Axiomatic Set Theory II

1 The Generalized Continuum Hypothesis (GCH)

FELix HAUSDOFF made several seminal contributions to cardinal arithmetic. He generalized
CANTOR’s continuum hypothesis from Rg to all cardinals and proved the HAUSDORFF recursion
formula:

Theorem 1. For all cardinals k € Card and A € Cd \ {0} holds (x1)*=r* k™.

Proof. Case 1: A> k%, Then (kT)*=r*=x* s+,
Case 2: A <x'. Then *(v") =, _, 4+ ‘o by the regularity of x*. Hence

(kM) =MNktH) = U o < Z K =k kT,
a<kt a<kt

The converse inequality is obvious. O

Definition 2. The generalized continuum hypothesis (GCH) is the statement: for all a
holds 28« =R, 1.

The GCH determines cardinal exponentiation completely:

Theorem 3. For k € Card and \ < cof(x) holds k* = k.
For k € Card and cof(k) < A<k holds k* =rT.
For k € Card and k <\ holds k=27

Proof. Exercise. O

This theorem motivates the special attention towards the continuum function & — 25. We
shall see by the methods of forcing that the continuum function is hardly controlled by the
axiom of ZFC. Odd configurations like 250 = Ry515, 2% = Ry, and 252 = Ry, ,,can be realized in
generic extensions. Somewhat more control exists for singular cardinals «: if cof(k) >w and VA <
k 2) = A\t then 2% = k1. Indeed, it suffices that the continuum hypothesis is true for a "large"
set of A < k. In the next chapter we give an important characterization of "largeness" within set
theory.

2 Filters

Definition 4. For X € V and F CB(X) we say that F is a filter on X if
a) XEF, 0¢F,
b) forYEF andY CY'C X holds Y'€F,
¢) forY,ZeF holisYNZ¢€F.

Definition 5. A filter F on X is an ultrafilter on X if for Y CX holdsY € F or X \Y € F.

Using bijections we are mainly interested in filters on cardinals. On uncountable cardinals
one can define filters which have no analogue in the countable realm:

Definition 6. Let v be a limit ordinal and C C . We have defined the notion of unboundedness
before.

The set C is called closed in v if for all B <~, C N B unbounded in B holds 3 € C. The set C
is called closed unbounded or club in v if it is both closed and unbounded in ~.
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Define Cx={D Cv|3C CDCis club in v}.
Theorem 7. For vy a limit ordinal, cof(vy) >w holds that C., is a filter on ~.

Proof. We only check ¢) of Definition 4. Consider Y, Z € C,. Choose C CY, D CZ, C, D club
in . It suffices to show that CN D is club in 7.

"closed": straightforward.

"unbounded": Consider a < «y. Define sequences (7;|i <w) and (d;]i <w) by simultaneous recur-
sion: 7; is the minimal element of C such that v; > «, for all j <i holds v; > v; and ~; > d;; d; is
the minimal element of D such that §; > ~;, for all j < ¢ holds §; > d; and 6; > ;. Set n =
Ujco 7i=U,<,, 8- m <y since cof(y) > w. By construction, C'N'n and D N 7 are unbounded in
n. 1€ C and € D since C und D are closed in v. >a and n€CND. O

The filter C, has some strong combinatorial properties:

Definition 8. Let k be a cardinal and F a filter on k. Define
a) Fis <k-closed if for all n <k, {X¢|{ <n} CF holds ﬂ£<n X¢€F.

b) For a sequence (A¢|€ < k) define the diagonal intersection A¢c. A = {a < K|VE < a
ac Ag}

¢) F is diagonally closed or normal if for all {X¢|{ <k} CF holds A¢<, Ag € F.

Theorem 9. Let k be a reqular uncountable cardinal. Then
a) Cy is < k-closed.

b) Cx is normal.

Proof. a) Consider n < k, {X¢|{ < n} C Cy. Choose (C¢lé < n) such that for all £ < n holds
C¢ € X¢ and C¢ is club in «. It suffices to see that (1, _, C¢ is club in &.
"closed": straightforward as in Theorem 7.
"unbounded": Consider « < k. For k < 7 define sequences (; x| < w) by simultaneous recursion:
i,k is the minimal element of C} such that «; , > a, for all j <4 and I < n holds ~; ; > 7v;,; and
for all I < k holds 7; r > 7. The construction is possible by the regularity of k. Set § =
U, <o 7is0- For k<nholds 6=J,_,, 7i,k- 0 <k since cof(k) > w. For k <n we have that CyN ¢ is
unbounded in 5. § € Cy since Cy is closed in k. § >a and § € ﬂ£<n Ce.

b) Consider {X¢|{ <k} CC,. Choose (Ce¢|¢ < k) such that for all £ <& holds C¢ C X, and C¢
is club in . It suffices to see that A .C¢ is club in &.
"closed": straightforward.
"unbounded": Consider a < k. Define a sequence (4;|i < w) by recursion: dg = a; ;41 is the
minimal element of (,_; Ce¢ (see a)). Then n={J,_, 6> and 7€ A< Ck. O

i<w
3 Stationary sets

To a filter is associated a dual ideal and the complement of that ideal, i.e., those object which
are positive with respect to the ideal.

