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Prologue

These lecture notes were written for a lecture course on constructibility and fine
structure theory at the University of Bonn in the summer term of 2005.
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Chapter 1

Introduction

The scope of these lecture notes roughly correspond to the contents of the mono-
graph Constructibility by KeiTH J. DEVLIN. Some mayor simplifications are
obtained by using the hyperfine structure theory of Sy D. FRIEDMAN and the
present author.

KURT GODEL proved the unprovability of the negation of the generalized con-
tinuum hypothesis (GCH), i.e., its (relative) consistency, in notes and articles
published between 1938 and 1940 [1], [3], [2], [4]. He presented his results in var-
ious forms which we can subsume as follows: there is an €-term L such that

ZFF“(L,€)EZF + the axiom of choice (AC)+ GCH”.

So ZF sees a model for the stronger theory ZF + AC + GCH. If the system ZF is
consistent, then so is ZF+AC+GCH. In ZF, the term L has a host of special
properties; L is the C-minimal inner model of ZF, i.e., the C -smallest model of
ZF which is transitive and contains the class Ord of ordinals.

The model L will be the central object of study in this lecture course.

The construction of L is motivated by the idea of recursively constructing a
minimal model of ZF. The archetypical ZF-axiom is ZERMELO’s comprehension
schema (axiom of subsets): for every €-formula ¢(v, @) postulate

VaVp {vex|p(v,p)}eV.

The term V' denotes the abstraction term {v|v = v}, i.e., the set theoretic uni-
verse; formulas with abstraction terms are abbreviations for pure € -formulas.
E.g., the above instance of the comprehension schema abbreviates the formula

VaVp JyVv (vey —vexAp(v,p)).

The basic idea for building a (minimal) model of set theory is to form some kind
of closure under the operations

(z,7)—{vez|pv,p)}.

There is a difficulty where to evaluate the formula . The comprehension instance
should be satisfied in the model to be built eventually, i.e., the quantifiers of ¢
may have to range about sets which have not yet been included in the construc-
tion. To avoid this one only lets the evaluation of the formula refer to sets already
constructed and considers the modified definability operations

(z,p)r—A{vez|(z,c)Fp(v,p)}.
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These could be termed predicative operations whereas the strong operation would
be impredicative. The set {v € z|(z, € ) E ¢(v, P)} is determined by the parame-
ters x, ¢, p. One can thus view {v € z|(z, € ) F ¢(v, P)} as an interpretation of a
name (x, ¢, P). These ideas will be essential in the definition of the constructible
hierarchy.



Chapter 2
The Language of Set Theory

The intuitive notion of set is usually described by GEORG CANTOR’s dictum

Unter einer Menge verstehen wir jede Zusammenfassung M von
bestimmten, wohlunterschiedenen Objekten m unsrer Anschauung
oder unseres Denkens (welche die ,Elemente von M genannt
werden) zu einem Ganzen. [CANTOR, S. 282; By a set we under-
stand every collection M of definite, distinguished objects m of our
perceptions or thoughts (which are called the “‘elements” of M) into
a whole.]

This idea may be formalized by class terms:

M ={m|p(m)}.

M is the class of all m which satisfy the (mathematical) property . Class terms
are common in modern mathematical practice. The transfer from the definining
property ¢ to the corresponding collection M ={m|y(m)} supports the view that
one is working with abstract “objects”, namely classes, instead of ‘‘immaterial”
properties. How such classes can reasonably and consistently be treated as objects
is a matter of set theoretical and foundational concern. It is partially answered by
the ZERMELO-FRAENKEL axioms of set theory which we shall introduce in the
next chapter.

Even without set theory, classes can be treated intuitively. One can describe
properties of class terms and define complex terms from given ones, thus devel-
oping a class theory. We shall take the view that sets are ‘“‘small” classes. The
language of class terms is thus also the language of set theory — or even of math-
ematics, if we think of all of mathematics as formalized within set theory.

2.1 Class Terms

Classes or collections may be queried for certain elements: m is an element of
M ={m|p(m)} if it satisfies the defining property ¢. In symbols:

m € M if and only if p(m).
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So in m € {m|¢(m)} the class term may be eliminated by just writing the prop-
erty or formula p. Carrying out this kind of elimination throughout mathematics
shows that all mathematical terms and properties may be reduced to basic for-
mulas without class terms. The basic language can be chosen extremely small,
but we may also work in a very rich language employing class terms.

The set theoretic analysis of mathematics shows that the following basic lan-
guage is indeed sufficient:

Definition 2.1. The (basic) language of set theory has variables vy, vy, ... .
The atomic formulas of the language are the formulas v =y (“x equals y”) and
x €y (“x is an element of y”) where x and y are variables. The collection of for-
mulas of the language is the smallest collection L( € ) which contains the atomic
formulas and is closed under the following rules:

— if p is a formula then =y (“not ¢”) is a formula;
— if p and ¢ are formulas then N ¥ (“p or”) is a formula;

— if v is a formula and x is a variable then 3x (“‘there is x such that ¢”)
s a formula.

A formula is also called an € -formula. As usual we understand other proposi-
tional operators or quantifiers as abbreviations. So ¢ AN, ¢ — P, <« Y and Yrp
stand for =(—p V=), 2oV, (¢ — ) A (Y — @) and —Jx—p respectively. Also

the formula go% 15 obtained from ¢ by substituting the variables © by y.

We now introduce the rich language involving class terms.

Definition 2.2. A class term is a symbol sequence of the form
{z |} (“the class of x such that ¢”)

where x is one of the variables vy, v1, ... and @ is an € -formula. A term is a
variable or a class term. We now allow arbitrary terms to be used in (atomic) for-
mulas. A generalized atomic formula is a formula of the form s =1 or s €t
where s and t are terms. Form the generalized formulas from the generalized
atomic formulas by the same rules as in the previous definition.

Generalized formulas can be translated into strict € -formulas according to the
above intuition of class and collection. It suffices to define the elimination of class
terms for generalized atomic formulas. So we recursively translate

ye{ele} into o2,

{zlet={ylv} into Vz(ze{z|p}—ze{ylv}),
r={y[¢} into Vz(z€z-2€{ylv}),
{ylyv} =2z into Vz(z€{y|v}—z€m),

{z|p}e{y|v} into azwgm:{xw,
{z|p}ey into Fz(zeyAhz={x|p}).



2.2 EXTENDING THE LANGUAGE 11

The translation of the equalities corresponds to the intuition that a class is deter-
mined by its extent rather by the specific formula defining it. If at least one of s
and t is a class term, then by the elimination procedure

s=tiff Vz(z €s—z€t).

We also have x = {y|y € v} where we assume a reasonale choice of variables. In
this case this means that z and y are different variables. Under the natural
assumption that our term calculus satisfies the usual laws of equality, we get

r=y iff {vjvex}={v|jvey}
iff Vz(ze{v|lvex}—ze{vjvey})
iff Vz(zexezey).
This is the aziom of extensionality for sets, which will later be part of the set-the-
oretical axioms. We have obtained it here assuming that = for class terms is
transitive. In our later development of set theory from the ZERMELO-FRAENKEL

axioms one would rather have to show these axioms imply the equality laws for
class terms.

2.2 Extending the Language

We introduce special names and symbols for important class terms and formulas.
Naming and symbols follow traditions and natural intuitions. In principle, all
mathematical notions could be interpreted this way, but we restrict our attention
to set theoretical notions. We use also many usual notations and conventions, like
x +#+ x instead of ~x =zx.
Definition 2.3. Define the following class terms and formulas:

a) O:={x|x+=x} is the empty class;

b) © Cy:=Vz(z €x— z €y) denotes that = is a subclass of y;

c) {z}:={y|ly==x} is the singleton of x;
d) {z,y}:={z|z=xVz=y} is the unordered pair of v and y;

(x,y):={{x},{z,y}} is the (ordered) pair of x and y;

e

)
)
)
)
) {zo, ooy xnati={yly=aoV..Vy=x,_1};
g) xNy:={z|z€x Nz €y} is the intersection of x and y;

)

)

) T

)

)

—

h) xUy:={z|z€xVz€y} is the union of x and y;

i) x\y:={z|z€xNz¢y} is the difference of x and y;
J ={y|y€x} is the complement of z;
k

l

r:={z|Vy(yex—z€y)} is the intersection of x;

X

N
U

{z|Fy(yexNnze€y)} is the union of x;
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m) P(z):={y|y Cx} is the power of x;

n) V:={z|r=ux} is the universe or the class of all sets;

0) v is a set :=x V.
Strictly speaking, these notions are just syntactical objects. Nevertheless they cor-
respond to certain intuitive expectations, and the notation has been chosen
accordingly. The axioms of ZERMELO-FRAENKEL set theory will later ensure,
that the notions do have the expected properties.

Note that we have now formally introduced the notion of set. The variables of

our language range over sets, terms which are equal to some variable are sets. If ¢
is a term then

tisasetiff teV iff Jx(z=aAz=t)iff Irr=t.

Here we have inserted the term t into the formula “x is a set”. In general, the
substitution of terms into formulas is understood as follows: the formula is trans-
lated into a basic € -formula and then the term is substituted for the appropriate
variable. In a similar way, terms t, ..., %,,_1 may be substituted into another terms
t(zgy ..., Tn—1): let t(zo, ..., x,—1) be the class term {x|p(x, xq,...,2,-1)}; then

t(to, ceey tnfl) = {ZL‘ | QP(ZL‘, to, ceny tnfl)}

where the right-hand side substitution is carried out as before. This allows to
work with complex terms and formulas like

{0}, {0,{0}}, xU(yUz), 2Ny CaxUy, D is a set.

A few natural properties can be checked already on the basis of the laws of first-
order logic. We give some examples:

Theorem 2.4. a) For termst we have 0 Ct and t CV.
b) For terms s,t,r with s Ct and t Cr we have s Cr.

¢) For terms s,t we have sNt=tNs and sUt=tUs.

Proof. b) Assume s Ct and ¢t Cr. Let z € s. Then z €, since s Ct. z € r, since
tCr. Thus Vz(z€s—z€r), ie, sCr.
The other properties are just as easy. O

RUSSELL’s antinomy is also just a consequence of logic:
Theorem 2.5. The class {x|x ¢ x} is not a set.

Proof. Assume for a contradiction that {z |z ¢ x} € V ={z |z =x}. This trans-
lates into 3z (z=zAz={z|r¢x}). Take z such that z={x|x ¢ x}. Then

Contradiction. O
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2.3 Relations and Functions

Apart from sets, relations and functions are the main building blocks of mathe-
matics. As usual, relations are construed as sets of ordered pairs. Again we note
that the subsequent notions only attain all their intended properties under the
assumption of sufficiently many set theoretical axioms.

Definition 2.6. Let t be a term and ¢ be a formula, where T is the sequence of
variables which are both free in t and in p. Then write the generalized class term

{tlp} instead of {y|37 (y=1T)Np(T))}

Definition 2.7. a) x x y={(u,v)luexANvey} is the (cartesian) product

of x and y.

b) z is a relation :=x CV x V.

c) x is a relation ony :=x Cy X y.

d) zry:=(x,y) €r is the usual infix notation for relations.

e) dom(r):={x|Jyxry} is the domain of r.

f) ran(r):={y|Jzzry} is the range of r.

g) field(r):=dom(r) Uran(r) is the field of r.

h) rla:={(z,y)|(x,y) €Er ANz €a} is the restriction of r to a.

i) rla]:={y|Fx(r€an(z,y)Er} is the image of a under .

7) r7ibl:={z|3y(y €bA(z,y) Er} is the preimage of b under r.

k) ros:={(z,z)|Jy(xryANysz)} is the composition of r and s.

D) r=t:={(y,z)|(z,y) €r} is the inverse of r.

Definition 2.8. a) fis a function = f is a relation A VaVyVz(z fy A

rfz—y=2).

b) f(z)=U{y|zfy} is the value of f at x.

c) fis a function from a into b := fra—b:= fis a function Adom(f)=

a A ran(f) Cb.
d) “:={f|f:a—0b} is the space of all functions from a into b.
e) X g:={f]|dom(f)=dom(g) AVz(x € dom(g) — f(x) € g(x))} is the

(cartesian) product of g.

