
n< ω

βn . S ince κ is regular uncountable, β is a limit ordinal and β <

κ . By construction,

β ⊆ L { β ∪ {Lθ , κ , D , (Sα | α < κ ) , S , C } } ∩ κ
=

⋃

n< ω

(L { βn ∪ {L θ , κ , D , (Sα | α < κ ) , S , C } } ∩ κ )

⊆
⋃

n< ω

βn+ 1

= β,
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hence β ∈ A .
A similar argument shows that A is closed in κ . S ince D is stationary in κ

take β ∈ D ∩ A . Then

X = L { β ∪ {L θ , κ , D , (Sα | α < κ ) , S , C } }

has the required properties. qed ( 1 )
By the condensation theorem let

π : (X, ∈ , < L , I , N , S ) � (L δ , ∈ , < L , I , N , S )

for some δ ∈ Ord. The proof then follows the previous proof of ♦κ . �

Theorem 1 4. 6 . Let κ be a regular cardinal such that κ< κ = κ . Assume ♦κ+ ( {α <
κ+ | cof(α ) = κ } ) . Then there exists a κ+-Suslin tree .

Proof. Let (Sα | α < κ+ ) be a ♦κ+ ( {α < κ+ | cof(α ) = κ } ) -sequence. We construct
a tree T = (T, < T ) of the form T =

⋃
α< κ+ T{α } such that every level Tα has cardi-

nality 6 κ . We can arrange that

T{ 0} = { 0} and ∀α ∈ [ 1 , κ+ ) T{α } = κ · (α + 1 ) \ κ · α .

By recursion on α < κ+ we shall determine the < T -predecessors of x ∈ T{α } . We
shall also ensure the following two recursive conditions which guarantee that the
tree can always be continued:
( 1 ) for all ξ < ζ 6 α and s ∈ T{ ξ } there exists t ∈ T{ ζ } such that s < Tt ;
( 2 ) if α ′ < α is a limit ordinal with cof(α ′) < κ and B is a branch through Tα ′ with
otp(B ) = α ′ then there is t ∈ T{α ′} such that ∀s ∈ B s < Tt .

For α = 0 there is nothing to determine.
For α = 1 , let every element of T{ 1 } be a < T -successor of 0 ∈ T{ 0} .

Let α = β + 1 > 1 and let < T � Tα be determined so that ( 1 ) , ( 2 ) are satisfied.
We let every s ∈ T{ β } have two immediate successors in T{α } : if s = κ · β + µ + m ∈
T{ β } and t = ω · α + ν + n ∈ T{α } with limit ordinals µ , ν < κ and m, n < ω then set

s < Tt iff µ = ν and (n = 2 · m or n = 2 · m + 1 ) .

S ince < T has to be a transitive partial order, this determines all < T -predecessors
of x ∈ T{α } . Also ( 1 ) and ( 2 ) hold for < T � Tα+ 1 .

Let α be a limit ordinal and let < T � Tα be determined so that ( 1 ) is satisfied.
( 2 ) For every s 0 ∈ Tα there is a branch B of the tree Tα = (Tα , < T � Tα) such
that s 0 ∈ B and otp(B ) = α .
Proof . Let γ = cof(α ) . Take a γ-sequence

htT( s ) = α0 < α1 < � < α i < � < α , i < γ

which is cofinal in α and continuous, i . e. , if i < γ is a limit ordinal then

α i =
⋃

j< i

α j .

Recursively choose a γ-sequence

s 0 < Ts 1 < T � < Ts i < T � , i < γ
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such that ∀i < γ htT( s i) = α i . The recursive construction is possible at successor
ordinals i < γ by ( 1 ) . If i < γ is a limit ordinal then

cof(α i) 6 i < γ = cof(α ) 6 κ .