Definition 10. Let k be an uncountable cardinal. A set S C k is stationary in k if for all C €

C holds SNC # 2.

Theorem 11. Let k be regular and uncountable.
i. If C is club in k then C is stationary in k.

ii. Define Cof, = {a < k|cof(a) =~v}. Then for regqular v < x holds Cofy Nk is stationary in
K.

Proof. Exercise. O

Stationary sets satisfy a remarkable canonisation property for regressive functions:
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Definition 12. A function f is regressive if for all x € dom(f), x + @ holds f(z) € x.

Theorem 13. (FODOR) Let k be an uncountable reqular cardinal, S stationary in k and f: S —
K regressive. Then there is T C S stationary in k such that f is constant on T, i.e., there is (
such that for all £ €T holds f(&)=C_.

Proof. Assume for a contradiction that this fails. Then for all ( < s holds that f~'[(] is not
stationary in k. Choose (C¢|¢ < k) such that for ¢ < x holds C¢ is club in k and C¢ N f~1[(] =
@. By Theorem 9, A¢.,C¢ is club in k. By the stationarity of S, choose (o € (Ag<xCe)NS. Let
& = f(&) < (o- By definition of the diagonal intersection (o € Ce¢,. (o € f[&] and so C¢ N
f~¢ #£ 2. Contradiction. O

We give a combinatorial application which will be used in later forcing constructions.

Definition 14. A family T of sets is called a A-system if there is a set a such that for x,y €T,
x#y holds tNy=a. The set a is called the root of the A-system.

Under certain conditions, families of sets can be thinned out to large A-systems:

Theorem 15. Let k, A be reqular cardinals, £ > X reqular, such that Yy < kVv <A p¥ < k. Let S
be a family of sets such that card(S) =k and for all s € S holds card(s) < A. Then there is a A-
system T C S such that card(T) =k.

Proof. We may assume without loss of generality that the given family S is living on &, i.e.,
Vz € Rz C k. Let (sq|la < k) be an enumeration of S without repetition. The set S = {a <
k|cof(a) = A} is stationary in k. The function f: S — k, a@ — sup (so N @) is regressive. By
FoDOR’s theorem choose a stationary Ty C .S and an ordinal ¢ such that for all a € Ty holds sup
(saNa)=(. For a €Ty holds s, Na € [(]<*. card([(]<*) < DIIN card(¢)*® (") < k; observe that
by the cardinal arithmetic assumption card(¢)**%(?) <k ; then the sum is < & since A < cof(k) =
k . Again applying FODOR’s theorem we can choose a stationary T; C Ty such that the function
a s s, Na is constant on T;. Choose a € [(]<* such that for all a € T} holds s, N« = a. Finally
by the regularity of x we can choose a stationary T' C Ty such that for all a, 8 € T, a < 8 holds
$a CB. For a,feT, a<f holds saNsg=s4NsgNf=sqNa=a. Thus T ={sq|la €T} is a A-
system with the desired properties. a

Remark 16. 1. The cardinal theoretic assumption is satisfied for A = Xq and k= N;.

2. If we assume GCH, the cardinal arithmetic property is satisfied if « is a regular limit cardinal
and k> \: for <k and v < X holds ¥ < max (p, v)™>**¥) = max (u, v)* < k.

3. Also if we assume GCH, the property is satisfied if k is a successor cardinal, k = p* and
cof(p) = A:for p< k and v < A holds p” < p* = p<k.

We can now apply the A-system property to a specific partial order, i.e., a set of forcing con-
ditions:

Definition 17. Let Fn(X,Y,\) denote the set of partial functions {p|p: dom(p) =Y, dom(p) C
X, card(p) < A}, partially ordered by reverse inclusion (D).

Theorem 18. Let k, A be regular cardinals, k > X\ regular, such that Vu < kVv < A\ p¥ < k. Let
card(Y) < k. Then Fn(X,Y, \) has the k chain condition, i.e., every antichain in Fn(X,Y, )
has cardinality < k.