Note that the product of ¢ consists of choice functions f, where for every argu-
ment = € dom(g) the value f(z) chooses an element of g(x).






Chapter 3
The ZERMELO-FRAENKEL Axioms

RUSSELL’s antinomy can be seen as a motivation for the axiomatization of set
theory: not all classes can be sets, but we want many classes to be sets. We for-
mulate axioms in the term language introduced above. Most of them are set exis-
tence axioms of the form ¢t € V. In writing the axioms we omit all initial universal
quantifiers, i.e., ¢ stands for V& ¢ where {Z } is the set of free variables of ¢.
Definition 3.1. 1. Axiom of extensionality: t CyNyCr—x=y.
Pairing axiom: {z,y}eV.

Union axiom: |Jx€V.

Axiom of infinity: Iz (Dex AVy(yex—yU{y}ex)).

Axiom (schema) of subsets: for all terms A postulate: tNAEV.

S S o e

Axiom (schema) of replacement: for all terms F postulate:
Fis a function — Flx]€V.

7. Aziom (schema) of foundation: for all terms A postulate:
A+0—3x(ze ANzNA=0).

8. Powerset axiom: P(x)€V.

9. Aziom of choice (AC):
[ is a function AVz (x €dom(f) — f(x)#£0) — Xf+£0.

10. The ZERMELO-FRAENKEL axiom system ZF consists of the axioms 1 -
8.

11. The axiom system Z¥F~ consists of the axioms 1 - 7.

12. The axiom system ZFC consists of the axioms 1 - 9.

Remarkably, virtually all of mathematics can be developed naturally in the axiom
system ZFC: one formalizes the systems of natural, integer, rational, and real
numbers; all further notions of mathematics can be expressed by set operations
and properties. This is usually presented in introductory texts on set theory.

Note that the set theoretical axioms possess very different characters. There
are seemingly week axioms like the pairing or union axiom which postulate the
existence of concretely specified sets. On the other hand, a powerset seems to be
a vast object which is hard to specify other than by its general definition. The
theory ZF~ avoids the problematic powerset axiom as well as the axiom of choice.
We shall carry out most of our initial development within ZF~.

15






Chapter 4

Induction, recursion, and ordinals

4.1 € -induction

We work in the theory ZF~. Let us first introduce some notation:

Definition 4.1. Write
dx € sy instead of Jx(r €SN p),

V€ sp instead of Vo (x €s— ),
and

{res|p} instead of {x|xesNp}.

These notations use x as a bounded wvariable, the quantifiers 3x € s and Vx € s
are called bounded quantifiers.

The axiom of foundation is equivalent to an induction schema for the € -rela-
tion: if a property is inherited from the € -predecessors, it holds everywhere.

Theorem 4.2. Let o(x,y) be an € -formula such that

Ve (Vzexp(z,§)— p(z,7)).
Then

Veo(r, §).

Proof. Assume not. Then A:={z|-¢(z, 7)}# 0. By the foundation schema for
A take some x € A such that tNA=1, i.e., Vz€xx ¢ A. By the definition of A

—p(z,y) and Vz€x (2, 7).

This contradicts the assumption of the theorem. O

4.2 Transitive Sets and Classes

Definition 4.3. The class s is transitive iff Vo € sVy € v y € s. We write
Trans(s) if s is transitive.

17
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Theorem 4.4. s is transitive iff Vees x Cs iff Ve esxz=zNs.
A transitive class is an € -initial segment of the class of all sets.

Theorem 4.5. a) § and V are transitive.
b) If Vo€ ATrans(x) then () A and |J A are transitive.

c) If x is transitive then v U{x} is transitive.

Proof. Ezercise. O

4.3 € -recursion
We prove a recursion principle which corresponds to the principle of € -induction.

Theorem 4.6. Let G:V — V. Then there is a class term F such that
F:V—=Vand Ve F(x)=G(F | x).
The function F is uniquely determined: if F':V — F and Ve F'(x) = G(F' | x).
Then
F=F'"

The term F'is defined explicitely in the subsequent proof and is called the canon-
ical term defined by < -recursion by F(x)=G(F |z).
Proof. We construct F' as a union of approximations to F. Call a function feV
a G-approximation if

—  f:dom(f)—V;

— dom(f) is transitive;

— Vo f(z)=G(f ).

We prove some structural properties for the class of G-approximations:

(1) If f and f’ are G-approximations then Yz € dom( f) Ndom(f’) f(z)= f'(x).
Proof. Assume not and let = € dom(f) N dom(f’) be € -minimal with f(z) #
f'(x). Since dom( f) N dom( f’) is transitive, z C dom(f) N dom(f’). By the € -
minimality of z, f [z= f'[xz. Then

f@)=G(f12)=G(f" z)= f'(z),
contradiction. ged(1)
(2) Yx3f(f is a G-approximation A x € dom( f)).
Proof. Assume not and let x be an €-minimal counterexample. For y € x define

fy= ﬂ {f|f is a G-approximation A y € dom( f)}.

By the minimality of x, there at least one f such that

f is a G-approximation A y € dom( f).
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The intersection of such approximations is an approximation itself, so that

fy is a G-approximation A y € dom( f,).

=({J ful@.clY 1)

yex YyET

Then define

One can now check that f, is a G-approximation with x € dom( f;). Contradic-
tion. ged(2)
Now set

F= U {f|f is a G-approximation}.

Then F satisfies the theorem. O

Definition 4.7. Let TC be the canonical term defined by € -recursion by
TC(z)=2zU U TC(y)

yex

TC(z) is called the transitive closure of x.

Theorem 4.8. For all x € V-
a) TC(z) is transitive and TC(x) D x;
b) TC(x) is the C-smallest transitive superset of x.

Proof. By € -induction. Let z € V and assume that a) and b) hold for all z € z.
Then
(1) TC(x) 2 x is obvious from the recursive equation for TC.
(2) TC(x) is transitive.
Proof. Let uev e TC(z).
Case 1: vEx. Then
uev CTC(v) C | TC(y) CTC(x).

yex

Case 2: v ¢ x. Then take y € x such that v € TC(y). TC(y) is transitive by
hypothesis, hence
ueTC(y) C | J TC(y) CTC(x).

cxr
qed(2) '
b) Let w Dz be transitive. Let y € x. Then y € w, y Cw. By hypothesis, TC(y) is
the C-minimal superset of y, hence TC(y) Cw. Thus

U TC(y) C

yex
and

TC(z) =2 U U TC(y) Cw O

yex
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4.4 Ordinals

The number system of ordinal numbers is particularly adequate for the study of
the infinite. We present the theory of vVON NEUMANN-ordinals based on the
notion of transitivity.

Definition 4.9. A set x is an ordinal if Trans(x) AVy €z Trans(y). Let

Ord ={z|z is an ordinal }

be the class of all ordinals.

We show that the ordinals are a generalization of the natural numbers into the
transfinite.

Theorem 4.10. The class Ord is strictly well-ordered by € .

Proof. (1) € is a transitive relation on Ord.

Proof. Let z,y,2€0rd, z €y, and y € z. Since z is a transitive set, x € z. ged(1)
(2) € is a linear relation on Ord, i.e., Vz,y€Ord (r€yVae=yVyecx).

Proof. Assume not. Let z be €-minimal such that

Jy(gyraFyAyga).
Let y be €-minimal such that
r¢EyNrFyANy¢a. (4.1)
Let 2’ € x. Then by the minimality of x we have
r'eyvae'=yvyex'

If "=y then y =1’ € z, contradicting (4.1). If y € 2’ then y € 2’ € x and y € x,
contradicting (4.1). Thus z’ € y. This shows z Cy.
Conversely let 3" € y. Then by the minimality of y we have

rey'Vve=y'Vy €.

If x €y’ then z €y’ €y and x € y, contradicting (4.1). If =9’ then z =y’ € y, con-
tradicting (4.1). Thus y’ € x. This shows y C x.

Hence z =y, contradicting (4.1). ged(2)
(3) € is an irreflexive relation on Ord, i.e., Vo € Ord = ¢ x.
Proof. Assume for a contradiction that x € z. By the foundation scheme
applied to the term A={z}# 0 let y€{x} with yN{x}=0. Then y=2, x€x=
y, x € yN{x} which contradicts the choice of y. ged(3)
(4) € is a well-order on Ord, i.e., for every non-empty A C Ord there exists
a € A such that Viea g ¢ A.
Proof. By the foundation scheme applied to A let « € A with aa N A = (). Then
Vieapf¢ A O
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By this theorem, € is the canonical order on the ordinal numbers. We use
greek letters a, 3, v, ... as variables for ordinals and write o < 3 instead of a € 5.
When we talk about smallest or largest ordinals this is meant with respect to the
ordering <.

Theorem 4.11. a) O is the smallest element of Ord. We write 0 instead of
0 when 0 is used as an ordinal.

b) If « € Ord then aU{a} is the smallest element of Ord which is larger than
a, i.e., a U{a} is the successor of a. We write a+ 1 instead of o U{a}.
Every ordinal of the form a+ 1 is called a successor ordinal.

Proof. b) Let € Ord.

(1) aU{a} is transitive.

Proof. Let ueveaU{a}.

Case 1. vea. Then uea CaU{a} since « is transitive.

Case 2. ve{a}. Thenuecv=aCaU{a}. ged(1)

(2) Vy e aU{a} Trans(y).

Proof. Let y € aU{a}.

Case 1. y € a. Then Trans(y), since « is an ordinal.

Case 2. y€{a}. Then y=a, and Trans(y), since « is an ordinal. ged(2)
So aU{a} is an ordinal, and aU{a} > a.

(3) aU{a} is the smallest ordinal > a.

Proof. Let f<aU{a}. Then f€a or f=a. Hence f<a and 3 ¥ «. O

Theorem 4.12. a) Ord is transitive.
b) Va € Ord Trans(z).
c) Ord¢V, i.e., Ord is a proper class.

Proof. a) Let xz € y € Ord.
(1) Trans(z), since every element of the ordinal y is transitive.
(2) Yu € x Trans(u).
Proof. Let u € x. Since y is transitive, u € y. Since every element of y is transi-
tive, Trans(u). ged(2)
Thus x € Ord.
b) is part of the definition of ordinal.
¢) Assume Ord € V. By a) and b), Ord satisfies the definition of an ordinal,
and so Ord € Ord. This contradicts the foundation scheme. O

4.5 Natural numbers

One can construe the common natural numbers as those ordinal numbers which
can be reached from 0 by the + l-operation. Consider the following term:

Definition 4.13. w={a € Ord |V ca+1(5=0V [ is a successor ordinal)} is
the class of natural numbers.
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Theorem 4.14. w is transitive.

Proof. Let z€a cw.

(1) z € Ord, since Ord is transitive.

(2)  Ca, since « is transitive.

B)z+1Cala+1.

(4) VBex+1(6=0V [ is a successor ordinal), since « €w and z+1Ca+ 1.
Then (1) and (4) imply that = € w. O

Theorem 4.15. w eV, i.e., w is the set of natural numbers.

Proof. By the axiom of infinity, take a set x such that

(0exAVy(lycx—yU{y}ex)).

(1) wCua.
Proof. Assume for a contradiction that w ¢ x. By foundation take z € w € -min-
imal such that z ¢ z. By the definition of w we have z = 0 or z is a successor
ordinal. The case z = 0 is impossible by the choice of z. Hence z is a successor
ordinal. Take y € Ord such that z=y+ 1. Then y € 2 €¢w and y € w by the transi-
tivity of w. By the € -minimal choice of z we have y € x. By the choice of = we
have z=y+ 1=y U{y} €x. This contradicts the choice of z. ged(1)

The subset schema implies that w=xNw e V. O

Theorem 4.16. w is a limit ordinal, i.e., an ordinal + 0 which is not a suc-
cessor ordinal. Indeed, w is the smallest limit ordinal:

w= ﬂ {a|a is a limit ordinal }.

Proof. First note that w is an ordinal, since it is a transitive set and each of its
elements is transitive.