Let B i = { t ∈ Tα i | ∃ j < i t < T s j } be the branch through Tα i determined so far.
Then s i ∈ T{α i } can be found by property ( 2 ) . Then

B = { t ∈ Tα | ∃ i < γ t < Ts i}
satisfies the claim. qed ( 2 )
Case 1 : cof(α ) < κ . Then
( 3) card( {B | B is a branch through Tα of ordertype α } ) = κ .
Proof . Let γ = cof(α ) . Take a γ-sequence

htT( s ) = α0 < α1 < � < α i < � < α , i < γ

which is cofinal in α . A branch B through Tα of ordertype α is determined by the
set {B ∩ Tα i | i < γ } . The letter is basically a function from γ into κ . Hence

κ 6 card( {B | B is a branch through Tα of ordertype α } 6 card( γκ ) 6 κ< κ 6 κ .

qed ( 3)

Let (Bi | i < κ ) be an injective enumeration of all branches through Tα of order-
type α . For x = κ · α + i ∈ T{α } , i < κ and s ∈ Tα define

s < Tx iff s ∈ Bi .

Obviously properties ( 1 ) and ( 2 ) hold for α .

Case 2 : cof(α ) = κ .

Define a set Sα
′ ⊆ Tα as follows: if Sα is a maximal antichain in the tree Tα =

(Tα , < T � Tα) then set

Sα
′ = { r ∈ Tα | ∃s ∈ Sα s 6Tr } ;

otherwise set Sα
′ = Tα . Obviously card(Sα

′ ) = κ . Let Sα
′ = { s i | i < κ } be an enumer-

ation of Sα
′ . For each i < κ use ( 2 ) to choose a branch Bi of Tα with s i ∈ Bi and

otp(Bi) = α . For x = κ · α + i ∈ T{α } and s ∈ Tα define

s < Tx iff s ∈ Bi .

( 3) Property ( 1 ) holds for Tα+ 1 .
Proof . Let s ∈ Tα . It suffices to find t ∈ T{α } such that s < Tt .
Case 1 : Sα

′ = Tα . Then s = s i for some i < κ , s i ∈ B i , and s i < T κ · α + i ∈ T{α } .
Case 2 : Sα

′ = { r ∈ Tα | ∃s ∈ Sα s 6 T r } , where Sα is a maximal antichain in Tα =
(Tα , < T � Tα) . By the maximality of Sα there is s ′ ∈ Sα which is comparable with
s :

s 6Ts ′ or s ′ 6Ts .

Case 2. 1 : s 6Ts ′. Then s ′ ∈ Sα′ , say s ′= s i , s ∈ B i , and s < T κ · α + i ∈ T{α } .
Case 2. 2 : s ′6Ts . Then s ∈ Sα′ , say s = s i , s ∈ Bi , and s < T κ · α + i ∈ T{α } . qed ( 3)
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This concludes the recursive definition of the tree T = (T, < T ) . It is straight-
forward to check, that the predetermined sets T{α } are indeed the α -th levels of
the tree. By the construction at successors , the tree is branching. By the previous
theorem it suffices to show that every antichain in T has cardinality 6 κ .

Let A ⊆ T be an antichain in T . Using the lemma of Zorn we may assume
that A is maximal with respect to ⊆ . As before one can show
( 4) The set C = {α < κ+ | A ∩ α is a maximal antichain in Tα } is closed
unbounded in κ+ .

By the ♦κ+ -property, {α < κ+ | A ∩ α = Sα } is stationary in κ+ . Take α ∈ C
such that A ∩ α = Sα . Then A ∩ α = Sα is a maximal antichain in Tα .
( 5 ) A = A ∩ α .
Proof . Let t ∈ A . We show that every r ∈ T is comparable with some s ∈ A ∩
α . S ince A ∩ α is a maximal antichain in Tα this is clear for r ∈ Tα and we may
assume that r ∈ T \ Tα . Then htT( r) > α and we can take the unique r̄ ∈ T{α }
such that r̄ 6Tr . By construction of T{α } there is some s ∈ Sα = A ∩ α such that

s < T r̄ 6T r
qed ( 5 )

By ( 5 ) , A = A ∩ α has cardinality 6 κ . S ince T is a branching tree all whose
antichains have cardinality 6 κ , T is a κ+-Suslin tree. �
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