Proof. Assume instead, that A is an antichain in Fn(X,Y, \) of size k. Let S ={dom(p)|p€ A}
be the associated family of domains. In case card(S) < k we can choose a subset B C A,
card(B) =k and an a C X such that for all p € B holds dom(p) = a. In case card(S) = k we can
use the A-system theorem to choose a subset B C A, card(B) = k and an a C X such that
{dom(p)|p € B} forms a A-system with root a. So in either case we may assume that there is an
antichain A of size k and a set a such that {dom(p)|p € A} is a A-system with root a. For p, q €
A, p+# q holds p is incompatible with ¢ and hence p[a+# ¢ [a. pla:a—Y and so card(*Y) > «.
But by the cardinal arithmetic assumption, card(“Y’) < card(Y)°2"4(%) < k, contradiction. O
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An immediate corollary is the following theorem which was proved differently in the forcing
construction for ~CH.

Theorem 19. Let card(Y) <¥;. Then Fn(X,Y,No) has the countable chain condition, i.e., the
Ni-c.c.

Theorem 20. Assume GCH and let \ be a regular cardinal. Then Fn(X,2,)) has the AT-c.c.

Proof. We have to check the cardinal arithmetic hypothesis of the theorem. Consider pu < AT
and v <. Then pu” <A\ <A< AT by previous results on the GCH. a

4 Destroying the Continuum Hypothesis at Higher Cardi-
nals

We intend to generalise COHEN’s forcing construction for mCH to cardinals k > Ny. Let us pro-
ceed similarly to the —CH-case.

Fix a ground model M in which GCH holds. Let & be a regular cardinal in M and let A be a
cardinal in M such that M F cof()\) > k. Define a forcing partial order within M:

P=Fn(Axk,2,\)M={pe M|p:dom(p) = 2 Adom(p) C X\ x kA card™(p) <k}.

The partial order on P is defined by reverse inclusion: p< ¢ iff p D q, 1p=0.

Let G be a P-generic filter over M with correponding generic extension M[G]. We know that
MI|G]EZFC. We want to show that M[G]E 2% = X and that cardinals and cofinalities are abso-
lute between M and M[G].

Let f={JG.

(1) fridxkr—2.
Proof. This is proved as in the ~CH case. g

For a < A define characteristic functions ¢, = (f(a,)]i < ). These correspond to the COHEN
reals generated in the =CH forcing.

(2) For a, B <A, a# 8 holds ¢, # cp.

Proof. Define a dense set
D={peP|Fi<k (a,i)€dom(p)A(3,i) € dom(p) A p(a,i) # p(B,i)}.
By absoluteness, D € M. Choose p € G N D. Choose i < k such that («, i) € dom(p) A (3,1) €
dom(p) A p(a,i) # p(B,i). Then
cali) = fla,i) =pla,i) # p(B,i) = f(B,i) = cs(i).

Thus M[G] satisfies:
2% = card("2) > card({cq|a < A}) =card(A).

The intended absolutenesses between M and M[G] rest on the following combinatorial proper-
ties of P. In the next chapter we shall see that the following combination of combinatorial prop-
erties of P do indeed imply the absoluteness properties.

Definition 21. Let & be a regular cardinal. A forcing partial order (P, <, 1p) is called k-
closed if Vv <kVp €"PIqe P(\Vi,j<v(i<j—pPE)=2p(j))=>Vi<v B(i) > q).

Obviously, the ground model M models that Fn(\ x &,2,\)M is k-closed.

Definition 22. Let p be a regular cardinal. A forcing partial order (P,<,1p) has the u chain
condition (u-c.c.) if VA(A is an antichain in P — card(A) < p).
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By the GCH assumption, the ground model M models that Fn(\ x &,2, \)™ has the (k*)M-
c.c.

5 Preservation Properties

Theorem 23. Let M be a ground model, M E k is a regular cardinal and P=(P,<,1p) is a k-
closed forcing partial order. Let G be P-generic over M. Then for v < k, h € M[G], h:v - M
holds h € M.

Proof. Consider v < k, h € M[G], h: v - M. Since M][G] satisfies the replacement scheme we
can choose b € M such that h: v —b. Choose h € M, p€ G such that h =h% and plF h: v —b.
It suffices to see that the set

D={q3feMqlFh=f}

is dense in P below p.
Consider r < p. Work in M and define a function f:v — b and a sequence (r;]i < v) of condi-
tions in P by simultaneous recursion on ¢ < v such that

a) Vi,j<v(E<j—ori>rj);

b) Vi<wvrilkh(i)= f(i).
Consider j < v and assume that f]j and (r;|i < j) are defined according to a) and b). By the -
closure of P choose s € P such that Vi < jr;>s. sl hiw — b. Choose 7; < s and f(j) € b such
that r;1Fh(j) = f(j). This concludes the simultaneous recursion.