Obviously 0 € w, hence w# 0. Assume for a contradiction that w is a successor
ordinal. Take some a € Ord such that w=a+ 1. Then o €w and

Viea+1(F=0V 3 is a successor ordinal).
w+1l=(a+1)U{w}. Since w is assumed to be a successor ordinal
Voew+1(f=0V /S is a successor ordinal).

Hence w € w. But this contradicts the foundation schema.

Thus w is a limit ordinal.

Let v be (another) limit ordinal. Since all elements of w are 0 or successor
ordinals, we cannot have v <w. Therefore w < 7. U

Let us justify this formalization of the set of natural numbers by

Theorem 4.17. The structure (w,+ 1,0) satisfies the PEANO azioms:
a) 0 €w;
b) Vnewn+1€w;
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c) Vnewn+1+#0;
d) Vm,new(m+1l=n+1—-m=n);
e) ViCw((0exAVmeam+1er) —r=w).

Proof. Axioms a) to d) are immediate from the definition of w or from the gen-
eral properties of ordinals. For e) consider a set # Cw such that

OecxAVmexm+1eun.

Assume for a contradiction that = # w. By foundation take z € w € -minimal such
that z ¢ x. By the definition of w we have z =0 or z is a successor ordinal. The
case z = 0 is impossible by the properties of z. Hence z is a successor ordinal.
Take y € Ord such that 2=y + 1. Then y € z € w and y € w by the transitivity of
w. By the € -minimal choice of z we have y € x. By the inductive property of =
we have z=y+ 1=y U{y} €x. This contradicts the choice of z. O






Chapter 5

Transitive € -models

Axiomatic set theory studies the axiom systems ZF and ZFC. By the GODEL
incompleteness theorem, these systems are incomplete. So one is lead to consider
extensions of these systems of the form ZF + ¢ or ZFC + ¢ for various ¢. Even
some simple questions of the arithmetic of infinite cardinals like CANTOR’s con-
tinuum hypothesis are not decided by ZFC and present an ongoing challenge to
set theoretical research.

To show that a theory like ZFC + ¢ is consistent one constructs models of that
theory (making some initial assumptions). Usually these models will be an € -
model of the form (M, € ), where M is some class.

5.1 Relativizations of Formulas and Terms

Evaluating an € -formula ¢ in a model (M, € ) amount to bounding the range of
quantifiers in ¢ to M.

Definition 5.1. Let M be a term. For ¢ an € -formula define the relativization
oM of ¢ to M by recursion on the complexity of p:

— (reyM:=zey

Definition 5.2. Let M be a term and let ® be a (metatheoretical) set of for-
mulas. Then the (metatheoretical) set

M ={pM|pe D}

1s the relativization of ® to M.

The relativizations ¢ and ®* correspond to the model-theoretic satisfaction
relations (M, €)F ¢ and (M, €)E®. This is illustrated by
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Theorem 5.3. Let ® be a finite set of € -formulas and let ¢ be an € -formula
such that ® = ¢ in the calculus of first-order logic. Let M be a transitive term,
M+ 0, which has no common free variables with ® or p. Then

Vi e M(( [\ ®)M— M),
where & includes all the free variables of ® and p.

Proof. By induction on the lengths of derivations it suffices to prove the theorem
for the case that ® F ¢ is derivable by a single application of a rule of the first-
order calculus. We check this for the various rules.

The theorem is obvious in case ¢ is an element of ®.

In case ¢ = (=), the relativization (z =) = (x =x) holds in any case.

The theorem is easy to show for all propositional rules and the substitution
rule.

So let us now consider the quantifier rules. Assume that op(z, §)* where z,
7 € M. Then 3z (z € M A ¢(z, 7)) and

(Fzo(z, 7)™

as required.
For the J-introduction in the antecedens suppose that

va, g e M((\ )M A (x, 7)) — oM7), (5.1)

where the variable x does not occur in ® or ¢. Now let ¥ € M and assume that
(A @M A Bzy)M(7). Then Jz € MM (x, ij). Take x € M such that M (x, 7).
By (4.1) we get o (7). Hence

Vg e M((/\ )M A Ge)M(F) — &M (7). D

We shall later construct models M such that ZFCM holds.

Definition 5.4. Let M be a term. For a class term s = {x |y} define the rela-
tivization s™ of s to M by:

sM:={zeM|pM}.
If 5 is a variable, s =z, then let s™ =s.

sM is the term s as evaluated in M. We show that evaluating a formula with
class terms (a generalized formula) in a transitive class M is the same as rela-
tivizing the basic formula without class terms and then inserting the relatived
class terms. This will make many notions absolute between M and V.

Note that the relativization of a bounded quantifier dz € y to a transitive class
M with y € M has no effect:

Jreype—dreynM .
Theorem 5.5. Let M be a transitive class. Let o(x, ..., Tn—1) be a basic formula

and to,...,t,_1 be terms. Then

Yw € M[(X(to, ...,tnfl))M — XM(tS/I, ...,t,];/lfl)],
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where {W} is the set of free variables of x(to,...,tn_1)-

Proof. By induction on the complexity of x. Let w € M.

Let x be an atomic formula of the form v € v or u = v. If t; and t; are vari-
ables there is nothing to show. The other cases correspond to the following equiv-
alences:

(yefzleh™ o (pD¥
< P
o (:cEM/\@M)%
o ye{zlreMnMt={zeM|p"}
o yMe{nlpit.
This equivalence is already used in:
{zlel={ylvHh" < (Vz(ze{zlp}oze{ylv}))"

o VzeM(ze{z|pt oz e{y[v}Y)

o Va(ze o] @} oz e {y|u V), since (x|} C M,

o Azl ={ylL}".

Note, that £ C M by the transitivity of M:

(@={ylvH" < (Vz(zez—ze{y|v})V
— VzeM(zexz—ze{y|yv M)

— Vz(zexe—ze{y|y}M), since x CM,
o oM ={y |y}
(fleyelylo D = Gz(vonz={oleh)
o EIzEM(z/JMi/\z:{xW}M)
o EIz(zEM/\z/JMg/\z:{xho}M)
o {z]pMe{ylye M APM}={ylyv}M.

{zleteyn) o (Fz(zeynz={z|p})"
— zeM(zeyrz={z|p}M)
— Fz(zeyAz={z|p}M), since y C M,
= {z|ptey=y"

Now assume that y is a complex formula and the theorem holds for all proper
subformulas. If y=-% and @ € M then

(X(t(]a seey tnfl))M(_) _'(w(th teey tnfl))MH _'wM(tg]wa seey tT]‘L/Ifl) A XM(tg]wa seny tr]\L/Ifl)-
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If x=¢pVand @ € M then

(X(t07---7tn—1))M — (Qo(th---7tn—1))Mv(w(t()a'--atn—l))M
o oM, LB VM )

— XM(téw,,tnM_l)
If x=3z¢ and W € M then
(X(to, ...,tn_l))M — dx GM(()O(ZL‘,tQ, ...,tn_l))M

— JreMeM(x, 1", ...t} )

- XM(téua ---7tnM—1)-

5.2 Transitive Models of set theory

Theorem 5.6. Let M be a non-empty transitive term. Assume that M satisfies
the following closure properties:

a) Ve,ye M {x,y} € M;

b) Vee M |J x e M;

c) weM;

d) for all terms A: Vo € Mz N AM € M;

e) for all terms F: if FM is a function then Yz FM[z] € M.
Then ZF~ holds in M.

Proof. (1) The axiom of extensionality holds in M.
Proof. Consider x,y € M. By the axiom of extensionality in V'

rCyhNyCr—ar=y.

Since M is transitive, tN M =z, yN M =y and

xNMCyAnyNMCz—ax=y.
This is equivalent to

(VzeM(zex—zey AVzeM(zey—zex)) —r=y
and
(rCyAyCa—z=y)".

Thus

(Vz,y(z CyAy Cx—a=y)"
(2) The pairing axiom holds in M.
Proof. Observe that for x,ye M

{z,y}={reM|z=2Vvz=y}={z,y}.
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Moreover VM ={x € M |z=x}= M. By assumption a),

Ve,ye M {x,y} e M

Ve, ye M {z,y}MevM

(Va,y {z,y} V)M,
i.e., the pairing axiom holds in M.

(3) The union axiom holds in M.
Proof. Observe that for x € M,

(Ux)M = {zeM|FyeM(ycxhzey)}
= {zeM|Jy(yexAzecy)}, since x C M,

= {z|Fy(yexNnzey)}, since VycaVzeyze M,

= U x
By assumption b),
Vee M U reM
V:L’EM(U r)MevM
(Va U reV)M,
i.e., the union axiom holds in M.

(4) The axiom of infinity holds in M.
Proof. Let t=wé& M. Then

fexAVylyex—yU{yltex).
The universal quantifier may be restricted to M:
PexAVye M(yex—yU{y} ).
Since (yU{y} )M =yU{y} this formula is equivalent to
DexzAVylyex—yU{y}ex))™.

Then
dJreM@exnVylyexr—yU{y}ex))™,
i.e., the axiom of infinity holds in M.

(5) The axiom schema of subsets holds in M.
Proof. Let A(Y) be a term and z,y € M. By assumption,

rNAM(7)e M.
Note that

rNAM(G) = {v|lvexrnve AM(7)}
~ fulverAve A}
= {veM|(vexAve A(F))M}, since x C M,
= {vjvezAveA(y)M
= (zNAM.
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So
(zNnAMeM=VM,
This proves
Vo, jeM(xznNAeV )M,

i.e., the axiom scheme of subsets holds relativized to M.
(6) The axiom scheme of replacement holds relativized to M.
Proof. Let F(%) be a term, and let x, j € M such that (F is a function)™. Note
that
FMz] = {v|3uex(u,v)e FM}
= {veM|Ju(ucxA(u,v)e FM)}, since FM C M and M is transitive,
= {veM|FueMuezA(u,v)eF)M
= {v|Fu(uexA(u,v) € F)M
— (Fla)™.
The assumption implies
FMlxle M
FMzle M=V¥
(Flz]e V)M
Thus

Va, i € M (F is a function — F[z] € V)™ and
(Vz, 9§ (F is a function — Flz]eV))M,

as required.

(7) The axiom schema of foundation holds in M.

Proof. Let A(j) be a term and let § € M such that (A 0)M. Then AM & (). By
the replacement schema in V, take x € AM such that x N AM = (). We have seen
before that zNAM = (z N A)M. So (zNA)M=0 and (xNA=0)". Hence

dJreM(xe AMA(xnA=0)M)
(Fz(ze ANzNA=0)M

Thus
(A0 —3z(zre ANzNA=0)M,
i.e., the foundation schema holds in M. O

The converse to this theorem will be shown later.

Theorem 5.7. Let M be a non-empty transitive term such that
Vee MP(x)NM e M.

Then the power set axiom holds in M.
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Proof. Note that for z € M

(Pla)™ = {ylyCa}V
= {yeM|(yCa)}
= {yeM|(ycx)M}
= {yeM|(Vz(zey—z€x))M}
= {yeM|VzeM(zey—z€x)}
= {yeM|Vz(z€y—z€x)}, dayCM,
= {yeM|yCz}=P(z)NM.

The assumption yields

Vee MP(x)NM e M
Ve MP(x)MeVvM
(Vz P(z) e V)M,

i.e., the power set axiom holds in M.
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Chapter 6

Definite formulas and terms

6.1 Definiteness

In the set existence axioms of the theory ZF~ every element of a term whose exis-
tence is postulated is determined by some parameters of the axiom. In the
replacement scheme, e.g., every element

ve{F(x)|zez}

is of the form v = F(x) and is thus definable from the ‘‘simpler” parameter x by
the term F. In contrast, there is no way to define an arbitrary element of an
infinite power set from simple parameters; this impression can be made more
formal by using CANTOR’s diagonal argument. The axiom of choice also is a pure
existence statement. There exists a choice functions, but it is in general not defin-
able from the parameters of the situation at hand.

