Übungen zur Mengenlehre I

- 49. Zeigen Sie:
- (a) $p \Vdash \neg \varphi$ ist äquivalent zu $\forall q \leq p \neg q \Vdash \varphi$
- (b) $p \Vdash \varphi \land \psi$ ist äquivalent zu $p \Vdash \varphi$ und $p \Vdash \psi$
- (c) $p \Vdash \exists x \varphi$ ist äquivalent zu $\forall q \leq p \; \exists r \leq q \; \exists a \; r \Vdash \varphi(a)$.
- 50. Zeigen Sie:

$$\forall p \; \exists q \leq p \; (q \Vdash \varphi \; \text{oder} \; q \Vdash \neg \varphi).$$

- 51. Sei M ein Grundmodell und $(\mathbb{P}, \leq, 1_{\mathbb{P}}) \in M$ eine Forcing-Halbordnung. Zeigen Sie:
- (a) Sind G_1 und G_2 über M \mathbb{P} -generische Filter mit $G_1 \subseteq G_2$, dann ist $G_1 = G_2$.
- (b) Es gelte: $\forall p \in \mathbb{P} \ \exists q_0, q_1 \leq p \ q_0, q_1$ inkompatibel. Zeigen Sie, dass es dann mindestens abzählbar viele verschiedene über M \mathbb{P} -generische Filter gibt.
- 52. Sei M ein Grundmodell und $\alpha = (\omega_1)^M$. Definieren Sie eine Forcing-Halbordnung \mathbb{P} , so dass $\alpha \neq (\omega_1)^{M[G]}$ für alle über M \mathbb{P} -generischen Filter G.

Jede Aufgabe wird mit 8 Punkten bewertet.

Abgabe: am 26. 01. 05 in der Vorlesung

Internet: www.math.uni-bonn.de/people/irrgang/MengenlehreI.html