Again by the k-closure of P choose ¢ € P such that Vi <v r; > ¢. Obviously, ¢l h= f and so
q € D as required. O

Theorem 24. Let M be a ground model, M E “s is a regular cardinal and P=(P,<,1p) is a k-
closed forcing partial order”. Let G be P-generic over M. Then all cardinals and cofinalities <k
are absolute between M and MIG], i.e.,

i. Yu<k ME puis a cardinal iff M|G]E p is a cardinal.
ii. Vv < kYC cof M(¢) =v iff cof MG =w .

Proof. By the previous theorem, M and M[G] agree with respect to their v-sequences of ordi-
nals. The notions in i. and ii. only depend on the class of v-sequences of ordinals. a

Theorem 25. Let M be a ground model, M E “c is a reqular cardinal and P = (P, <, 1p) has
the k-chain condition”. Let G be P-generic over M. Then for every v € On, h€ M[G], h:v— M
there is f € M, f:v— M such that Vi <v (h(i) € f(i) AcardM (f(i)) < k).

Proof. Consider v € On, h € M[G], h: v — M. Since M[G] satisfies the replacement scheme we
can choose b € M such that h:v—b. Choose heM, peG such that h=h% and plth:7—b. In
M define f:v—V, f(i)={ceblFg< pql-h(i)=¢}. Consider i <v. Let c= h(i). Choose r € G
such that r IF ¢ = h(7). Choose ¢ < p, ¢ <r. Then ¢ - h(i) = ¢ and so h(i) = ¢ € f(i). For the
cardinality estimate choose a sequence (q.|c € f(i)) such that for ¢ € f(i) holds ¢g. < p and
qeF h(zv) =¢. For ¢,d € f(i), ¢c#d holds q.L g4 since if there were some 7 < ¢., ¢4 then r I+ h(zv) =
¢, rlkh(i)=d, rlé=d, contradiction. Hence {q.|c € f(i)} is an antichain. By the x-chain
condition, card({g.|c € f(i)}) < k. Thus card(f(i)) <  as required. O

The previous theorem is a kind of covering theorem between M and M][G]: the function h €
MIG] can be “covered” by the function f € M.

Theorem 26. Let M be a ground model, M E “c is a reqular cardinal and P = (P, <, 1p) has
the k-chain condition”. Let G be P-generic over M. Then all cardinals and cofinalities > k are
absolute between M and M[G], i.e.,

i. YVu>=k ME pis a cardinal iff M[G]F u is a cardinal.



6 SECTION 5

ii. Y= kVYC (cof M (¢) = p— cof M(¢) :cofM[G](C) )

Proof. i. Consider p > k. The implication from right to left is obvious. Now assume that
MI[G] E p is not a cardinal. Choose v < pu, h € M[G], h: v — u surjective. By the previous the-
orem choose f € M, f: v — M such that Vi < v (h(i) € f(i) A cardM(f(i)) < k). Then p =
range(h) CJ,_, f(i). We can give the following cardinality estimates in M:
Case 1: = k. Then card™(p) <Y, _, card™(f(i)) <k, since & is regular in M. But then p=r
is not a cardinal in M, contradiction.
Case 2: p> k. Then card™(p) < Dicw cardM(f(i)) < card™(v) - k = max (card™(v), k) < max (v,
k) < p. But then p is not a cardinal in M.

ii. Consider >k and ¢ > k. Assume that cof(¢) = p. Obviously, cof MI€l(¢) < cofM(().
Assume for a contradiction that cof M[¢l(¢) < cof™(¢). Choose v < u, h € M[G], h: v — ¢ cofinal.
By the previous theorem choose f € M, f:v— M such that Vi <v (h(i) € f(i) A cardM(f(i)) <
%). We may assume that Vi <v f(i) C (. Then range(h) CJ,_, f(i), hence J,_, f(i) is cofinal
in (. We can make the following cofinality estimates in M:
Case 1: ( = k. Then cof™(¢) < Y, _, card™(f(i)) < k, since & is regular in M. But then ¢ =
K is not regular in M, contradiction.
Case 2: ¢ > k. Then cof™(() < Dicw cardM(f(i)) < cardM(v) - k = max (card™ (v), k) < max
(v, k) < p. But this contradicts the assumption cof ™ (¢) = p. O

i<v

We now give an upper bound for sizes of powersets in forcing extensions.