The notion of defineteness aims to capture the concrete nature of ZF~ as com-
pared to full ZFC. It will be seen that most basic notions of set theory are defi-
nite and that these notions can be decided in ZF~ independantly of the specific
transitive model of ZF~. The definition of definite term tries to capture
the “absolute” part of the theory ZF~.

Definition 6.1. Define the collections of definite formulas and definite terms
by a common recursion on syntactic complexities:

a) the atomic formulas x €y and x =1y are definite;
if ¢ and ¢ are definite formulas then ¢V 1 and —¢ are definite;

)
c) if v is a definite formula then Yz € y v and Jx €y ¢ are definite formulas;
) z, {z,y}, U x and w are definite terms;

)

if s(xg, ..., Th_1) and to, ..., t,_1 are definite terms then s(to, ..., t,—1) is a
definite term;

) if o(zo, ..., xn_1) is a definite formula and to, ..., t,—1 are definite terms
then o(to, ..., tn—1) is a definite formula;

q) if v is a definite formula then {x € y|p(x,Z)} is a definite term;
h) if t(x,Z) is a definite term then {t(x,Z)|x €y} is a definite term;

i) if G is a definite term then the canonical term F defined by € -recursion

with F(x)=G(F ) is definite.
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The majority of basic notions of set theory (and of mathematics) are definite.
The following theorems list some representative examples.

Theorem 6.2. The following terms are definite:
a) \y
b) (,y)
c) TXYy
d)
{ T, if ¢
Yy, if —e

where ¢ is a definite formula (‘‘definition by cases”)

Proof. a) x \y={ze€z|z¢ y}.

b) (z,y)={{z},{z,y}}.

)z xy=UA{zx{vtvey}=U {{(uv,v)|luecz}tvey}.
d) { =% can be defined definitely by

y, if =
{fuez|ptU{ucy|-p}. O

Theorem 6.3. The following formulas are definite:
a) x is transitive
) x is an ordinal
) = is a successor ordinal
d) x is a limit ordinal
) x is a natural number

Proof. All these formulas are equivalent to Yg-formulas. O

Recursion on the ordinals is a special case of € -recursion which also leads to
definite terms.

Theorem 6.4. Let Gy, Gguee and Gunie be definite terms defining a term F:
Ord — V by the following recursion:

- F (O) =Gy ;

— Fla+1)=GseeF I (a+1));

—  F(\)=Gumit(F [ A\) for limit ordinals X .
Then the term F(«) is definite.

Proof. Let F’ be the canonical term defined by the € -recursion

0, if x=0,
Gsuee(F' ] ), if  is a successor ordinal,
Glimit(F’ [ z), if x is a limit ordinal,

0, if 2 ¢ Ord.

Fl(z)=
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By (an extension of) Theorem 6.2 d) on definition by cases, the recursion condi-
tion is definite and so is F'(z). Then F'=F’[ Ord. O

", Vi, Vi

6.2 Absoluteness

Definition 6.5. Let W be a transitive non-empty class. Let (%) be an € -for-
mula and t(Z) be a term. Then

a) ¢ is W-absolute iff V& € W (oW(Z) < ¢(T));
b) t is W-absolute iff Vi e W (t"W(Z) e W < t(Z) € V) and VT e WitV (Z) =
tH(T).

Theorem 6.6. Let W be a transitive model of Z¥~. Then
a) if t(Z) is a definite term then VZ t(Z) € V;
b) every definite formula is W-absolute;

c) every definite term is W-absolute.

Proof. a) may be proved by induction on the complexity of the definite term t.
Most cases are immediate from the ZF -axioms; if ¢ is a canonical term defined
by recursion with a definite recursion rule then the existence of #(Z) follows from
the recursion principle.

The properties b) and c) are proved by a common induction along the genera-
tion rules of Definition 6.1 for definite formulas and terms. If #(Z) is a definite
term, then by a)

VZt(z) e V)W V2 eWtW(Z)eW
so that always
VEeW (#W(Z)eW —t(Z)eV).
Thus for the WW-absoluteness of ¢ one only has to check
VT e WiV () =t(T).

We now begin the induction. The cases 6.1 a) and b) are trivial.
6.1 ¢): Let ¢(x, Z) be definite and assume that p(z, Z) is W-absolute. Let y,
ZeW. Then y CW and yNW =y, since W is transitive.

(V€ yp(a, 2NV o (Valzey— gz, 2V
o VeeW(xey—oW(z,2))
= Ve(zeynW — oV (x,?))
— Vr(xey—p(x,Z)), since ¢ is W-absolute,
= Veeyp(z,?).

Thus Vx € yp(z, Z) is W-absolute. Similarly, 3z € y p(x, Z) is W-absolute.
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Let us remark that cases 6.1 a) to c¢) imply that every € -formula in which
every quantifier is bounded is W-absolute. Such formulas are called ¥,-formulas.
6.1 d): The only non-trivial case is the term

w={aeOrd|Viea+1(f=0V [ is a successor ordinal)}.

(1) The formula o € w is W-absolute.
Proof. By the remark above it suffices to see that the formula o € w is equivalent
to a Xp-formula.

a€w « ac€O0rdAVFea+1(F=0V [ is a successor ordinal)
— Trans(a) AVy € aTrans(y) AVGea (Ve € fo £V
yeppf=y+)ANNVMrear#taeVIiveaa=y+1)
— YueaVveuvea AVyeaVueyYvcuvey N
Vica(VexefrtaVIyeBVuefueyVu="v)A
VueyueAvyeB)ANNVrear+xV
dyea(Muea(ueyVu=y)AVueyuea A vyea))
ged(1)
(2) wCW.
Proof. By complete induction. 0 € W since W is a non-empty transitive term.
Assume that n €w and n € W. Then, since (ZF7)V, (nU{n})V e W.

(nU{n})W = {zeW|(zenvze{nHh"}
= {zeW|(zenvz=n)"}
= {zeW|zenVae=n}
= {z|lrenVr=n}, since nU{n} CW,

= nU{n}.
Hence n+1e€W. ged(2)
(3) WM =w.
Proof .
wM = {zeM|(zew)M}

= {reM|zrew}, since x €w is W-absolute,

= {z|r€w}, since w C M,

= w.
qed (3)

By our previous remarks this concludes case 6.1 d).
6.1 e): Let 4 be the free variables of the terms t, ..., t,_1 and let ¥ € W. Then
by the inductive assumption

(5(to, e ta )V () = sV (¥),.... 0~
(
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6.1 f): Let 4 be the free variables of the terms o, ..., t,_1 and let § € W. Then by
the inductive assumption

(e (tos-ees 1))V (J)

(p(to(z_j)v e tn—l(g))
O(toy ooy tn—1)(¥)-

6.1 g): Let y,Z € W. Then y CW since W is transitive. By the inductive assump-
tion

11117

{reyle(@ 2)}V = {zlveyno(z,2)}"
= {zeWl|zeyneV(z,2)}
= {zeWl|zeynp(z,Z)}
= {zlreynp(x,Z)}, since y CW,
= {zeylelz,?)}
6.1 h): Let y,Z € W. Then y CW since W is transitive, and

{t(x,Z)|xey}V = {2|qvey 2=t(x,Z)}V
= {z|3zx(zeynz=t(x,Z)}"V
= {zeW|FzeW(xeyhz=tV(z,2)}
= {z|FxeW(@weyrz=tV(z,Z)}, since Ve e Wt"W(x,Z) e W,
= {z|FTreW(xeynz=t(x,Z)}, by inductive assumption,
= {z|Fe(xeynz=t(x,Z)}, since y CW,
= {t(z,Z)[zey}.
6.11): Let G=G(z,¥) with all free variables displayed and let F' be the canonical
term with
P(e,5)=G(F I2,7)
Let ¥ € W. We show that Vo € WEWY(x, ) = F(x, ij). Assume the contrary and
let x € W be € -minimal such that F"(z, §) # F(z, ). Then by the recursion
theorem in W,
F¥(5,5) = G [1,7)
= G(FWx,7),since F" |z € W and G is definite,
= G(F |z,y), by the minimality of z,
= F(z,7

), contradiction.

g

Recursion can be used to show that certain terms involving finiteness are defi-
nite.

Definition 6.7. Define P,(z) = {y C z| card(y) < n} for n < w recursively by
induction on n:

— P()(l’) :(b;
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— Pula) = {0}
— Punl@)={yU{z}|yePula) Az e}
— Pue)=U,, Pula).

Since this is an € -recursion with a definite recursion rule the terms P,(x) and
Pn(x) are definite.

We define a finitary version of the VON NEUMANN-hierarchy which agrees with
the usual V,-hierarchy for a <w.

Definition 6.8. Define Vi* for o€ Ord recursively:

o %ﬁn — @7
- Vet =Pu(Va"),
- vir=, ) Vi for limit ordinals .

Note that V"=V, and that the term V" is definite. Hence V,, is a definite term.

Definition 6.9. Define a well-order <,, of V,, for n < w recursively by induction
onn:

- <o=0;

- <pr1=<a UV x (Vag1\ Vo)) U
U{(z,y) €V x Vo | Fvey\aVueV, (u>,v— (uEx—u€ey))};

B <w= Un<w <n-

The terms <, for n<w are definite.

We shall next give a definite definition of the set of finite sequences from a
given set x which will later be used as the set of assignments in x.

Definition 6.10. Define "v={f|f:n—az} for n€w by recursion on n:
- Ox:{(z)};
- "la={fu{(nu)}fe"rAucr};

B <wx:Un<w T

Call <“x the set of assigments in x.
There are natural operations on assignments:
Definition 6.11. For fe<“xz, a€x and k € dom( f) let
7=\ FRD ULk, a)}

be the substitution of a into f at k.



Chapter 7
Formalizing the logic of set theory

7.1 First-order logic

The theory ZF~ is able to formalize most basic mathematical notions. This gen-
eral formalization principle also applies to first-order logic. For the definition of
the constructible universe we shall be particularly interested in formalizing the
logic of set theory within ZF~, i.e., the logic of syntax and semantics of the lan-
guage { € }. Given some experience with definite formalizations the definite for-
malizability of first-order logic is quite obvious. For the sake of completeness we
shall employ a concrete formalization as described in the monograph Set Theory
by FRANK DRAKE.

Standard first-order logic can be embedded into its formalized counterpart. So
for every formula ¢ of the language of set theory we shall have a term [¢] which
is a formalization of ¢. Let us motivate the intended formalization by defining
[¢] inductively over the complexity of ¢.

Definition 7.1. For each concrete € -formula ¢ define its GOEDEL SET [¢]| by
induction on the complexity of ¢:

- Jui=v;1=(0,4,7);

— [viev;]=(1,4,7);

e =2, el [¢]);
el=(3,[¢l);
ol =41, [el]).

Definition 7.2. The formula Fm(u, s, n) describes that a formula u is con-
structed along a finite sequence s of length n + 1 according to the construction
principles of the previous definition:

[
[
=
[Fv

Fm(u,s,n) < newAse "V, Au=s(n)A
AVE<n+1
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Inspection of this definition shows that Fm(u, s, n) is definite.

Definition 7.3. The formula Fmla(u) describes that u is a formalized € -for-
mula:

Fmla(u) < In <w3s €V, Fm(u, s, n).

The formula Fmla is also definite.

We formalize the TARSKIan satisfaction relation for the formulas u defined by
Fmla. For each member of a construction sequence leading to u we consider the
set of assignments in an € -structure (a, € ) which make the formula true.

Definition 7.4. The formula S(s,a,r,t) describes that s builds an € -formula as
in Definition 7.2, and that t is a sequence of assignments of the variables vy, ...,
Ur—1 in the € -structure (a, € ) which make the corresponding € -formula of the
sequence s true:

S(s,a,r,t) < Ju,neV, Fm(u,s,n) N\a+0Ar<wAt:dom(s)—V, A
A Vk € dom(s)
((Fi,j <w s(k)=(0,4,7) ANi(k)={b€"ab(i)=b(j)})
V(Ji, j<w s(k)=(1,4,7) ANt(k)={b€"alb(i) €b(j)})
V (3, m<ks(k)=(2 (1), s(m)) At(k)=t(l) Nt(m)) v
V(3 <k s(k)=(3,s(l)) At(k)="a \ () V
V(3l<k Ji<ws(k)=(4,1,s(1))) A

At(k)={be"a|3xca(b\{(i,b())}) U{( =)} €t(D)})).

Then define the satisfaction relation a E ulb] by b belonging to the assignments
satisfying w:

V
V

abFulb] < a#£0AFmla(u) Abe<“aA
Ads,r,teV,(S(s,a,r,t) A\r=rk(u) Au=s(dom(s) — 1) A
Ab€t(dom(s) —1)).

Note that
Theorem 7.5. For each € -formula ¢(vo,...,vn—1):
VaVzo, ..., Tn-1 € a(@™(xg, ..., Tn-1) = aFE [@|[(x0, ..., Tn-1)].

On the right-hand side, (zg, ..., xn—1) is the term

{(0,20), ..., (n =1, 2,_1) }.

Proof. By induction on the formula complexity of ¢. O
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7.2 Definable power sets

With these notions we can define a notion of definable power set crucial for the
constructible hierarchy.

Definition 7.6. a) Forx €V, p € Fml, and @ €<“ = define the interpreta-
tion of (z,p,d) by

I(z,¢,@)={vex|zF plag])

b) Def(z)={I(x,p,p)|p €Fml, p €x} is the definable power set of x.
The terms I(z, p,a) and Def(x) are definite.






Chapter 8
The constructible hierarchy

The constructible hierarchy is obtained by iterating the Def-operation along the
ordinals.

Definition 8.1. Define the constructible hierarchy L. , o € Ord by recursion
on a:

Lo = 0
Lo+1 = Def(Ly)
L, = U Ly, for X a limit ordinal.

a<A
The constructible universe L is the union of that hierarchy:

L= U L,.

a€eOrd
The hierarchy satisfies natural hierarchical laws.
Theorem 8.2. a) a< f implies Lo C Lg
b) Lg is transitive

C ngVﬁ

S

)

) a< [ implies L, € Lg

e) LgNOrd=p

f)

g) B>w implies card(Lg) = card(f3)

B <w implies Lg=V3

Proof. By induction on € Ord. The cases =0 and ( a limit ordinal are easy
and do not depend on the specific definition of the L -hierarchy.

Let 8 =~+ 1 where the claims hold for ~.
a) It suffices to show that L, C Lg. Let x € L, . By b), L, is transitive and
x C L, . Hence

x:{veL,y|v€x}:{v€L7|(L,Y,E)I:(va)%}:I(L,Y,vew,x)ELwl:Lﬁ.

b) Let z € Lg. Let t=1(L,,,P). Then by a) t CL,C Lg.
¢) By induction hypothesis,

Ls=Def(L,) CP(L,) CP(V,)=V,11=Vj.
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d) It suffices to show that L., € Lg.
L,={vel,v=v}={vel,|(L, €)Fv=v}=I(L,,v=0v,0)€L,y1=Lg.

e) LgN Ord C V3N Ord = (3. For the converse, let § < . If § < 7 the inductive
hypothesis yields that § € L, N Ord C LgN Ord. Consider the case § = y. We have
to show that v € Lg. There is a formula ¢(v) which is ¥y and formalizes being an
ordinal. This means that all quantifiers in ¢ are bounded and if z is transitive
then

Voez(veOrd«— (z,€)E p(v)).

By induction hypothesis

v = {vel,|lveOrd}
= {vel,[(Ly, €)Fp(v)}
= I(L77¢7®)
€ L7+1:L5.

f) Let 8 < w. By c) it suffices to see that V3 C Lg . Let x € V3. By induction
hypothesis, L,=V,. t CV,=L,. Let v ={zy,...,x,_1}. Then

x = {vel,|v=xVv=21V...VU=2,_1}

= {UGLV‘(LwG)':(vzvo\/v:vl\/...\/vzvn_l)w

VoVU1...Up—1
= I(Ly,(v=0gVo=1v1V..VU=0y_1), L0, L1, ..., Tp—1)

6 L’y+1 — LB .
g) Let §>w. By induction hypothesis card(L,) = card(y). Then
card(f3)

N

card(Lg)

card({I(L, ¢, P)|p€Fml, p € L,})
card(Fml) - card(<“L,)

card(Fml) - card(L~)<*

No - card(y)<¥

Ng - card(7y), since + is infinite,

NN N

card(7y)

= card([).
U

The properties of the constructible hierarchy immediately imply the following for
the constructible universe.

Theorem 8.3. a) L is transitive.

b) OrdC L.

Theorem 8.4. (L, €) is a model of ZF.
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Proof. By a previous theorem it suffices that L is transitive, almost universal
and closed under definitions.

(1) L is almost universal, i.e., Ve CL3ye Lz Cy.

Proof. Let « C L. For each u € L let rk(u) = min {«|u € Lo} be its constructible
rank. By replacement in V' let =] {rk(u)|u €z} € Ord. Then

x C Lﬁ eL.
(2) L is closed under definition, i.e., for every € -formula ¢(z, %) holds
Va,jeL{r€a|p®(z,¥)} L.
Proof. Let ¢(x,y) be an € -formula and a, 3 € L. Let a,y € Ly, . By the LEVY
reflection theorem there is some 6 > 6y such that ¢ is Lg-L-absolute, i.e.,
Vi, € Ly (640w, 7) > 05w, ).
Then
{zealp(z,§)} = {z€ls|lrcane’(z,¥)
= {zeLs|lreany™(z,i)
= {zelyl(zeany(z,y))
= I(Lo,(z €2 Ap(x,7)), 2

&~

°}

) € Lyy1 C L.

=
clley

O
The recursive and definite definition of the L,-hierarchy implies immediately:

Theorem 8.5. The term L, is definite.

8.1 Wellordering L

We shall now prove an external choice principle and also an external continuum
hypothesis for the constructible sets. These will later be internalized through the
axiom of constructibility. Every constructible set x is of the form

=1(La,,P);

(Lo, @, P) is a name for .

Definition 8.6. Define the class of (constructible) names or locations as
L={(Lq,,7)|ac0rd, p(v,7) €Fml, § € L, , length(F) = length(7)}.
This class has a natural stratification
Lo={(Ls, ¢, F)€L|B<a} foracOrd.

A location of the form (L, @, P) is called an a-location.
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Definition 8.7. Define wellorders <, of L, and ia of Lo by recursion on a.
—  <o=<0=0 is the vacuous ordering on Ly= Lo=0;
— if < is a wellordering of L, then define <, | on Los1 by:
<L57 @, 'f)<a+1<L’y7 w7 Z_j) Zﬁ
(B<y) or (B=7yAp<i) or
(B=~Np=1 AT is lexicographically less than i with
respect to <o );
o Zf ioz—f—l ~
Y <a+12 iff there is a name for y which is <.i1-smaller then every name for z.
—  for limit X, let <x=UJ,_, <a and <x=U,_, <a-

+1

is a wellordering on L1 then define <q41 on Loyt by:

This defines two hierarchies of wellorderings linked by the interpretation function
1.

Theorem 8.8. a) <o and <, are well-defined
b) <4 is a wellordering of L
c) < 18 a wellordering of L,
d) B <a implies that <g is an initial segment of <,
e) B <a implies that <z is an initial segment of <,
Proof. By induction on a € Ord. O
We can thus define wellorders <; and < of L and L respectively:

<= U <, and <= U <o

a€Ord acOrd
Theorem 8.9. < is a wellordering of L.
The above recursions are definite and yield:

Theorem 8.10. The terms <, and <, are definite.

8.2 An external continuum hypothesis
Theorem 8.11. P(w)NL C Ly, .

“Proof’. Let m € P(w)N L. By the downward LOWENHEIM SKOLEM theorem let
K < L be a ‘“‘sufficiently elementary” substructure such that

m € K and card(K)=1y.
Let m: (K,€ )~ (K’ €) be the MOSTOWSKI transitivisation of K defined by
m(u)={r(v)lveurnve K}.
7 lw=id [w and
m(m)={r@)iemnrnie X}={rn(i)iem}={iliem}=m.
A condensation argument will show that there is n € Ord with
K'=1L,. card(n) <card(L,) =card(K) =8, and n <¥;. Hence
meK'=L,C Ly, .



Chapter 9
The Axiom of Constructibility

If V = L holds then every set is constructible, and the above external arguments
become internal. We shall show that (V = L)L

Definition 9.1. The axiom of constructibility is the property V = L.

Theorem 9.2. (ZF~) The axiom of constructibility holds in L. This can be also
written as (V =L)* or L=L".

Proof. By Theorem 8.5, the term L, is definite. Thus the formula z € L, is abso-
lute for the transitive ZF~-model L. Since L= L, we have

Vere LdaeOrdx €L,

Vee Ldaoe L(a€OrdAz € L,)

VzeLiae L((a€Ord)l A (x € Ly)F)

Ve e L3a € L((a€Ord)* A (x € Ly)*)

(Veda x € L,)"

(Vexxe L)t

(V=L O

a€eOrd

Theorem 9.3. (ZF~) The axiom of choice holds in L: ACE.

Theorem 9.4. If the theory ZF is consistent then the theory ZFC = 7ZF 4+ AC is
also consistent.

L ist minimal.
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Chapter 10

Constructible Operations and con-
densation

There are various ways of ensuring the condensation property for the structure K
as used in the above argument for the continuum hypothesis. We shall only
require closure under some basic operations of constructibility theory, in partic-
ular the interpretation operator I. An early predecessor for this approach to con-
densation and to hyperfine structure theory can be found in GODEL’s 1939 paper

[2]:

Proof: Define a set K of constructible sets, a set O of ordinals and a
set I’ of Skolem functions by the following postulates I-VII:

I. M,,CK and meK.
I. If x € K, the order of x belongs to O.

II. If z € K, all constants occuring in the definition of = belong
to K.

IV. If « € O and ¢,(x) is a propositional function over M, all of
whose constants belong to K, then:

1. The subset of M, defined by ¢, belongs to K.

2. For any y € K - M, the designated Skolem functions
for ¢, and y or ~ ¢, and y (according as ¢,(y) or ~
®a(y)) belong to F.

V. If feF, x,...,x, € K and (xy, ..., x,) belongs to the domain
of definition of f, then f(xy,...,z,) € K.

VI If z,y € K and x — y # A the first element of x — y belongs
to K.

VII. No proper subsets of K,O, F satisfy [--VI.
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Theorem 5. There exists a one-to-one mapping z’ of K on M, such
that rey=2'€y for v,y € K and z'=z for z € M, .

Proof: The mapping z’ (....) is defined by transfinite induction on
the order, ....

10.1 Constructible operations

A substructure of the kind considered by GODEL may be obtained as a closure
with respect to certain constructible operations.

Definition 10.1. Define the constructible operations I, N, S by:

a) Interpretation: for a name (L, p,T) let
I(Las ¢, ) ={y € La| (La, € ) F(y, T)};

b) Naming: for y€ L let
N(y) =the <-least name (Lq, ¢,Z) such that I(La, ¢, T)=1y.

c) Skolem function: for a name (Lq, ¢, 2) let
S(Lq, ¢, %) =the <p - least y € L, such that L,E ¢(y, %) if such a y exists;
set S(La, ¢, Z)=0 if such a y does not ezist.

As we do not assume that « is a limit ordinal and therefore do not have
pairing, we make the following convention.

For X C L, (La, ¢, Z) a name we write (L, ¢, ) € X to mean that L, and
each component of Z is an element of X.

Definition 10.2. X C L is constructibly closed, X < L, iff X is closed under I,
N,S:

(Lo, 0, Z)EX — (Lo, p,T)€Xand S(Ly, ¢, 7)€ X,
yeX — N(y)eX.

For X CL, L{X} = the C -smallestY O X such that Y < L is called the con-
structible hull of X.

The constructible hull L{X} of X can be obtained by closing X under the
functions I, N, S in the obvious way. Hulls of this kind satisfy certain ‘‘algebraic”
laws which will be stated later in the context of fine hulls. Clearly each L, is con-
structibly closed.