Theorem 27. Let M be a ground model, M E “c is a reqular cardinal and P = (P, <, 1p) has
the k-chain condition”. Let G be P-generic over M. Then for every cardinal p holds
card(p ()M ((card(P)<F)1)M.

Proof. We define the following set of canonical names for subsets of p in the ground model M:

Z={zC{ala< p} x PNa< u{p|(a,p) € z}is an antichainin P}.

We claim that o(u)MI¢] = {2%|z € Z}. The inclusion D is obvious. For the converse let = €
o(p) N M[G]. Choose a name & € M such that x =2%. For a < pu let A, be a maximal antichain
in the set {pe Plpltae€diVvpltag¢az}. Let By={p€ As|plk @ €d} and set

z={(a,p)la<p,p€B.}.

We claim that z = 2% 29={a < p|FpeG(a,p)ez}={a<pu|IpeGpeB,}={a< u|IpeCG
plra ez} ={a< pla€s®} =x. To justify the third equality, assume that p€ G and pl+a € z.
By the genericity of G choose ¢ € GN A,. Since ¢ is compatible with p, we cannot have ¢+ & ¢
2. Hence gl @ €2 and g€ B,.

Then an upper bound for the cardinality of p(u) N M[G] in M[G] is given by the M-cardi-
nality of Z. Every element of Z can be viewed as a function from g taking antichains in P as
its values. By the k-chain condition every antichain in P is an element of [P]<*. Hence

M Ecard(Z) < (card(P)<F)H.
a

Let us now apply our calculations to the forcing construction considered above. We fixed a
ground model M of GCH, and for M-cardinals s, \, cof () > k we defined: P = Fn(\ x &, 2,
MM ={pe M|p:dom(p) =2 Adom(p) C A x kA card™(p) < k}. This forcing is k-closed and has
the k*-chain condition. Thus all cardinals are absolute between M and M[G]. We already
checked that M[G]F 2" > A. The converse inequality follows from the previous theorem: work in
M: by the GCH, card(P) = (\- &)<F =A<F =X and (card(P)<r")% = (A<F")% = \* = \. Hence
MIG] E 2% < card(p(k)) < A. By choosing appropriate scenarios one can now deduce a host of
relative consistency results of which we list some typical cases.

Theorem 28. Assume the theory ZFC + GCH is consistent. Then the following are consistent:
i. ZFC+2%0=X,; ;
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ii. ZFC + 280 =R;3 ;
iii. ZFC +2%0 =R, ;
. ZFC 428 =X, ;

v. ZFC 428 =R;3 ;
vi. ZFC 4280 =R3 .

Note that we have some constraints by earlier results: e.g. we cannot have 28 = R, . One can
elaborate the above techniques by determining the value of 2# in M[G] for cardinals u # . In
subsequent, chapters we shall now approach the problem of changing the continuum function
simultaneously at several places.

6 Silver’s Theorem

We shall see by forcing constructions that the value of 2* for regular cardinals « is hardly deter-
mined by the value of 2* at other cardinals. The situation at singular cardinals is more subtle,
and the first result in this area is the following theorem by J. SILVER:

Theorem 29. (Silver) Let w < A\ = cof(k) < k € Card. Let 2* = u* for all w < p € kN Card.
Then 2% =k™.

Proof. We define f, g: A - V to be almost disjoint iff there exists @ < A such that f(3) #
g(p) forall a< < A\. FC{f]| f: A= v} is called almost disjoint if all f # g € F are almost
disjoint.

Let (kq | @ <A) be normal and cofinal in & such that w <k, € KN Card.

(1) Let F €T, Aa  card(A,) < ko, be almost disjoint. Then card(F) < &.

Proof. Assume w.l.o.g. Ay C k. For f € F define

h(a):= the least (3 such that f(a) € k.

Then h | Lim is regressive. So, by Fodor’s lemma, there is a stationary Sy C Lim N A such that A
is constant on Sy. Hence f is on Sy bounded in k. If f | Sy =g [ .S, then f = g, since F is
almost disjoint. So f — f [ Sy is one-to-one. For a fixed S, the set of functions on S that are
bounded in & has the cardinality sup {s) | @ € A} = &, since GCH holds below x. But again by
GCH below &, we have card(p())) =2* < k. Hence card(F) < k. qed(1)

(2) Let F CT], ., Aa be almost disjoint, card(A,) < k1. Then card(F) <x™t.