Theorem 10.3. (Condensation Theorem) Let X be constructibly closed and let
X = M be the MOSTOWSKI collapse of X onto the transitive set M. Then there is
an ordinal o such that M = L, and 7 preserves I, N, S and <y, :

7T:(X,€,<L,],N,S)g(La,€,<L,],N,S).
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Proof. We first show the legitimacy of performing a MOSTOWSKI collapse.

(1) (X, €) is extensional.

Proof. Let x,ye X, x#y. Let N(z)= (L4, p,p)€X and N(y)=(Lg, ¢¥,7) € X
Case 1. a< 3. Then x € Lg and (Lg,€)FEIv(vex» P(v,q)). Let

z:S(Lﬁ,(UEu%w(U,E))) )eX

)2
STEST

Then z€x»z€y. qed(1)
We prove the theorem for X C L., by induction on 7. There is nothing to
show in case y=0. For v a limit ordinal observe that

= U T (XNL,)

a7y

where each 7 [ (X N L.,) is the MOSTOWSKI collapse of the constructibly closed set
X N L, which by induction already satisfies the theorem.

Solet y=p8+1, X CLgi1, X € Ls, and the theorem holds for 3. Let
(X, e)2(X,¢€)

be the MOSTOWSKI collapse of X. X N Lg is an € -initial segment of X, hence 7 |
X N Lg is the MOSTOWSKI collapse of X N Lg. X N Lg is constructibly closed and
so by the inductive assumption there is some ordinal 3 such that

7TfXﬂLﬁi(XﬂLﬁ,E,<L,I,N,S)g(LB’,E,<L,I,N,S).

Note that the inverse map n~': L — Lg is elementary since X N Lg is closed
under SKOLEM functions for Lg.

(2) Lg eX.

Proof. Take z € X \ Lg. Let N(z)=(L,, ¢, ). Then L, € X and L, = Lg since
x¢ Lg. qed(2)

(3) m(Lo)=Ls.

Proof. m(Lg)={m(x)|[r € LgArxeX}={m(z)|[rc XNLg}=Lgj.

(4) X = {I(Ls, ¢, )| F € X "L}

Proof. O is clear. For the converse let x € X.

Case 1. x€Lg. Then x=1(Lg,v € vy, Uil) is of the required form.

Case 2. x € L \ Lg . Let N(z) = (Lg, ¢, P), noting that the first component
cannot be smaller than Ls . § € X and « = I(N(x)) = I(Lg, ¢, p) is of the
required form. ged(4)

(5) Let ¥ € X. Then n(I(Lg, ¢, %)) =1(Lg, p,n(Z)).

Proof .

T(I(Lg, 0, 7)) = {m(y)|lyen(I(Lp, ¢, T)) Ny X}
= {r(W)[(Ls, €)Fp(y,¥)Nye X}
= {m(y)|(Lg,€)Fo(n(y),n(T)) Aye X}
= {z€Lls|(Ls,€)Fp(z,7(7))}
= I(Lg, p,m(Z)).
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ged(5)
(6) X =Lgy.
Proof. By (4,5),

Li = {I(Lg,

qed (6)

(7) Let y € X. Then n(N(y)) = N(n(y)). This means: if N(y) = (Ls, p, &) then

N(r()) = (1(L5), @, 7(7)) = (Lagay 9, 7(7))-

Proof. Let N(y) = (Ls, ¢, &). Then y = I(Ls, ¢, Z) and by (5) we have m(y) =

I(Lys), ¢, 7(Z)). Assume for a contradiction that (L), ¢, 7(Z)) # N(7(y)). Let
N(7(y)) = (Ly, ¥, ). By the minimality of names we have (Ly, ¥, ¥)<(Lxsy, ¥,
m(Z)). Then (Ly-1, ¥, 7 (¥))<(Ls, ¢, Z). By the minimality of (Lj, ¢, ¥) =
N(y), I(Ly-1(p), ¥, 7 (7)) # I(Ls, o, Z) = y. Since 7 is injective and by (5),

(L
m(y) # TI(La-riy b7 H(F)))

= [<meal7
= I(N(y)) =y.

~—

Contradiction. ged(7)
(8) Let z,y € X. Then z <,y iff w(x) <p7(y).
Proof. x <py iff N(z)<N(y) iff 7(N(z))<m(N(y)) (since inductively 7 preserves
< on X N Lg and < is canonically defined from <, ) iff N(n(z))<N(w(y)) iff
m(z) <pm(y). qed(8)
(9) Let (Ls, 9, %) € X. Then 7(S(Ls, ¢, %)) =S (Lxs), v, m(Z)).
Proof. We distinguish cases according to the definition of S(Ls, ¢, ¥).
Case 1. There is no v € I(Ls, p, %), i.e., I(Ls, ¢, ) =0 and S(Ls, ¢, 7)=0. Then
by (5),

I(Lrsy, o, m(Z))=7(I(Ls, 0, Z)) =m(0) =0

and S(Lx(s), ¢, 7(Z)) =0. So the claim holds in this case.
Case 2. There is v e I(Ls, ¢, ), and then S(Ls, ¢, Z) is the < -smallest element
of I(Ls, ¢, 7). Let y=S(Ls, p, 7). By (5),

m(y) em(I(Ls, 9, %)) =1(Lrgs), ¢, 7(Z)).

So S(Lr(s), ¢, m(Z)) is well-defined as the < -minimal element of I(Lx), ¢,
7(Z)). Assume for a contradiction that S(Lx(s), ¢, 7(Z)) # 7(y). Let 2 = S(Laxs),
o, (%)) € I(Lxs), ¢, 7(Z)). By the mlmmahty of SKOLEM values, z <j, m(y). By
(8), mY(2) <r y. Since 7 is € -preserving, 7~ (z2) € I(Ls, p, 7). But this contra-
dicts the <y -minimality of y=.S5(Ls, ¢, ¥) O



Chapter 11
GCH in L

Theorem 11.1. (L,€)FGCH.

Proof. (L,e)EV =L. It suffices to show that
ZFC+V =LFGCH.

Let w,, >N, be an infinite cardinal.

(1) Plwy) < LWI .

Proof. Let m € P(w,). Let K = L{L,,U{m}} be the constructible hull of L, U
{m}. By the Condensation Theorem take an ordinal 7 and and the MOSTOWSKI
isomorphism

T (K,e)=(Ly,, €).
Since L, € K we have 7(m)=m.
n < card(n)* = card(L,)" = card(K)" = card(L,,) " =w.

Hence me€ L, C L+ qed(1)
Thus w; < card(P(w,)) < Card(Lw:) =w). O
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Chapter 12
Trees

Throughout these lectures we shall prove combinatorial principles in L and apply
them to construct specific structures that cannot be proved to exist in ZFC alone.
We concentrate on the construction of infinite trees since they are purely combi-
natorial objects which are still quite close to ordinals and cardinals. One could
extend these considerations and also construct unusual topological spaces or
uncountable groups.

Definition 12.1. A tree is a strict partial order T'= (T, <7 ), such that ¥Vt €
T{seT|s<rt} is well-ordered by <r. Forte&T let htp(t) =otp({s€ T |s <rt})
be the height of t in T. For X C Ord let T'x be the set of points in the tree whose
heights lie in X:

Tx={teT|htr(t)e X}.

In particular, Tiay is the a-th level of the tree and T, is the initial segment of T
below av. We let

ht(7T) =min{«a|T=T,}
be the height of the tree T.

A chain in T is a linearly ordered subset of T. An C -maximal chain is called
a branch.

Definition 12.2. A tree T of cardinality A all of whose levels and branches are of
cardinality < X is called a \-Aronszagn tree. If A = wy, T is called an Aron-
szajn tree.

Theorem 12.3. Let k be regular and Y\ < k2N < k. Then there is a kT-Aron-
szajn tree.

Hence in ZFC one can show the existence of an (w;-)Aronszajn tree. The gen-
eralized continuum hypothesis implies the assumption VA < x2* <&, so in L there
are kT-Aronszajn trees for every regular k.

Theorem 12.4. Let k be an infinite cardinal. Then there is a linear order (Q, <
) such that card(Q)=r and every a < k™ can be order-embedded into every proper
interval of Q.

Proof. Let Q = {a €“ k|3Im € wVn € w(n > m — a(n) = 0} be the set of w-
sequences from k which are eventually zero and define the lexicographic linear
order < on @ by:

a<be—dnew(aln=0b[nAa(n)<b(n)).
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We first prove the embedding property for a = k:
(1) If a <b then there is an order-preserving embedding

fi(r, <) = ((a,b), <)
into the interval (a,b) ={c|a<c<b}.
Proof. Take n € w such that
aln=blnAa(n)<b(n).
Then define f:(k,<)—((a,b),<) by

f@)=(an+1)U{(n+1lan+1)+14+9)}U0n+2<I<w).
qed(1)

We prove the full theorem by induction on a < k*. Let a < k' and assume
that the theorem holds for all <. Let (a,b) be a proper interval of @, a <b.
Case 1: a« = 3+ 1 is a successor ordinal. By (1) take b’ € (a, b). By the induc-
tive assumption take an order-preserving map f”: (3,<)— (a,b’). Extend f’to an
order-preserving map f:(a, <) — (a,b) by setting f(3)="V".

Case 2: « is a limit ordinal. Since o < K+ let a = U¢<H «; such that Vi < ko <
a. By (1) let f:(k,<)—((a,b), <) order-preservingly. By the inductive assump-
tion choose a sequence (g; |7 < k) of order-preserving embeddings

gi: (i, <) = ((f(0), f(i+1)), <)
Then define an order-preserving embedding
h:(a,<)—((a,b),=)
by h(5)= g:(3), where i < k is minimal such that g€ q;. O

Proof of Theorem 12.3. Let (@), < ) be a linear order as in Theorem 12.4. We
define a tree

TC{t|Fa<ktt:(a,<)—(Q, <) is order-preserving }
with strict inclusion C as the tree order such that:
a) T is closed under initial segments, i.e., Vi € TVE€Ord t [ £ €T,
b) for all a < k™, T{oy ={t € T'|dom(t) =a} has cardinality <k;
¢) for all limit ordinals o < k™ with cof(a)) <k
Tioy={t|tta—=QAVB<a t|BeTisn}.
d) for all a < B < k™, t €Ty, a<be Q such that V& € a t(£) < a there exists
t"€ Typy such that t Ct" and V&€ Bt/(£) <b.

We define the levels T,y by recursion on a < ™.

Let T{o} = {(Z)}

Let @ = 8 + 1 and assume that Tg is defined according to a) - d). For any ¢ €
Ty and a <b € @ such that V& € Gt(£) <a choose an extension ¢, ;, such that

—  tap (a,<)—(Q, =) is order-preserving;
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— t(;’th;
— Véea téyb(f) <b.

One could for example set t; ,(3) =a. Then set
Tiay={tap |t €Tpy,a<b,VEE FH(E) <a}.

Obviously, conditions a) - d) are satisfied.

Let a < kT be a limit ordinal so that for all 8 < a Tysy is defined according to a) -
d). These are the levels of the tree T, .

Case 1: cof(a) < k. Let the sequence («; |7 < cof(a)) be continuous and cofinal in
a with cof(a) < ap. By ¢) we must set

T{a}:{t|t:a—>Q/\Vﬁ<a t fﬁGT{g}}.

Let us check that properties a) - d) hold for this definition. a) is immediate. For
b), note that every ¢t € T,y is determined by (¢ [ 5|3 € C):

card(*f(*)(T,))
card(¢°f(®) U Tisy)

B<a
K- K)

card(T(a})

NN

(cof(a)

N

card
Kcof(a)

Z Vcof(a)

V<K

Z 2u~cof(a)

V<K
Z k , by the assumption Y\ < k2* <k,

V<K
= K.

VAN/AN

/N

For d), let t € T, and a < b € @ such that V¢ € dom(s) t(£) < a. By Theorem 12.4
there is an order-preserving embedding f: (cof(a), < ) — ((a, b), < ). We may
assume that ht(t) < ao. We may recursively choose sequences t; € T4} such that

— Vi<j<cof(a)tCt;Ct;;
—  Vi<cof(a)VE €a,; ti(€) < f(3).