Proof. Assume w.l.o.g. that A, C k1. Let S C X be stationary and f € F. Let

Frs={9€F|(VaeS)(g(a) < f(a))}-

Then Fy s C [[,., Ba where B, = f(a) + 1. But card(B,) = card(f(a) + 1) < Ko So
card(Fy,s) <k by (1).

Define
ff:U {Fr.s|SC\is stationary}.

Then card(Fy) < &, too.

Now, construct a sequence (f¢ | £ < d) of functions in F such that 6 <x* and F=J {Fys, | £ <
0}. Do this by induction. Take any f € F to be fo. If (f, | v < &) is already defined, take any
FEU {Fr, |v< &} tobe fe. If there is no such f, take £ =4 and we are finished. By definition,
{a] fe(a) < fy(a)} is non-stationary for all v < £. So f, € Fy, for all v < {. But card(Fy,) < k.
Therefore, § < xt.

Altogether, card(F) = card(|J {Fr. | £ <d}) <kT. qed(2)

(3) 2F =kt

Proof. For X Ck, let fx =(XNky|a<A). Then F:={fx| X <&} is almost disjoint and F C
[1.<\ ©(ka). But card(p(ka)) =k}, since GCH holds below x. So (3) follows from (2). O
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7 Product Forcing

We have employed the forcing method to manipulate the size of powersets of specific cardinals
like Ng, Ry, N, 41 . In order to obtain models with global cardinal arithmetic properties we want
to apply these techniques simultaneously at several places. This is possible through the method
of product forcing where several forcings are performed in parallel and somewhat independently
of each other. The product forcing partial orders are obtained by forming simple products of
partial orders.

Definition 30. Let (Py, <o, lo) and (P, <1, 11) be forcing partial orders. Then define their
product Py x P = (Po x Py, <,1) by: (po, p1) < (go; ¢1) € po <o go and p1 <1 q1 ;5 1= (10, 11).

We relate forcing with Py x P; to the two component forcings with Py and P;.

Theorem 31. Let M be a ground model and let (Py, <o, 1o) € M and (P1,<1,11) € M be forcing
partial orders.

a) Let G be Py x Py-generic over M. Define projections Go = {po € Po|3p1 (po, ;1) € G} and
Gy ={p1 € P1|3po (po, p1) € G}. Then G =Gy x Gy, Gg is Py-generic over M, and Gy is
Py -generic over M[Gy]. Moreover, by symmetry, Go is Py-generic over M[G4].

b) Let Gy be Py-generic over M and Gy be Pi-generic over M[Go]. Then Go x Gy is Py x Pi-
generic over M.

Proof. a) G C Gy x G is obvious. For the converse consider pg € Go and p; € G1. Choose (po,
q1) € G and (qo, p1) € G. Choose (rg,r1) € G, (ro, 1) < (po, 1), and (rg, 1) < (qo, p1)- (ro, 1) <
(Po, p1) and so (po, p1) € G.

To check the first genericity property consider Do € M, Dy dense in Py. Define D = Dy x P;.
D € M is dense in Py x P;. By genericity choose (po, p1) € GND. Then py € GoN Dy.

To check the other genericity property consider Dy € M[Gg], D; dense in P;. Choose a name
D e M, D1G° = D;. Choose a condition pg € Gg such that pg -’ Dy is dense in P}’. Choose p1LE
Py such that (po, p1) € G. Define a set D = {(qo, ¢1)|q0 IF ¢; € Dl} We claim that D is dense in
Py x Py below (po, p1): Consider (qo, ¢1) < (po, p1)- qolF" Dy is dense in P{’, qolF ¢, € Pl. By the
laws of forcing, choose 7o < qo, 71 < q1, 7o IF 71 < Gy, 70 IF 71 € Dy. Then (ro, 1) < (qo, 1) and (ro,
r1) € D. By the genericity of G choose (qo, ¢1) € GND. Then qo € Go, @lF G1 € D1, ¢1 € Dy, q1 €
G1. Hence G1N Dy # 0, as required.

b) Trivially, Go X G is a filter on Py x P;. To check genericity, consider D € M, D dense in
Py x P,. Define D; = {p1|3p0 e (pg,pl) S D}

(1) D1 € M[Go] and D, is dense in P;.