For non-limit ordinals ¢ < cof(a) use the extension property d). For limit ordinals
i < cof(a) note that «; is the limit of (a; |j <) and is thus singular with cof(q;) <
i <cof(a) < k. We can then take t; = U, ; t; which is an element of Ta,} by c).
I
Then take "=, _ 50

of t and V€ € at’(£) < b as required.

Case 2: cof(a) = k. Let the sequence (o |i < k) be continuous and cofinal in «a.
For each t € T, and a < b € Q with V¢ € dom(t) t(£) < a we shall construct an
extension t;;, in 7' appropriate for the extension property d): By Theorem 12.4
there is an order-preserving embedding f: (k, <) — ((a, b), < ). We may assume
that ht(¢) < ag. Recursively choose sequences t; € Ty,,} such that

ti. t' € T(ay by the definition of T,y. t'is an extension

— VZ<j</<LtCtZCtJ,
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For non-limit ordinals ¢ < cof(a) use the extension property d). For limit ordinals
i < cof(v) note that a; is the limit of (o |j < i) and is thus singular with cof(a;) <
i <r. We can then take {;=J;_; t; which is an element of Tia,) by c).

Then set to, = |J._, ti . top is an extension of ¢ and V¢ € at, (&) < b as
required in c).

Now define

1<K

Tiay={thy |t €To,a<b, V¢ €dom(t) t(€) <a}.

The properties a) - d) are easily checked. a) follows by construction. For b) note
that

card(Tay) card(T,) - card(Q) - card(Q)

<
< (card(a) -R) -k K
<

K-K-K-K<K.

c) does not apply for T4y and d) holds by construction.

This defines the tree T'=]J, _ ; T{a}. We show that T"is a kT-Aronszajn tree.
(1) ht(T)=x".
Proof. Property d) ensures that Va < &% Tysy # (0. By construction, T4y = 0,
hence ht(T) = k™. qed(1)
(2) card(T) =k, since by property b) kt =ht(T) <card(T) < k" -k =r".
(3) Ya <ht(T') card(T{ay) < K, by property b).
(4) Every branch of T has cardinality < k.
Proof. Let B C T be a branch of T. Then |J B: (#, <) — (@, <) is an order-
preserving embedding for some § € Ord. Since |J B is an injection from 6 into @),
card(f) < k. Then card(B) < < k. O



Chapter 13
The principle <

We shall study a principle which was introduced by RONALD JENSEN and may be
seen as a strong form of a continuum hypothesis. We shall use the principle to
construct Aronszajn trees with stronger properties. The principle < involves
notions for ‘“‘large” subsets of a regular uncountable cardinal: closed unbounded
and stationary sets.

Definition 13.1. Let k be a reqular uncountable cardinal.

a) C Ck is closed unbounded in r if C is cofinal in Kk and

Va<rk(CNais cofinal in a—aeC).

b) C. = {X C k|3IC C XC is closed unbounded in k} is the closed
unbounded filter on k.

c) S Ck is stationary in k if VC€C, SNC#0.

Theorem 13.2. Let kK > w be a regular cardinal. Then C,; is a non-trivial filter on
Kk which is < k-complete, 1.e.,

VB<rV{Xc|£<BYCC, (] Xe€Cs.
£<p

Proof. Exercise. O

Definition 13.3. Let k be a reqular uncountable cardinal. Then . is the prin-
ciple: there is a sequence (S, |a < k) such that

VSCr{a<k|SNa=S,} is stationary in k.
Theorem 13.4. Assume .+. Then 28 =k".

Proof. Let (S, |a < k) be a sequence satisfying {.+ . Consider x C k. By the
O-property there is « € (k, k) such that x=xNa=S,. Hence

P(k)C{Sa|a<kt}
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and

2% =card(P(k)) <™. O

Theorem 13.5. Assume V =L. Then . holds for all reqular uncountable cardi-
nals k.

Proof. Define (S, |a < k) by recursion on «. Consider f < k and let (S, |a < )
be appropriately defined. If 5 is not a limit ordinal, set Sz = 0. If § is a limit
ordinal, let (Sg, Cg) be the < -minimal pair such that Cjp is closed unbounded in
B, SgC G and Vo€ Cs SgNa+# S, , if this exists; otherwise let Sz=1.

We show that (S, |a < k) satisfies ¢, . Assume not. Then there is a set S C K
such that {o < kK|S N a = S,} is not stationary in k. Hence there is a closed
unbounded set C C k such that

{a<kr|SNa=5,}NC=0,
ie.,

VaeCSNa+S,.

We may assume that (S, C') is the <, -minimal pair such that C is closed
unbounded in k and Ya € C'SNa+ S,.

Take a level Ly such that (ZF~)% and &, (S, |a<k),S,C € Ly.
(1) There is X < L such that Ly, k, (So | < k), S,C € X, and =X Nk is a
limit ordinal < k.
Proof. Define sequence Xy C X; C ... and [y < 1 < ... < k by recursion so that
card(X,) <k and X, Nk C f,. Let

Xo=L{{Lyp,x,(Sa|la<k),S,C}}<L.

X is countable and so card(Xy) < k.

Let X, be defined such that card(X,) < k. Since k is a regular cardinal, X, N
k is bounded below k. Take 3, < k such that X, Nk C ,,. Then let

Xnt1= L{Xn U (ﬁn + 1)}
card(X,,+1) < card(X,,) + card(5,) +Rp < k.

Let X =J,., Xn and B={J,_, B . Since k is regular uncountable, 3 is a limit
ordinal and 3 < k. By construction,

X=J xX.=UJ L 0B+ D)} =L{ | ) (XaU(B.+1)}<L.

n<w n<w n<w
ﬁ:U 5n§(UXn+1)ﬂ/<;§Xﬁm§UXnﬁ/€§U ﬁn:ﬁ
n<w n<w n<w n<w

ged(1)
By the condensation theorem let

7TZ(X,E,<L,I,N,S)g(L5,€,<L,],N,S)
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for some 0 € Ord. We compute the images of various sets.
(2) [ f=id | B, since =X Nk CX is transitive.
(3) (k) =B, since 7(k) ={m(§) | €r N e X} ={m ()| € f}={{[|{€B}=0.
(4) m(S)=SnN g, since
m(S) = {n(§)[feSAEe X}
= {m(H)]feSNX}
= {n(§)[£e SN G}

= {{[{eSnp}
= Sng.

Similarly
(5) 7(C)=CnNg.
(6) m((Sa | <)) = (Sa |a < §).

Proof .
m((Sala<r)) = m({(a,Ss)laer})
= {7((e, Sa))|a € 3}
= {(m(a), 7(5a))| e B}
= {(a,Sa)laep}
= (Safa<p).
qed(6)

(7) XN Ly is an elementary substructure of (Ly, € ).
Proof. Since Ly € X, the initial segment X N Ly is closed with respect to the
Skolem functions S(Lg, _, _) for Lg. qed(7)

Let § =7(6). Then
(8) w1 Lg:(Lg,€)—(Lg, €) is an elementary embedding.

Now we use elementarity and absoluteness to derive a contradiction.
(9) C'N S is closed unbounded in B, SNFC [ and YaeCNBSNa#£S,.
Proof. C' is closed unbounded in k. Since this is a definite property, (Lg, €
) E C is closed unbounded in k . By elementarity, (Lg, € ) E C' N [ is closed
unbounded in (. By the absoluteness of being closed unbounded, C'N [ is closed
unbounded in S.

The other properties follow by the assumptions on C and S. ged(9)
(10) (SN 6,CN B) = (S5, Cs).
Proof. Assume not. By the minimality of (S, Cjs) and (9), we get

(S5,Cp) < (SNB,CNPJ).

Since Lg is an initial segment of <; we have (Sg, C3) € Lg. The defining proper-
ties for (Sg, Cj) are absolute for (Lg, € ):

(Lg,€)ECpis closed unbounded in 3, SgC f and Vaoe Cz SgNa# S, .
By the elementarity of 7= | Ly :
(Ly,€)Em™Y(Cp) is cl. unb. in k, 7= 1(S5) Ck, Vaerm 1 (Cp) 7 1(Sp) Nav# S, -
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By the absoluteness of these properties for transitive ZF -models,
7 1(Cp) is cl. unb. in &, 77 1(Sg) Ck, Vaerm (Cs) 7 1(Sp) N+ Sa,

i.e., the pair (771(S3), 771(Cp)) satisfies the defining property for (S, C). Since
71 preserves <,

(m=1(8p), 7 H(Cp)) <o (SN B), 7= HC'N B))= (S, ).

This contradicts the < -minimal cloice of (S, C). ged(10)

By (9), 8 is a limit point of C' and hence § € C. By (10), SN = Sg. This
contradicts the choice of the pair (S, C), i.e., there is no counterexample against
the {.-property of the sequence (S, |a < k). O



Chapter 14

Combinatorial principles and Suslin
trees

Definition 14.1. Let T=(T,<r) be a tree.
a) A set ACT is an antichain in T if Vs,t € A(s#t— (s Lrt At £15)).

b) Let k be a cardinal. T is called a k-Suslin tree if card(T) = k and every
chain and antichain in T has cardinality <k .

Obviously every level of a tree is an antichain. Hence a x-Suslin tree is also a s-
Aronszajn tree.

Theorem 14.2. Let k be an infinite cardinal. Let T = (T, <p ) be a tree with
card(T)) = Kk such that every antichain in T has cardinality < k and T is
branching, i.c.

Vse T3t t' €T (s <pt As<pt' Ahtp(t) =hto(t') =hto(s) + 1 At£t).

Then T is a k-Suslin tree.

Proof. It suffices to see that every chain in T has cardinality < x. Let C' CT be
a chain. For every s € C choose t,t' €T such that

S<rtAs <Ttl N htT(t) = htT(tl) = htT(S) + 1At # t

Then at least one of ¢t is not an element of C. So for each s € C' we can choose

s*>rs such that s*¢ C and htp(s*) =htr(s) + 1.

(1) If s,t € C and s#t then s* Lpt* At* £Lrs*.

Proof. Assume not. Without loss of generality assume s* <p t*. Since t is the

immediate <p-predecessor of t* we have s* <7t and s*€ C. Contradiction. ged(1)
Hence {s* |s € C'} is an antichain in 7. By assumption card({s*|s € C'}) < k.

Since the assignment s+ s* is injective, we have card(C') < k. u

Theorem 14.3. Assume <., . Then there exists an wi-Suslin tree.

Proof. Let (S, |a < w;) be a $,-sequence. We construct a tree T = (T, <7 ) of
the form 7' = | Ty such that every level T, is countable. We can arrange
that

a<wi

T{Q}Z{O} and \V/CYE[1,w1)T{a}:w-(a+1)\w.a.
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By recursion on o < w; we shall determine the <7 -predecessors of x € T,y . We
shall also ensure the following recursive condition which guarantees that the tree
can always be continued:
(1) for all £ < (<« and s € Ty there exists ¢t € Ty such that s <pt.

For a=0 there is nothing to determine.

For =1, let every element of Ty be a <7 -successor of 0 € T, .

Let a=pF+1>1 and let <7 [T, be determined so that (1) is satisfied. We let
every s € Ty have two immediate successors in Toy: if s=w- 3+ m € Ts) and
t=w-a+n €T,y then set

s<rtiff n=2-morn=2-m+1.

Since <7 has to be a transitive partial order, this determines all < -predecessors
of £ €Tay. Also (1) holds for <p[Taq1.

Let a be a limit ordinal and let <p [T, be determined so that (1) is satisfied.
(2) For every sg € T, there is a branch B of the tree T, = (T,, <r | T,) such
that so € B and otp(B) = «a.
Proof. Choose an w-sequence

htr(s)=ap<a;<...<a,<..<«
which is cofinal in .. Using (1) choose a sequence
S0 <T81 <T oor <70 <7+
such that Vn <whtr(s,) =a, . Then

B={teT,|In<wt<rs,}

satisfies the claim. ged(2)

Define a set S, C T, as follows: if S, is a maximal antichain in the tree T, =
(Tw, <7 [T,) then set

Se={reT,|Is€Sys<r};

otherwise set S, =T, . The set S/, is countable. Let S, = {s; |i <w} be an enumer-
ation of S;, . For each i < w use (2) to choose a branch B; of T, with s; € B; and
otp(B;) =a. For c=w-a+1i€T, and s €T, define

s<rx il s€B;.