Proof. Dy € M[Go] holds by the definition of D;. Consider ¢; € P;. Define Do = {po|3Ip1 < &1
(po, p1) € D}. We claim that Do € M is dense in Py. Consider gy € Py. Choose (po, p1) < (o, ¢1),
(po, p1) € D. Then pg < qo and pg € Dg. By the genericity of G choose pg € Go N Dy. Choose
1< q1, (po, p1) € D. Then p; € Dy and p1 < 1. qed(1)

By the genericity of G choose p1 € G1 N Dy. Choose pg € Go, (po, p1) € D. Then (po, p1) €
Go x G1N D, as required. O

This theorem has many consequences in the analysis of forcing constructions. Let P = Fn(w,
2,w) be the partial order for adding one Cohen real over a ground model M. By splitting w into
even and odd numbers we see that P ~ P x P where the isomorphism lies in the ground model
M. So Cohen forcing can be construed as a product of two Cohen forcings, and by the previous
theorem a generic extension M[G] by P can be split into two succesive extension M[G4] and
MI[G] = M[G4][G4]. Since G; and G2 can again be split in this way we obtain an ascending chain
of intermediate models between M and M[G] which is densely ordered by C . Actually the
structure of the partial order of all intermediate models of a Cohen generic extension is still the
object of set theoretic research.

One can generalise the finite product construction to infinite products. We simplify notation
by denoting all partial order relations by < and all maximal elements by 1.
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Definition 32. Let ((P;, <, 1)|i € I) be a sequence of forcing partial orders. Then define the
product partial order ([],., PZ, <D by (piliel)<(qiliel)eVipi<qi; 1=(1|i€l). Forp=
(pili € I) € [;c; Ii let its support be s(p) = {i € I|p; # 1}. There are various suborders of
Hie[ P; according to the assumed supports: for X a cardinal let the A-product of ((P;, < ,1)|i €
I) be the suborder {p€ [[,.; Pilcard(s(p)) <A} C[l;c; b

In later applications we shall study even more complicated products. As above we get:

Theorem 33. Let M be a ground model and let ((P;, <, 1)]i € I) € M be a sequence of forcing
partial orders. Let A € Card™ and let P be the A-product of ((P;, <, 1)|i € I) formed in M. Let
G be P-generic over M. For i € I define a projection G; = {p(i)|p € G}. Then G; is P;-generic
over M.

The converse of this theorem is not true. If for all i € I we have that G; is P;-generic over M
the product P N ], <1 Gi is in general not generic over M; it is for example possible to code so
much information into the sequence (G;|i € I') such that M[(G;|i € I)] is not a model of ZFC.

8 Forcing the GCH

Definition 34. Define the J-sequence (“beth”) by recursion on o € On: Jo = No, Jay1 = 27,

and for limit ordinals 6, 5=, 5 3a -

Obviously the GCH is equivalent to the statement: Vad, = X, . We shall aim to force that
property. The idea is to eliminate all cardinals between J, and J,11 by generically adjoining
surjections from JF onto J,,1. An appropriate forcing for this is given by the partial order of
partial functions Fn(2}, 3,41, 3%) . This forcing can be construed differently. Since Jo4; =
card(p(3,)) we can consider instead Fn(3J, p(3J,), 31). Since the conditions can have size 3,
and take values in p(J,) we can identify conditions with characteristic functions on 3% x J,.
Since card(3} x J,) = 3 we can even take characteristic functions on 3% \ J,. So we can use
the forcing partial order Fn(3% \ J,,2,3%). One can now show:

Theorem 35. Let M be a ground model and let P, =Fn(3%\ 1,,2,3%) be defined in M. Let G
be P,-generic over M. Then

a) Ve < (35)M k€ CardM «— k € CardM1;
b) V(IDOM <k <M cardMICl(k) = (3D)M;

¢) Vi >IM | ke Card™ +— Kk € CardMI¥];

d) p(3a)M = p(2.)MIE and M[G)F23-=27.

Proof. a) holds since the forcing is 3f-closed in M.

b) It suffices to see that G adjoins a surjection f: (31)M — o(J)M by f(i) = {j < k|G(k - i +
j) =1}. Since the forcing is Jf-closed in M we have for all i < (3X)M that f(i) € p(3,)™. Con-
versely, if a € p(J,)M the set D={p€ P,|qi < (I))MVj<r(j€a+— p(k-i+j)=1)} is dense
in D. If pe GN D then a € range(f).

¢) In M, card(P,) <3} -23==23=13,,,. So P, trivially satisfies the 3 ;-chain condition in
M which implies the claim.

d) follows from the J/-closure of P, in M and from b). O

We can form a kind of product of forcings of the type P, to obtain GCH for an initial seg-
ment of cardinals. To obtain the right preservation of the forcing the product has to be changed

somewhat at certain cardinals:

Definition 36. A cardinal k is called inaccessible if k=21, and k is reqular.
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Inaccessible cardinals belong to the class of large cardinals, i.e., those cardinals which cannot
be reached from below and which are strongly closed limit points of the cardinal hierarchy. The
existence of inaccessible cardinals cannot be proved in ZFC but we cannot exclude them in the
following construction.

Theorem 37. Let M be a ground model. In M, let 6 be a limit ordinal and define a partial
order P = {p|p: dom(p) — 2, dom(p) C Iy, YVa < § card(dom(p) N3}) <3}, Vk, k inaccessible or
k=w: card(dom(p) N k) <k}, ordered by reverse inclusion. Let G be P-generic over M. Then

a) For a <8 holds Nﬂ?] =(aHM,
b) For B<6, Lim(f) holds Ny'“ =2},
¢) MEVa< 2% =N,41.

Proof. Since limits of cardinals are cardinals we only have to prove a) and c) for a < §. We do
a product analysis of the forcing P by factoring it in ways such that the factors satisfy certain
preservation properties.

(1) Let k= (3%, 1)™, a <. Then, in M, P~ Py x P; where P is x-closed and card(P;) < k.
Proof. Define Py={p€ P|dom(p) CJg\ 3L} and P, ={pe P|dom(p) C2L}. p—(p[ (g \2),
p [ 31) defines a canonical isomorphism P = Py x P;. By the cardinality requirements in the defi-
nition of P, Py is clearly k-closed. card(Py) <3} -273+=23=21,,; <k. qed(1)

(2) k= (IHM | a < 6, and 1, inaccessible or a = 0. Then, in M, P = Py x P, where P, is k-
closed and card(P;) < k.

Proof. Define Py={p € P|dom(p) CJy\J,} and P, ={p€ Pldom(p) C3,}. p— (p| (3¢ \3n),
pl3,) defines a canonical isomorphism P 2 Py x P;. By the cardinality requirements in the defi-
nition of P, Py is clearly -closed. card(P;) <3, -2<=+=21,-3,=1,<k. qed(2)

Consider a cardinal x as in (1) or (2). Let G¢ be Py-generic over M and G; be Pj-generic
over M[Gy] such that G = Gy x G1 by the described canonical isomorphism. Since Py is k-closed
in M, k is a cardinal in M[Go]. In M, card(P;) < k£ and so in M[Gy], card(P;) < k. So P; satis-
fies the k-chain condition in M[Gy] and & is a cardinal in M[Go][G1] = M[G].

Now consider a cardinal k = (3X)M, a < @ which does not fall under (1) and (2). Then
Lim(a) and (J,)™ is singular in M. Assume for a contradiction that & is not a cardinal in
M[G]. Then cof™¥(k) < (3,)M since cofinalities are regular. Choose an ordinal § < a,
cof MG(k) < DY 1. Let A = (3%,1)M. By (1), choose a factorisation P = Py x P; where Py is A-
closed and P; satisfies the A-chain condition. Let G be Py-generic over M and G; be Pj-generic
over M[Gy] such that G = Gy x G by the described canonical isomorphism. Since P; satisfies
the A-chain condition in M[Gy] cofinalities > A are preserved between M[Go] and M[Go][G4].
Hence cofM[%l(k) < . Since M and M |G| possess the same < A-sequences, cof(k) < A . But
this is a contradiction.

We have thus proved:

(3) Let £ =(35)M, @ <. Then & is a cardinal in M[G].

Since limits of cardinals are cardinals we also have:

(4) Let k=(3,)™, a <6, Lim(a) or «=0. Then & is a cardinal in M[G].

For a) and b) it suffices to show that all other cardinals in M below 33! are not preserved
between M and M|[G]. These are the cardinals A with (3))™ < A < 3, < (35, )M for some
a < 6. Now just as in the previous theorem one obtains card™“l(\) = (3F)M™. This proves a)
and b).

(5) M[G]EVa <028+ =R, .
Proof. By a), A = NQ{E] = (QONHM. Let £ =2 | and let k = Ni{g] = (3%, )™M be the next car-
dinal in M[G]. By (1) there is a factorisation P = Py x P; where Py is k-closed and card(P;) < &
with a corresponding factorisation G = Go x G of generic sets. By the k-closure of Py we have
P(A)NM =p(A)NMI[G). Since cardM[Gl(P)) < & we have

(ZA)M[G} _ (2>\)M[G0][G1]

< (2R-A)M[Gg]
= (2
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