(3) Property (1) holds for T}, .

Proof. Let s €T, . It suffices to find t € T4y such that s <rt.

Case 1: S, =T, . Then s=s, for some i <w, s;€ B;, and s; <pw-a+1i €Tq3.
Case 2: S, ={r €T, |3s €S, s <rr}, where S, is a maximal antichain in T, =
(Tw, <7 | T,,). By the maximality of S, there is s’ € S, which is comparable with
s:

s<ps’ or s’ <rs.

Case 2.1: s<ps'. Then s'€ S5, say s'=s;, s€B;, and s <pw-a+i€Tyy.
Case 2.2: s'<ps. Then s€ S}, say s=s;, s€B;, and s <rw-a+1€T,y. ged(3)
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This concludes the recursive definition of the tree T'= (T, <7 ). It is straight-
forward to check, that the predetermined sets T%,) are indeed the a-th levels of
the tree. By the construction at successors, the tree is branching. By the previous
theorem it suffices to show that every antichain in 7" has cardinality <w; .

Let A C T be an antichain in 7. Using the lemma of ZORN we may assume
that A is maximal with respect to C.

(4) The set C = {a < w1 |A N «a is a maximal antichain in 7,} is closed
unbounded in w; .

Proof. Let us first show unboundedness. Let ap < w; . Construct an w-
sequence

<o <...<wi

as follows. Let o, < w; be defined. By the maximality of A every s €T, is <p-
comparable to some t € A. By the regularity of w; one can take a1 € (ap, wy)
such that

Vs€T,, € ANyt (s<rt ViE<rs).

Let a =J,., an <wi. AN ais an antichain in 7', since it consists of pairwise
incomparable elements. So A N « is an antichain in T, . For the maximality con-
sider s €T, . Let s €T, . By construction there is ¢t € A N, 41 such that s <ptV
t <rs. So every element of T, is comparable with some element of ANa.

For the closure property consider some o < w; such that C' N« is cofinal in a.
To show that o € C' it suffices to show that A N« is a mazimal antichain in T, .
Consider s € T,, . Take 8 € C' N « such that s € Tg. Then A N (3 is a maximal
antichain in T and there exists t € AN 3 C A N « which is comparable with s.
Thus for every s € T, there exists t € AN« which is comparable with s. Thus « €
C. ged(4)

By the {,-property, {a < w; |[A N a = S5,} is stationary in w; . Take a € C'
such that ANa=S5,. Then ANa=S5, is a maximal antichain in T, .
(5) A=AnNa.
Proof. Let t € A. We show that every r € T is comparable with some s € A N
a. Since A N « is a maximal antichain in T, this is clear for r € T, and we may
assume that r € T\ T, . Then hty(r) > o and we can take the unique 7 € T4
such that 7 <77. By construction of T,y there is some s € .S, = ANa such that

s<rr <11
ged(5)
By (5), A = A N «a is countable. Since T is a branching tree all whose
antichains are countable, T is a Suslin tree. O

We shall now study generalizations from w;-Suslin trees to x™-Suslin trees for
k >w. We first consider the case when x is regular. There are now different kinds
of limit cases « in the construction: cof(a)) < k and cof(a) = k. To ensure the ana-
logue of property (1) of the previous proof, we

— extend all paths through T, when cof(a) < k;

— use the set S, of the {-sequence as above when cof(a) =x.
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In the first case one assumes that x°%® < k<% = k which is a consequence of
GCH. For the second case to yield the desired result a {-principle for ordinals of
cofinality  is needed. Note that the set Cof, = {a < k| cof(a) = Kk} is stationary
———
in k.

Definition 14.4. Let k be a reqular uncountable cardinal and let D C k be sta-
tionary in k. Then $i(D) is the principle: there is a sequence (S, |a < K) such
that

VSCri{aeD|SNa=S,} is stationary in k.

Theorem 14.5. Assume V = L. Let k be a reqular uncountable cardinal and D C
k be stationary. Then (D) holds.

This is very much proved like ., = u(k). We only indicate the necessary
changes in the previous proof.

Proof. Let § <k and let (S, |a < 3) be appropriately defined. If 3 is not a limit
ordinal or § ¢ D, set Sg=10. If § is a limit ordinal and 3 € D, let (Sg, Cj3) be the
<, -minimal pair such that Cj is closed unbounded in 3, Sy C 8 and Va € D N
Cs SgNa++ Sy, if this exists; otherwise let Sz=10.

Assume that (S, |a < k) does not satisfy &, . Then there is a set S C k such
that {a« € D|SNa = S5,} is not stationary in x. Let (S, C) be the <y -minimal
pair such that C' is closed unbounded in x and Vae DNC SNa# S, .

Take a level Ly such that (ZF~)% and k, D, (S, |a<k),S,C € Ly.

(1) There is X < L such that Ly, k, D, (S, |la < k), S,C € X, =X NkKkisa
limit ordinal, and € D.

Proof. We basically show that the set of § < xk with the first two properties is
closed unbounded in k. Let

A={pf<k|B=L{BU{Le,k,D,(Sa|a<k),S,C}}NK}.

We first show the unboundedness of A. Let (y < x and define an w-sequence [y <
b1 < ... < Kk by recursion: if (3, < k is defined, let (3,1 < k be minimal such that

Bn+1> Bn and
L{B,U{Lg,k, D, (Sq |a<k),S,C}}NK<Bnri1.

(Bni1 exists, since
card(L{B3,U{Lg, k, D, (Ss | <k),S,C}}) <card(fF,) +No< kK

and since k is regular.
Let 3=1{J,_, Bn- Since x is regular uncountable, 3 is a limit ordinal and 8 <
k. By construction,

8 C L{BU{Ly,k,D,(Sa|la<k),S,C}}Nk
= U (L{GB,U{Lo,k,D,(Sq|a<k),S,C}}NK)

n<w

- U Br+1

n<w

= B,
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hence € A.
A similar argument shows that A is closed in k. Since D is stationary in

take € DN A. Then
X=L{pU{Ly,k,D,(Ss|a<k),S,C}}

has the required properties. ged(1)
By the condensation theorem let

m(X,e, <, I,N,S)~(Ls,€,<p,I,N,S)

for some ¢ € Ord. The proof then follows the previous proof of <, . O

Theorem 14.6. Let k be a reqular cardinal such that k<" =k . Assume {p+({a<
kT |cof(a) =k}). Then there exists a k*-Suslin tree.

Proof. Let (S, | <k™) be a $+({a < kT | cof(a)) = Kk} )-sequence. We construct
a tree T'=(T', <r) of the form T'=J__, . T(a}such that every level T, has cardi-
nality <. We can arrange that

T{O}:{O} and VOJE[1,H+)T{a}:/§-<a—|—1)\ﬁ.a_

By recursion on o < k™ we shall determine the <p -predecessors of x € Tiay . We
shall also ensure the following two recursive conditions which guarantee that the
tree can always be continued:
(1) for all £ <( <a and s €Tl there exists t € Ty¢y such that s <pt;
(2) if @’ <« is a limit ordinal with cof(a’) <k and B is a branch through 7, with
otp(B)=a’ then there is t € Ty, such that Vs € Bs <rt.

For aa=0 there is nothing to determine.

For =1, let every element of T(1} be a <7 -successor of 0 € T, .

Let o =+ 1>1 and let <r [T, be determined so that (1), (2) are satisfied.
We let every s € Tz, have two immediate successors in T,y if s=r-F+pu+me
Ty and t =w-a+v+n €Ty, with limit ordinals p, v <k and m,n <w then set

s<rtiff p=vand (n=2-morn=2-m+1).

Since <7 has to be a transitive partial order, this determines all < -predecessors
of ©€Tsy. Also (1) and (2) hold for <7 [Ta41.

Let a be a limit ordinal and let <z [T, be determined so that (1) is satisfied.
(2) For every sg € T, there is a branch B of the tree T, = (T,, <r | Ta) such
that sp € B and otp(B) =«
Proof . Let v=cof(a). Take a -sequence

htr(s)=ap<a<..<<..<a,i<y
which is cofinal in « and continuous, i.e., if ¢ < is a limit ordinal then
Q= U aj.
. j<i
Recursively choose a ~-sequence

S0 <781 < ... <78 <p..., 1<
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such that Vi < v htr(s;) = a; . The recursive construction is possible at successor
ordinals i <y by (1). If i<~ is a limit ordinal then

cof(a;) <i <y =cof(a) <k.

Let B, ={t € T,, |3j < it <rs;} be the branch through T, determined so far.
Then s; € T{q,) can be found by property (2). Then

B={teT,|Jdi<yt<rs;}

satisfies the claim. ged(2)

Case 1: cof(a) < k. Then

(3) card({ B |B is a branch through T, of ordertype a})==x.
Proof. Let v=cof(a). Take a -sequence

htr(s)=ap<a<..<<..<a,i<y

which is cofinal in «. A branch B through T, of ordertype « is determined by the
set {BNT,, |i<~}. The letter is basically a function from -~ into k. Hence

k< card({B|B is a branch through T, of ordertype a} <card("k) < k<" < k.

ged(3)
Let (B;|i < k) be an injective enumeration of all branches through T, of order-
type a. For x=rK-a+1i€Ta}, i<k and s €T, define

s<rx iff seB;.

Obviously properties (1) and (2) hold for a.

Case 2: cof(a) = k.
Define a set S!, C T, as follows: if S, is a maximal antichain in the tree T, =
(Tw, <7 [ T,) then set

S,={reT,|3s€S,s<rr};

otherwise set S, =T, . Obviously card(S,) =k. Let S, ={s;|i <k} be an enumer-
ation of S/, . For each i < k use (2) to choose a branch B; of T, with s; € B; and
otp(B;) =a. For x=k-a+i€ Ty and s € T, define

s<rx il s€B;.

(3) Property (1) holds for T, .

Proof. Let s €T, . It suffices to find ¢ € T,y such that s <7t.

Case 1: S, =T, . Then s=s; for some i < K, s; € B;, and si<rk-a+1€Tay.
Case 2: S, ={r €T, |3s € Sy s <rr}, where S, is a maximal antichain in T, =
(Tw, <7 | T,). By the maximality of S, there is s’ € S, which is comparable with
s:

s<rs’ or s’ <rs.

Case 2.1: s<ps'. Then s'€S/,, say s'=s;, s€B;, and s<pk-a+i€Tyy.
Case 2.2: s'<ps. Then s€ S/, say s=s;, s€B;, and s<pr-a+i €T, . qed(3)



COMBINATORIAL PRINCIPLES AND SUSLIN TREES 69

This concludes the recursive definition of the tree T'= (T, <7 ). It is straight-
forward to check, that the predetermined sets T%,) are indeed the a-th levels of
the tree. By the construction at successors, the tree is branching. By the previous
theorem it suffices to show that every antichain in 7" has cardinality <k.

Let A C T be an antichain in 7. Using the lemma of ZORN we may assume
that A is maximal with respect to C. As before one can show
(4) The set C = {a < kT |A N « is a maximal antichain in T,} is closed
unbounded in x* .

By the {+-property, {a < kT |ANa =8,} is stationary in k*. Take a € C'
such that ANa=S5,. Then ANa=S, is a maximal antichain in T, .

(5) A=AnNa.

Proof. Let t € A. We show that every r € T is comparable with some s € A N
a. Since A N « is a maximal antichain in T, this is clear for r € T, and we may
assume that r € T\ T,, . Then hty(r) > o and we can take the unique 7 € Tyqy
such that 7 <77. By construction of T,y there is some s € .S, = ANa such that

s<pr <7

ged(5)
By (5), A= AN« has cardinality <. Since T is a branching tree all whose
antichains have cardinality <k, T is a k™-Suslin tree. O
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